สูตรคูณบาปด้วยคอส อัตลักษณ์ตรีโกณมิติพื้นฐาน


จะได้รับความสัมพันธ์ระหว่างฟังก์ชันตรีโกณมิติพื้นฐาน ได้แก่ ไซน์ โคไซน์ แทนเจนต์ และโคแทนเจนต์ สูตรตรีโกณมิติ. และเนื่องจากมีการเชื่อมโยงระหว่างฟังก์ชันตรีโกณมิติค่อนข้างมาก นี่จึงอธิบายสูตรตรีโกณมิติที่มีอยู่มากมาย บางสูตรเชื่อมต่อกัน ฟังก์ชันตรีโกณมิติมุมเดียวกัน, อื่น ๆ - ฟังก์ชั่นของหลายมุม, อื่น ๆ - ช่วยให้คุณสามารถลดระดับ, ที่สี่ - แสดงฟังก์ชันทั้งหมดผ่านแทนเจนต์ของครึ่งมุม ฯลฯ

ในบทความนี้เราจะแสดงรายการตามลำดับหลักทั้งหมด สูตรตรีโกณมิติซึ่งเพียงพอที่จะแก้ปัญหาตรีโกณมิติส่วนใหญ่ได้ เพื่อความสะดวกในการท่องจำและการใช้งาน เราจะจัดกลุ่มตามวัตถุประสงค์และป้อนลงในตาราง

การนำทางหน้า

อัตลักษณ์ตรีโกณมิติพื้นฐาน

อัตลักษณ์ตรีโกณมิติพื้นฐานกำหนดความสัมพันธ์ระหว่างไซน์ โคไซน์ แทนเจนต์ และโคแทนเจนต์ของมุมหนึ่ง เป็นไปตามคำจำกัดความของไซน์ โคไซน์ แทนเจนต์ และโคแทนเจนต์ ตลอดจนแนวคิดเรื่องวงกลมหน่วย ช่วยให้คุณสามารถแสดงฟังก์ชันตรีโกณมิติหนึ่งฟังก์ชันในแง่ของฟังก์ชันอื่นๆ ได้

หากต้องการทราบคำอธิบายโดยละเอียดเกี่ยวกับสูตรตรีโกณมิติ ที่มา และตัวอย่างการใช้ โปรดดูบทความ

สูตรลด




สูตรลดติดตามจากคุณสมบัติของไซน์ โคไซน์ แทนเจนต์ และโคแทนเจนต์ นั่นคือ สะท้อนคุณสมบัติของคาบของฟังก์ชันตรีโกณมิติ คุณสมบัติของสมมาตร รวมถึงคุณสมบัติของการเลื่อนตามมุมที่กำหนด สูตรตรีโกณมิติเหล่านี้ช่วยให้คุณเปลี่ยนจากการทำงานกับมุมใดก็ได้ไปเป็นการทำงานกับมุมตั้งแต่ 0 ถึง 90 องศา

เหตุผลสำหรับสูตรเหล่านี้กฎช่วยในการจำและตัวอย่างการใช้งานสามารถศึกษาได้ในบทความ

สูตรการบวก

สูตรการบวกตรีโกณมิติแสดงว่าฟังก์ชันตรีโกณมิติของผลรวมหรือผลต่างของสองมุมแสดงออกมาในรูปของฟังก์ชันตรีโกณมิติของมุมเหล่านั้นอย่างไร สูตรเหล่านี้ทำหน้าที่เป็นพื้นฐานในการหาสูตรตรีโกณมิติต่อไปนี้

สูตรดับเบิ้ล ทริปเปิ้ล ฯลฯ มุม



สูตรดับเบิ้ล ทริปเปิ้ล ฯลฯ มุม (เรียกอีกอย่างว่าสูตรหลายมุม) แสดงให้เห็นว่าฟังก์ชันตรีโกณมิติของ double, triple ฯลฯ เป็นอย่างไร มุม () แสดงในรูปของฟังก์ชันตรีโกณมิติของมุมเดียว ที่มาของมันขึ้นอยู่กับสูตรการบวก

มากกว่า รายละเอียดข้อมูลรวบรวมไว้ในบทความสูตรดับเบิ้ล ทริปเปิ้ล ฯลฯ มุม

สูตรครึ่งมุม

สูตรครึ่งมุมแสดงให้เห็นว่าฟังก์ชันตรีโกณมิติของครึ่งมุมแสดงออกมาในรูปของโคไซน์ของมุมทั้งหมดอย่างไร สูตรตรีโกณมิติเหล่านี้ตามมาจากสูตรมุมคู่

บทสรุปและตัวอย่างการใช้งานสามารถดูได้ในบทความ

สูตรลดระดับ


สูตรตรีโกณมิติสำหรับการลดองศาได้รับการออกแบบมาเพื่ออำนวยความสะดวกในการเปลี่ยนจากพลังธรรมชาติของฟังก์ชันตรีโกณมิติไปเป็นไซน์และโคไซน์ในระดับแรก แต่มีมุมหลายมุม กล่าวอีกนัยหนึ่งคืออนุญาตให้คุณลดกำลังของฟังก์ชันตรีโกณมิติเป็นอันดับแรก

สูตรสำหรับผลรวมและผลต่างของฟังก์ชันตรีโกณมิติ


จุดประสงค์หลัก สูตรสำหรับผลรวมและผลต่างของฟังก์ชันตรีโกณมิติคือไปที่ผลคูณของฟังก์ชันซึ่งมีประโยชน์มากเมื่อทำให้ง่ายขึ้น นิพจน์ตรีโกณมิติ. สูตรเหล่านี้ยังใช้กันอย่างแพร่หลายในการแก้สมการตรีโกณมิติ เนื่องจากช่วยให้คุณสามารถแยกตัวประกอบผลรวมและผลต่างของไซน์และโคไซน์ได้

สูตรผลคูณของไซน์ โคไซน์ และไซน์ต่อโคไซน์


การเปลี่ยนจากผลคูณของฟังก์ชันตรีโกณมิติเป็นผลรวมหรือผลต่างทำได้โดยใช้สูตรสำหรับผลคูณของไซน์ โคไซน์ และไซน์ด้วยโคไซน์

  • บาชมาคอฟ เอ็ม.ไอ.พีชคณิตและจุดเริ่มต้นของการวิเคราะห์: หนังสือเรียน สำหรับเกรด 10-11 เฉลี่ย โรงเรียน - ฉบับที่ 3 - อ.: การศึกษา พ.ศ. 2536 - 351 หน้า: ป่วย - ไอ 5-09-004617-4.
  • พีชคณิตและจุดเริ่มต้นของการวิเคราะห์: Proc. สำหรับเกรด 10-11 การศึกษาทั่วไป สถาบัน / A. N. Kolmogorov, A. M. Abramov, Yu. P. Dudnitsyn และคนอื่น ๆ ; เอ็ด A. N. Kolmogorov - ฉบับที่ 14 - ม.: การศึกษา, 2547 - 384 หน้า: ป่วย - ISBN 5-09-013651-3
  • Gusev V.A., Mordkovich A.G.คณิตศาสตร์ (คู่มือสำหรับผู้เข้าโรงเรียนเทคนิค) พรบ. เบี้ยเลี้ยง.- ม.; สูงกว่า โรงเรียน พ.ศ. 2527-351 น. ป่วย
  • ลิขสิทธิ์โดยนักเรียนที่ฉลาด

    สงวนลิขสิทธิ์.
    ได้รับการคุ้มครองตามกฎหมายลิขสิทธิ์ ห้ามทำซ้ำส่วนใดส่วนหนึ่งของ www.site รวมถึงเนื้อหาภายในและรูปลักษณ์ภายนอกในรูปแบบใดๆ หรือใช้โดยไม่ได้รับอนุญาตเป็นลายลักษณ์อักษรล่วงหน้าจากผู้ถือลิขสิทธิ์

    อัตลักษณ์ตรีโกณมิติ- สิ่งเหล่านี้คือความเท่าเทียมกันที่สร้างความสัมพันธ์ระหว่างไซน์, โคไซน์, แทนเจนต์และโคแทนเจนต์ของมุมหนึ่ง ซึ่งช่วยให้คุณค้นหาฟังก์ชันใด ๆ เหล่านี้ได้ โดยมีเงื่อนไขว่าจะต้องรู้ฟังก์ชันอื่นด้วย

    tg \alpha = \frac(\sin \alpha)(\cos \alpha), \enspace ctg \alpha = \frac(\cos \alpha)(\sin \alpha)

    tg \alpha \cdot ctg \alpha = 1

    เอกลักษณ์นี้บอกว่าผลรวมของกำลังสองของไซน์ของมุมหนึ่งกับกำลังสองของโคไซน์ของมุมหนึ่งเท่ากับหนึ่ง ซึ่งในทางปฏิบัติทำให้สามารถคำนวณไซน์ของมุมหนึ่งได้เมื่อทราบโคไซน์ของมันและในทางกลับกัน .

    เมื่อแปลงนิพจน์ตรีโกณมิติมักใช้เอกลักษณ์นี้ซึ่งช่วยให้คุณสามารถแทนที่ผลรวมของกำลังสองของโคไซน์และไซน์ของมุมหนึ่งด้วยหนึ่งมุมและดำเนินการแทนที่ในลำดับย้อนกลับ

    การหาแทนเจนต์และโคแทนเจนต์โดยใช้ไซน์และโคไซน์

    tg \alpha = \frac(\sin \alpha)(\cos \alpha),\enspace

    อัตลักษณ์เหล่านี้เกิดขึ้นจากคำจำกัดความของไซน์ โคไซน์ แทนเจนต์ และโคแทนเจนต์ สุดท้ายแล้ว ถ้าคุณดูมัน ตามนิยามแล้ว พิกัด y เป็นไซน์ และแอบซิสซา x เป็นโคไซน์ จากนั้นแทนเจนต์จะเท่ากับอัตราส่วน \frac(y)(x)=\frac(\sin \alpha)(\cos \alpha)และอัตราส่วน \frac(x)(y)=\frac(\cos \alpha)(\sin \alpha)- จะเป็นโคแทนเจนต์

    ให้เราเพิ่มว่าเฉพาะมุม \alpha ที่ฟังก์ชันตรีโกณมิติที่รวมอยู่ในมุมนั้นสมเหตุสมผลเท่านั้น อัตลักษณ์จะยังคงอยู่ ctg \alpha=\frac(\cos \alpha)(\sin \alpha).

    ตัวอย่างเช่น: tg \alpha = \frac(\sin \alpha)(\cos \alpha)ใช้ได้กับมุม \alpha ที่แตกต่าง \frac(\pi)(2)+\pi z, ก ctg \alpha=\frac(\cos \alpha)(\sin \alpha)- สำหรับมุม \alpha ที่ไม่ใช่ \pi z, z คือจำนวนเต็ม

    ความสัมพันธ์ระหว่างแทนเจนต์และโคแทนเจนต์

    tg \alpha \cdot ctg \alpha=1

    ข้อมูลประจำตัวนี้ใช้ได้กับมุม \alpha ที่แตกต่างเท่านั้น \frac(\pi)(2) z. มิฉะนั้น โคแทนเจนต์หรือแทนเจนต์จะไม่ถูกกำหนด

    จากประเด็นข้างต้น เราจึงได้สิ่งนั้นมา tg \อัลฟา = \frac(y)(x), ก ctg \alpha=\frac(x)(y). มันเป็นไปตามนั้น tg \alpha \cdot ctg \alpha = \frac(y)(x) \cdot \frac(x)(y)=1. ดังนั้น แทนเจนต์และโคแทนเจนต์ของมุมเดียวกันที่มันเข้าท่า จึงเป็นตัวเลขผกผันซึ่งกันและกัน

    ความสัมพันธ์ระหว่างแทนเจนต์กับโคไซน์ โคแทนเจนต์และไซน์

    tg^(2) \อัลฟา + 1=\frac(1)(\cos^(2) \อัลฟา)- ผลรวมของกำลังสองของแทนเจนต์ของมุม \อัลฟา และ 1 เท่ากับกำลังสองผกผันของโคไซน์ของมุมนี้ ข้อมูลระบุตัวตนนี้ใช้ได้กับ \alpha ทั้งหมดยกเว้น \frac(\pi)(2)+ \pi z.

    1+ctg^(2) \อัลฟา=\frac(1)(\sin^(2)\อัลฟา)- ผลรวมของ 1 และกำลังสองของโคแทนเจนต์ของมุม \alpha เท่ากับกำลังสองผกผันของไซน์ มุมที่กำหนด. ข้อมูลระบุตัวตนนี้ใช้ได้กับ \alpha ใดๆ ที่แตกต่างจาก \pi z

    ตัวอย่างพร้อมวิธีแก้ไขปัญหาโดยใช้อัตลักษณ์ตรีโกณมิติ

    ตัวอย่างที่ 1

    ค้นหา \sin \alpha และ tg \alpha if \cos \อัลฟา=-\frac12และ \frac(\pi)(2)< \alpha < \pi ;

    แสดงวิธีแก้ปัญหา

    สารละลาย

    ฟังก์ชัน \sin \alpha และ \cos \alpha มีความสัมพันธ์กันโดยสูตร \sin^(2)\อัลฟา + \cos^(2) \alpha = 1. แทนลงในสูตรนี้ \cos \อัลฟา = -\frac12, เราได้รับ:

    \sin^(2)\alpha + \left (-\frac12 \right)^2 = 1

    สมการนี้มี 2 วิธี:

    \sin \alpha = \pm \sqrt(1-\frac14) = \pm \frac(\sqrt 3)(2)

    ตามเงื่อนไข \frac(\pi)(2)< \alpha < \pi . ในไตรมาสที่สอง ไซน์เป็นบวก ดังนั้น \sin \alpha = \frac(\sqrt 3)(2).

    ในการหา tan \alpha เราใช้สูตร tg \alpha = \frac(\sin \alpha)(\cos \alpha)

    tg \alpha = \frac(\sqrt 3)(2) : \frac12 = \sqrt 3

    ตัวอย่างที่ 2

    ค้นหา \cos \alpha และ ctg \alpha ถ้า และ \frac(\pi)(2)< \alpha < \pi .

    แสดงวิธีแก้ปัญหา

    สารละลาย

    แทนลงในสูตร \sin^(2)\อัลฟา + \cos^(2) \alpha = 1หมายเลขที่กำหนด \sin \alpha=\frac(\sqrt3)(2), เราได้รับ \left (\frac(\sqrt3)(2)\right)^(2) + \cos^(2) \alpha = 1. สมการนี้มีสองคำตอบ \cos \alpha = \pm \sqrt(1-\frac34)=\pm\sqrt\frac14.

    ตามเงื่อนไข \frac(\pi)(2)< \alpha < \pi . ในไตรมาสที่สองโคไซน์เป็นลบ ดังนั้น \cos \alpha = -\sqrt\frac14=-\frac12.

    เพื่อที่จะค้นหา ctg \alpha เราใช้สูตร ctg \alpha = \frac(\cos \alpha)(\sin \alpha). เรารู้ค่าที่สอดคล้องกัน

    ctg \alpha = -\frac12: \frac(\sqrt3)(2) = -\frac(1)(\sqrt 3).

    ข้อมูลอ้างอิงสำหรับแทนเจนต์ (tg x) และโคแทนเจนต์ (ctg x) ความหมายทางเรขาคณิต สมบัติ กราฟ สูตร ตารางแทนเจนต์และโคแทนเจนต์ อนุพันธ์ อินทิกรัล การขยายอนุกรม การแสดงออกผ่านตัวแปรที่ซับซ้อน การเชื่อมต่อกับฟังก์ชันไฮเปอร์โบลิก

    คำจำกัดความทางเรขาคณิต




    |บีดี| - ความยาวของส่วนโค้งของวงกลมโดยมีศูนย์กลางอยู่ที่จุด A
    α คือมุมที่แสดงเป็นเรเดียน

    แทนเจนต์ ( สีแทน α) เป็นฟังก์ชันตรีโกณมิติ ขึ้นอยู่กับมุม α ระหว่างด้านตรงข้ามมุมฉากกับขาของรูปสามเหลี่ยมมุมฉาก เท่ากับอัตราส่วนความยาวของขาตรงข้าม |BC| ไปจนถึงความยาวของขาที่อยู่ติดกัน |AB| .

    โคแทนเจนต์ ( ซีทีจี แอลฟา) เป็นฟังก์ชันตรีโกณมิติ ขึ้นอยู่กับมุม α ระหว่างด้านตรงข้ามมุมฉากกับขาของรูปสามเหลี่ยมมุมฉาก เท่ากับอัตราส่วนของความยาวของขาที่อยู่ติดกัน |AB| ถึงความยาวของขาตรงข้าม |BC| .

    แทนเจนต์

    ที่ไหน n- ทั้งหมด.

    ในวรรณคดีตะวันตก แทนเจนต์แสดงดังนี้:
    .
    ;
    ;
    .

    กราฟของฟังก์ชันแทนเจนต์ y = tan x


    โคแทนเจนต์

    ที่ไหน n- ทั้งหมด.

    ในวรรณคดีตะวันตก โคแทนเจนต์แสดงดังนี้:
    .
    ยอมรับสัญลักษณ์ต่อไปนี้ด้วย:
    ;
    ;
    .

    กราฟของฟังก์ชันโคแทนเจนต์ y = ctg x


    คุณสมบัติของแทนเจนต์และโคแทนเจนต์

    ความเป็นงวด

    ฟังก์ชัน y = ทีจีเอ็กซ์และ ย = ซีทีจี xเป็นคาบกับคาบ π

    ความเท่าเทียมกัน

    ฟังก์ชันแทนเจนต์และโคแทนเจนต์เป็นเลขคี่

    พื้นที่ของความหมายและค่านิยม การเพิ่มขึ้น การลดลง

    ฟังก์ชันแทนเจนต์และโคแทนเจนต์มีความต่อเนื่องในขอบเขตของคำจำกัดความ (ดูข้อพิสูจน์ความต่อเนื่อง) คุณสมบัติหลักของแทนเจนต์และโคแทนเจนต์แสดงอยู่ในตาราง ( n- ทั้งหมด).

    ย = ทีจีเอ็กซ์ ย = ซีทีจี x
    ขอบเขตและความต่อเนื่อง
    ช่วงของค่า -∞ < y < +∞ -∞ < y < +∞
    เพิ่มขึ้น -
    จากมากไปน้อย -
    สุดขั้ว - -
    ศูนย์, y = 0
    จุดตัดกับแกนพิกัด x = 0 ย = 0 -

    สูตร

    นิพจน์โดยใช้ไซน์และโคไซน์

    ; ;
    ; ;
    ;

    สูตรแทนเจนต์และโคแทนเจนต์จากผลรวมและผลต่าง



    สูตรที่เหลือก็หาได้ง่ายเช่นกัน

    ผลคูณของแทนเจนต์

    สูตรหาผลรวมและผลต่างของแทนเจนต์

    ตารางนี้แสดงค่าแทนเจนต์และโคแทนเจนต์สำหรับค่าหนึ่งของอาร์กิวเมนต์

    นิพจน์ที่ใช้จำนวนเชิงซ้อน

    นิพจน์ผ่านฟังก์ชันไฮเปอร์โบลิก

    ;
    ;

    อนุพันธ์

    ; .


    .
    อนุพันธ์ของลำดับที่ n เทียบกับตัวแปร x ของฟังก์ชัน:
    .
    การหาสูตรแทนเจนต์ > > > ; สำหรับโคแทนเจนต์ > > >

    ปริพันธ์

    การขยายซีรีส์

    เพื่อให้ได้การขยายตัวของแทนเจนต์ในกำลังของ x คุณต้องใช้เงื่อนไขหลายประการในการขยายอนุกรมกำลังสำหรับฟังก์ชัน บาป xและ เพราะ xและหารพหุนามเหล่านี้ด้วยตัวอื่นๆ สิ่งนี้จะสร้างสูตรต่อไปนี้

    ที่ .

    ที่ .
    ที่ไหน บีเอ็น- หมายเลขเบอร์นูลลี โดยพิจารณาจากความสัมพันธ์ที่เกิดซ้ำ:
    ;
    ;
    ที่ไหน .
    หรือตามสูตรของลาปลาซ:


    ฟังก์ชันผกผัน

    ฟังก์ชันผกผันของแทนเจนต์และโคแทนเจนต์คืออาร์กแทนเจนต์และอาร์กโคแทนเจนต์ตามลำดับ

    อาร์กแทนเจนต์, อาร์กจี


    , ที่ไหน n- ทั้งหมด.

    อาร์กโคแทนเจนต์, อาร์กซีจี


    , ที่ไหน n- ทั้งหมด.

    อ้างอิง:
    ใน. บรอนสไตน์, เค.เอ. Semendyaev คู่มือคณิตศาสตร์สำหรับวิศวกรและนักศึกษา "Lan", 2552
    G. Korn, คู่มือคณิตศาสตร์สำหรับนักวิทยาศาสตร์และวิศวกร, 2012.


    ในบทความนี้เราจะมาดูอย่างละเอียด ข้อมูลประจำตัวตรีโกณมิติพื้นฐานคือความเท่าเทียมกันที่สร้างการเชื่อมโยงระหว่างไซน์ โคไซน์ แทนเจนต์และโคแทนเจนต์ของมุมหนึ่ง และอนุญาตให้เราค้นหาฟังก์ชันตรีโกณมิติเหล่านี้ผ่านฟังก์ชันอื่นที่รู้จัก

    ให้เราแสดงรายการอัตลักษณ์ตรีโกณมิติหลักที่เราจะวิเคราะห์ในบทความนี้ทันที มาเขียนมันลงในตาราง แล้วเราจะให้ผลลัพธ์ของสูตรเหล่านี้พร้อมคำอธิบายที่จำเป็นด้านล่าง

    การนำทางหน้า

    ความสัมพันธ์ระหว่างไซน์และโคไซน์ของมุมหนึ่ง

    บางครั้งพวกเขาไม่ได้พูดถึงอัตลักษณ์ตรีโกณมิติหลักที่แสดงอยู่ในตารางด้านบน แต่เกี่ยวกับข้อมูลเดียว อัตลักษณ์ตรีโกณมิติพื้นฐานใจดี . คำอธิบายข้อเท็จจริงนี้ค่อนข้างง่าย: ความเท่าเทียมกันจะได้มาจากอัตลักษณ์ตรีโกณมิติหลักหลังจากหารทั้งสองส่วนด้วย และ ตามลำดับ และความเท่าเทียมกัน และ ติดตามจากคำจำกัดความของไซน์ โคไซน์ แทนเจนต์ และโคแทนเจนต์ เราจะพูดถึงเรื่องนี้โดยละเอียดในย่อหน้าต่อไปนี้

    นั่นคือความเท่าเทียมกันที่เป็นที่สนใจเป็นพิเศษซึ่งได้รับชื่อของเอกลักษณ์ตรีโกณมิติหลัก

    ก่อนที่จะพิสูจน์เอกลักษณ์ตรีโกณมิติหลัก เราจะให้สูตรดังนี้ ผลรวมของกำลังสองของไซน์และโคไซน์ของมุมหนึ่งจะเท่ากับหนึ่งเท่ากัน ทีนี้เรามาพิสูจน์กัน

    ข้อมูลประจำตัวตรีโกณมิติพื้นฐานมักใช้เมื่อใด การแปลงนิพจน์ตรีโกณมิติ. ช่วยให้ผลรวมของกำลังสองของไซน์และโคไซน์ของมุมหนึ่งถูกแทนที่ด้วยหนึ่ง ไม่บ่อยนักที่อัตลักษณ์ตรีโกณมิติพื้นฐานจะใช้ในลำดับย้อนกลับ หน่วยจะถูกแทนที่ด้วยผลรวมของกำลังสองของไซน์และโคไซน์ของมุมใดๆ

    แทนเจนต์และโคแทนเจนต์ผ่านไซน์และโคไซน์

    อัตลักษณ์ที่เชื่อมโยงแทนเจนต์และโคแทนเจนต์กับไซน์และโคไซน์ของมุมมองเดียวและ ปฏิบัติตามทันทีจากคำจำกัดความของไซน์ โคไซน์ แทนเจนต์ และโคแทนเจนต์ ตามคำนิยามแล้ว ไซน์คือลำดับของ y โคไซน์คือค่าแอบซิสซาของ x แทนเจนต์คืออัตราส่วนของค่าพิกัดต่อค่าแอบซิสซา นั่นคือ และโคแทนเจนต์คืออัตราส่วนของแอบซิสซาต่อพิกัด นั่นคือ .

    ขอบคุณความชัดเจนของตัวตนและ แทนเจนต์และโคแทนเจนต์มักไม่ได้ถูกกำหนดผ่านอัตราส่วนของแอบซิสซาและพิกัด แต่ผ่านอัตราส่วนของไซน์และโคไซน์ ดังนั้นแทนเจนต์ของมุมคืออัตราส่วนของไซน์ต่อโคไซน์ของมุมนี้ และโคแทนเจนต์คืออัตราส่วนของโคไซน์ต่อไซน์

    โดยสรุปของย่อหน้านี้ก็ควรสังเกตว่าอัตลักษณ์และ เกิดขึ้นสำหรับทุกมุมที่ฟังก์ชันตรีโกณมิติรวมอยู่ในนั้นสมเหตุสมผล ดังนั้นสูตรนี้ใช้ได้กับค่าใดๆ ก็ตาม นอกเหนือจาก (ไม่เช่นนั้นตัวส่วนจะมีศูนย์และเราไม่ได้กำหนดการหารด้วยศูนย์) และสูตร - สำหรับทั้งหมด แตกต่างจาก โดยที่ z คือค่าใดๆ

    ความสัมพันธ์ระหว่างแทนเจนต์และโคแทนเจนต์

    อัตลักษณ์ตรีโกณมิติที่ชัดเจนยิ่งกว่าสองประการก่อนหน้านี้คืออัตลักษณ์ที่เชื่อมต่อแทนเจนต์และโคแทนเจนต์ของมุมหนึ่งของรูปแบบ . เห็นได้ชัดว่ามันคงไว้สำหรับมุมอื่นๆ ที่ไม่ใช่ มิฉะนั้น จะไม่ได้นิยามแทนเจนต์หรือโคแทนเจนต์

    หลักฐานของสูตร ง่ายมาก. ตามคำจำกัดความและจากที่ไหน . การพิสูจน์อาจดำเนินการแตกต่างออกไปเล็กน้อย เนื่องจาก , ที่ .

    ดังนั้น แทนเจนต์และโคแทนเจนต์ของมุมเดียวกันที่เข้าท่าคือ