วิธีแก้ปัญหาของโหนดและโหนด ตัวหารร่วมมากและตัวคูณร่วมน้อย. เครื่องคิดเลขออนไลน์

นิพจน์และปัญหาทางคณิตศาสตร์ต้องใช้ความรู้เพิ่มเติมมากมาย NOC เป็นหนึ่งในเนื้อหาหลักโดยเฉพาะอย่างยิ่งมักใช้ในหัวข้อนี้ศึกษาในโรงเรียนมัธยมศึกษาตอนปลายและไม่ยากที่จะเข้าใจเนื้อหาเป็นพิเศษ บุคคลที่คุ้นเคยกับพลังและตารางสูตรคูณจะไม่มีปัญหาในการระบุตัวเลขที่จำเป็นและการค้นพบ ผลลัพธ์.

คำนิยาม

ตัวคูณร่วมคือจำนวนที่สามารถหารออกเป็นสองจำนวนได้อย่างสมบูรณ์ในเวลาเดียวกัน (a และ b) ส่วนใหญ่แล้วตัวเลขนี้ได้มาจากการคูณตัวเลขเดิม a และ b ตัวเลขจะต้องหารด้วยตัวเลขทั้งสองพร้อมกันโดยไม่มีการเบี่ยงเบน

NOC เป็นชื่อที่ยอมรับ ชื่อสั้นรวบรวมมาจากตัวอักษรตัวแรก

วิธีรับหมายเลข

วิธีการคูณตัวเลขไม่เหมาะกับการค้นหา LCM เสมอไป แต่จะเหมาะกว่ามากกับตัวเลขหลักเดียวหรือสองหลัก เป็นเรื่องปกติที่จะแบ่งปัจจัยออกเป็นหลายปัจจัย ยิ่งจำนวนมากเท่าใด ก็จะยิ่งมีปัจจัยมากขึ้นเท่านั้น

ตัวอย่าง #1

ตัวอย่างที่ง่ายที่สุด โรงเรียนมักจะใช้ตัวเลขเฉพาะ หลักเดียวหรือสองหลัก ตัวอย่างเช่น คุณต้องแก้โจทย์ต่อไปนี้ หาตัวคูณร่วมน้อยของตัวเลข 7 และ 3 วิธีแก้ก็ค่อนข้างง่าย แค่คูณพวกมันเข้าด้วยกัน ด้วยเหตุนี้จึงมีเลข 21 และไม่มีจำนวนที่เล็กกว่านี้เลย

ตัวอย่างหมายเลข 2

งานเวอร์ชันที่สองนั้นยากกว่ามาก ให้หมายเลข 300 และ 1260 โดยจำเป็นต้องค้นหา LOC เพื่อแก้ไขปัญหา จะดำเนินการต่อไปนี้:

การแยกย่อยตัวเลขตัวแรกและตัวที่สองให้เป็นตัวประกอบอย่างง่าย 300 = 2 2 * 3 * 5 2 ; 1260 = 2 2 * 3 2 *5 *7 ขั้นตอนแรกเสร็จสมบูรณ์

ขั้นตอนที่สองเกี่ยวข้องกับการทำงานกับข้อมูลที่ได้รับแล้ว แต่ละหมายเลขที่ได้รับจะต้องมีส่วนร่วมในการคำนวณผลลัพธ์สุดท้าย สำหรับแต่ละปัจจัย จำนวนครั้งที่ใหญ่ที่สุดจะนำมาจากจำนวนเดิม LCM เป็นตัวเลขทั่วไป ดังนั้นตัวประกอบของตัวเลขจะต้องซ้ำกันในแต่ละตัว แม้แต่ตัวประกอบที่อยู่ในสำเนาเดียวก็ตาม ตัวเลขเริ่มต้นทั้งสองมีตัวเลข 2, 3 และ 5 อยู่ในกำลังต่างกัน โดยที่ 7 มีอยู่ในกรณีเดียวเท่านั้น

ในการคำนวณผลลัพธ์สุดท้าย คุณต้องนำแต่ละตัวเลขที่มีค่ามากที่สุดของกำลังที่มากที่สุดมาแสดงในสมการ สิ่งที่เหลืออยู่คือการคูณและรับคำตอบ หากกรอกถูกต้อง งานจะแบ่งออกเป็นสองขั้นตอนโดยไม่มีคำอธิบาย:

1) 300 = 2 2 * 3 * 5 2 ; 1260 = 2 2 * 3 2 *5 *7.

2) NOC = 6300.

นั่นคือปัญหาทั้งหมด หากคุณพยายามคำนวณจำนวนที่ต้องการด้วยการคูณ คำตอบก็จะไม่ถูกต้องอย่างแน่นอน เนื่องจาก 300 * 1260 = 378,000

การตรวจสอบ:

6300/300 = 21 - ถูกต้อง;

6300/1260 = 5 - ถูกต้อง

ความถูกต้องของผลลัพธ์ที่ได้ถูกกำหนดโดยการตรวจสอบ - หาร LCM ด้วยตัวเลขดั้งเดิมทั้งสอง หากตัวเลขเป็นจำนวนเต็มในทั้งสองกรณี แสดงว่าคำตอบนั้นถูกต้อง

NOC หมายถึงอะไรในวิชาคณิตศาสตร์?

ดังที่คุณทราบ ไม่มีฟังก์ชันใดที่ไร้ประโยชน์ในคณิตศาสตร์ ฟังก์ชันนี้ก็ไม่มีข้อยกเว้น วัตถุประสงค์ทั่วไปที่สุดของจำนวนนี้คือการลดเศษส่วนให้เป็นตัวส่วนร่วม ปกติจะเรียนอะไรในเกรด 5-6 มัธยม. นอกจากนี้ยังเป็นตัวหารร่วมสำหรับตัวคูณทั้งหมดด้วย หากมีเงื่อนไขดังกล่าวในโจทย์ นิพจน์ดังกล่าวสามารถค้นหาตัวคูณได้ไม่เพียงแต่จากตัวเลขสองตัวเท่านั้น แต่ยังค้นหาจำนวนที่มากกว่านั้นด้วย เช่น สาม ห้า และอื่นๆ ยังไง ตัวเลขมากขึ้น- ยิ่งมีการดำเนินการมากขึ้นในงาน แต่ความซับซ้อนไม่เพิ่มขึ้น

ตัวอย่างเช่น เมื่อระบุตัวเลข 250, 600 และ 1500 คุณจะต้องค้นหา LCM ทั่วไป:

1) 250 = 25 * 10 = 5 2 *5 * 2 = 5 3 * 2 - ตัวอย่างนี้อธิบายการแยกตัวประกอบโดยละเอียดโดยไม่มีการลดลง

2) 600 = 60 * 10 = 3 * 2 3 *5 2 ;

3) 1500 = 15 * 100 = 33 * 5 3 *2 2 ;

ในการเขียนนิพจน์จำเป็นต้องระบุปัจจัยทั้งหมดในกรณีนี้คือให้ 2, 5, 3 - สำหรับตัวเลขทั้งหมดนี้จำเป็นต้องกำหนดระดับสูงสุด

ข้อควรสนใจ: ปัจจัยทั้งหมดจะต้องถูกทำให้ง่ายขึ้นโดยสมบูรณ์ หากเป็นไปได้ ให้แยกย่อยเป็นระดับหลักเดียว

การตรวจสอบ:

1) 3000/250 = 12 - ถูกต้อง;

2) 3000/600 = 5 - จริง;

3) 3000/1500 = 2 - ถูกต้อง

วิธีนี้ไม่ต้องการกลอุบายหรือความสามารถระดับอัจฉริยะใด ๆ ทุกอย่างเรียบง่ายและชัดเจน

อีกวิธีหนึ่ง

ในทางคณิตศาสตร์ มีหลายสิ่งเชื่อมโยงกัน หลายสิ่งสามารถแก้ไขได้ด้วยสองวิธีขึ้นไป วิธีเดียวกันคือการค้นหาตัวคูณร่วมน้อย LCM วิธีการต่อไปนี้สามารถใช้ได้ในกรณีของตัวเลขสองหลักธรรมดาและตัวเลขหลักเดียว ตารางจะถูกรวบรวมโดยป้อนตัวคูณในแนวตั้ง ตัวคูณในแนวนอน และผลิตภัณฑ์จะถูกระบุในเซลล์ที่ตัดกันของคอลัมน์ คุณสามารถสะท้อนตารางโดยใช้เส้นจดตัวเลขและเขียนผลลัพธ์ของการคูณตัวเลขนี้ด้วยจำนวนเต็มตั้งแต่ 1 ถึงอนันต์บางครั้ง 3-5 จุดก็เพียงพอแล้วตัวเลขที่สองและตัวต่อมาต้องผ่านกระบวนการคำนวณเดียวกัน ทุกอย่างเกิดขึ้นจนกว่าจะพบตัวคูณร่วม

ด้วยตัวเลข 30, 35, 42 คุณต้องค้นหา LCM ที่เชื่อมต่อกับตัวเลขทั้งหมด:

1) ผลคูณของ 30: 60, 90, 120, 150, 180, 210, 250 เป็นต้น

2) ผลคูณของ 35: 70, 105, 140, 175, 210, 245 เป็นต้น

3) ผลคูณของ 42: 84, 126, 168, 210, 252 เป็นต้น

จะสังเกตได้ว่าตัวเลขทั้งหมดมีความแตกต่างกันมาก โดยตัวเลขทั่วไปเพียงตัวเดียวในนั้นคือ 210 จึงจะเป็น NOC ในบรรดากระบวนการที่เกี่ยวข้องกับการคำนวณนี้ก็มีกระบวนการที่ใหญ่ที่สุดเช่นกัน ตัวหารร่วมซึ่งคำนวณตามหลักการที่คล้ายคลึงกันและมักพบในปัญหาข้างเคียง ความแตกต่างมีขนาดเล็ก แต่ค่อนข้างสำคัญ LCM เกี่ยวข้องกับการคำนวณตัวเลขที่หารด้วยค่าเริ่มต้นที่กำหนดทั้งหมด และ GCD เกี่ยวข้องกับการคำนวณ มูลค่าสูงสุดโดยแบ่งเลขเดิม

แต่จำนวนธรรมชาติจำนวนมากก็หารด้วยจำนวนธรรมชาติอื่นๆ ได้เช่นกัน

ตัวอย่างเช่น:

จำนวน 12 หารด้วย 1, 2, 3, 4, 6, 12 ลงตัว;

เลข 36 หารด้วย 1, 2, 3, 4, 6, 12, 18, 36 ลงตัว

ตัวเลขที่จำนวนหารด้วยจำนวนเต็มลงตัว (สำหรับ 12 ได้แก่ 1, 2, 3, 4, 6 และ 12) เรียกว่า ตัวหารของตัวเลข. ตัวหารของจำนวนธรรมชาติ - นี่คือสิ่งที่มันเป็น จำนวนธรรมชาติซึ่งแบ่ง หมายเลขที่กำหนด ไร้ร่องรอย เรียกว่าจำนวนธรรมชาติที่มีตัวหารมากกว่าสองตัว คอมโพสิต .

โปรดทราบว่าตัวเลข 12 และ 36 มีตัวประกอบร่วมกัน ตัวเลขเหล่านี้ได้แก่ 1, 2, 3, 4, 6, 12 ตัวหารที่ยิ่งใหญ่ที่สุดของตัวเลขเหล่านี้คือ 12 ตัวหารร่วมของตัวเลขสองตัวนี้ และ - คือจำนวนที่ใช้หารตัวเลขที่ให้มาทั้งสองจำนวนโดยไม่มีเศษเหลือ และ .

ทวีคูณทั่วไปตัวเลขหลายตัวคือตัวเลขที่หารด้วยตัวเลขเหล่านี้แต่ละตัว ตัวอย่างเช่นตัวเลข 9, 18 และ 45 มีผลคูณร่วมของ 180 แต่ 90 และ 360 ก็เป็นตัวคูณร่วมเช่นกัน ในบรรดาตัวคูณร่วมทั้งหมด จะมีตัวคูณที่เล็กที่สุดเสมอ ในกรณีนี้นี่คือ 90 หมายเลขนี้เรียกว่า ที่เล็กที่สุดตัวคูณร่วม (CMM).

LCM จะเป็นจำนวนธรรมชาติที่ต้องมากกว่าจำนวนที่ใหญ่ที่สุดของจำนวนที่กำหนดไว้เสมอ

ตัวคูณร่วมน้อย (LCM) คุณสมบัติ.

การสับเปลี่ยน:

การเชื่อมโยง:

โดยเฉพาะอย่างยิ่ง ถ้า และ เป็นจำนวนเฉพาะ ดังนั้น:

ตัวคูณร่วมน้อยของจำนวนเต็มสองตัว และ nเป็นตัวหารของตัวคูณร่วมอื่นๆ ทั้งหมด และ n. นอกจากนี้ เซตของตัวคูณร่วม เกิดขึ้นพร้อมกับเซตทวีคูณของ LCM( ).

เส้นกำกับสำหรับสามารถแสดงในรูปของฟังก์ชันเชิงทฤษฎีจำนวนบางตัวได้

ดังนั้น, ฟังก์ชันเชบีเชฟ. และ:

ตามมาจากคำจำกัดความและคุณสมบัติของฟังก์ชัน Landau กรัม(n).

สิ่งที่ตามมาจากกฎหมายว่าด้วยการจำหน่าย จำนวนเฉพาะ.

การหาตัวคูณร่วมน้อย (LCM)

NOC( ก, ข) สามารถคำนวณได้หลายวิธี:

1. หากทราบตัวหารร่วมที่ยิ่งใหญ่ที่สุด คุณสามารถใช้การเชื่อมโยงกับ LCM ได้:

2. ปล่อยให้การสลายตัวตามบัญญัติของตัวเลขทั้งสองเป็นตัวประกอบเฉพาะ:

ที่ไหน หน้า 1 ,...,หน้า- จำนวนเฉพาะต่างๆ และ วัน 1 ,...,งและ อี 1 ,...,เช่น เค— จำนวนเต็มที่ไม่เป็นลบ (สามารถเป็นศูนย์ได้ถ้าจำนวนเฉพาะที่สอดคล้องกันไม่อยู่ในส่วนขยาย)

จากนั้น NOC ( ,) คำนวณโดยสูตร:

กล่าวอีกนัยหนึ่ง การสลายตัวของ LCM ประกอบด้วยปัจจัยเฉพาะทั้งหมดที่รวมอยู่ในการสลายตัวของตัวเลขอย่างน้อยหนึ่งรายการ ก, ขและใช้เลขชี้กำลังที่ใหญ่ที่สุดจากสองตัวคูณของตัวคูณนี้

ตัวอย่าง:

การคำนวณตัวคูณร่วมน้อยของตัวเลขหลายตัวสามารถลดลงเป็นการคำนวณ LCM ของตัวเลขสองตัวตามลำดับได้หลายรายการ:

กฎ.หากต้องการค้นหา LCM ของชุดตัวเลข คุณต้องมี:

- แยกตัวเลขออกเป็นปัจจัยเฉพาะ

- โอนการขยายตัวที่ใหญ่ที่สุด (ผลคูณของปัจจัยของผลิตภัณฑ์ที่ต้องการ) ไปเป็นปัจจัยของผลิตภัณฑ์ที่ต้องการ จำนวนมากจากตัวที่กำหนดให้) แล้วบวกตัวประกอบจากการขยายตัวเลขอื่นที่ไม่ปรากฏเป็นเลขตัวแรกหรือปรากฏน้อยครั้ง

— ผลคูณผลลัพธ์ของตัวประกอบเฉพาะจะเป็น LCM ของตัวเลขที่กำหนด

จำนวนธรรมชาติตั้งแต่สองตัวขึ้นไปจะมี LCM ของตัวเอง ถ้าตัวเลขไม่ทวีคูณกันหรือไม่มีตัวประกอบเหมือนกันในการขยาย LCM จะเท่ากับผลคูณของตัวเลขเหล่านี้

ตัวประกอบเฉพาะของจำนวน 28 (2, 2, 7) จะถูกเสริมด้วยตัวประกอบของ 3 (จำนวน 21) ผลคูณที่ได้ (84) จะเป็นจำนวนที่น้อยที่สุดที่หารด้วย 21 และ 28 ลงตัว

ตัวประกอบเฉพาะของจำนวนที่มากที่สุด 30 จะถูกเสริมด้วยตัวประกอบ 5 ของจำนวน 25 ผลลัพธ์ที่ได้ 150 จะมากกว่าจำนวนที่ใหญ่ที่สุด 30 และหารด้วยจำนวนที่กำหนดทั้งหมดโดยไม่มีเศษเหลือ นี้ สินค้าน้อยที่สุดของค่าที่เป็นไปได้ (150, 250, 300...) ซึ่งตัวเลขที่กำหนดทั้งหมดจะเป็นจำนวนทวีคูณ

ตัวเลข 2,3,11,37 เป็นจำนวนเฉพาะ ดังนั้น LCM ของพวกมันจึงเท่ากับผลคูณของตัวเลขที่กำหนด

กฎ. ในการคำนวณ LCM ของจำนวนเฉพาะ คุณต้องคูณตัวเลขเหล่านี้ทั้งหมดเข้าด้วยกัน

ตัวเลือกอื่น:

หากต้องการค้นหาตัวคูณร่วมน้อย (LCM) ของตัวเลขหลายตัว คุณต้องมี:

1) แทนแต่ละตัวเลขเป็นผลคูณของตัวประกอบเฉพาะ ตัวอย่างเช่น:

504 = 2 2 2 3 3 7,

2) เขียนกำลังของตัวประกอบเฉพาะทั้งหมด:

504 = 2 2 2 3 3 7 = 2 3 3 2 7 1,

3) เขียนตัวหารเฉพาะ (ตัวคูณ) ของแต่ละตัวเลขเหล่านี้

4) เลือกระดับที่ยิ่งใหญ่ที่สุดของแต่ละอันซึ่งพบได้ในการขยายตัวเลขเหล่านี้ทั้งหมด

5) คูณพลังเหล่านี้

ตัวอย่าง. ค้นหา LCM ของตัวเลข: 168, 180 และ 3024

สารละลาย. 168 = 2 2 2 3 7 = 2 3 3 1 7 1,

180 = 2 2 3 3 5 = 2 2 3 2 5 1,

3024 = 2 2 2 2 3 3 3 7 = 2 4 3 3 7 1.

เราเขียนกำลังที่ยิ่งใหญ่ที่สุดของตัวหารเฉพาะทั้งหมดแล้วคูณมัน:

NOC = 2 4 3 3 5 1 7 1 = 15120

หมายเลขที่สอง: ข=

ตัวคั่นหลักพันไม่มีตัวคั่นช่องว่าง "´

ผลลัพธ์:

ตัวหารร่วมมาก gcd( ,)=6

ตัวคูณร่วมน้อยของ LCM( ,)=468

เรียกว่า จำนวนธรรมชาติที่ใหญ่ที่สุดที่สามารถหารด้วยจำนวน a และ b โดยไม่มีเศษเหลือ ตัวหารร่วมมาก(GCD) ของตัวเลขเหล่านี้ เขียนแทนด้วย gcd(a,b), (a,b), gcd(a,b) หรือ hcf(a,b)

ตัวคูณร่วมน้อย LCM ของจำนวนเต็มสองตัว a และ b คือจำนวนธรรมชาติที่น้อยที่สุดที่หารด้วย a และ b ลงตัวโดยไม่มีเศษ แสดงว่า LCM(a,b) หรือ lcm(a,b)

เรียกจำนวนเต็ม a และ b สำคัญซึ่งกันและกันถ้าไม่มีตัวหารร่วมกันนอกจาก +1 และ −1

ตัวหารร่วมมาก

ให้เลขบวกสองตัวมา 1 และ 2 1) จำเป็นต้องค้นหาตัวหารร่วมของตัวเลขเหล่านี้ เช่น หาตัวเลขดังกล่าว λ ซึ่งแบ่งตัวเลข 1 และ 2 ในเวลาเดียวกัน มาอธิบายอัลกอริทึมกัน

1) ในบทความนี้ เราจะเข้าใจว่าคำว่า number เป็นจำนวนเต็ม

อนุญาต 1 ≥ 2 และปล่อยให้

ที่ไหน 1 , 3 เป็นจำนวนเต็มบางตัว 3 < 2 (ส่วนที่เหลือของดิวิชั่น 1 ต่อ 2 ควรจะน้อยกว่านี้ 2).

สมมุติว่า λ แบ่ง 1 และ 2 แล้ว λ แบ่ง 1 2 และ λ แบ่ง 1 − 1 2 = 3 (ข้อความที่ 2 ของบทความ “การหารของตัวเลข การทดสอบการหารลงตัว”) ตามมาด้วยตัวหารร่วมทุกตัว 1 และ 2 คือตัวหารร่วม 2 และ 3. สิ่งที่ตรงกันข้ามก็เป็นจริงเช่นกันหาก λ ตัวหารร่วม 2 และ 3 แล้ว 1 2 และ 1 = 1 2 + 3 ก็หารด้วย λ . ดังนั้นตัวหารร่วม 2 และ 3 เป็นตัวหารร่วมด้วย 1 และ 2. เพราะ 3 < 2 ≤ 1 แล้วเราก็บอกได้ว่าคำตอบของโจทย์การหาตัวหารร่วมของตัวเลข 1 และ 2 ลดเหลือเป็นปัญหาที่ง่ายกว่าในการหาตัวหารร่วมของตัวเลข 2 และ 3 .

ถ้า 3 ≠0 เราก็หารได้ 2 บน 3. แล้ว

,

ที่ไหน 1 และ 4 เป็นจำนวนเต็มบางตัว ( เหลืออีก 4 นัดจากดิวิชั่น 2 บน 3 ( 4 < 3)). ด้วยเหตุผลเดียวกัน เราก็ได้ข้อสรุปว่าตัวหารร่วมของตัวเลข 3 และ 4 เกิดขึ้นพร้อมกับตัวหารร่วมของตัวเลข 2 และ 3 และยังมีตัวหารร่วมด้วย 1 และ 2. เพราะ 1 , 2 , 3 , 4, ... คือจำนวนที่ลดลงอย่างต่อเนื่อง และเนื่องจากมีจำนวนเต็มระหว่างจำนวนจำกัด 2 และ 0 จากนั้นในบางขั้นตอน nส่วนที่เหลือของการแบ่ง ไม่มี n+1 จะเท่ากับศูนย์ ( n+2 =0)

.

ตัวหารร่วมทุกตัว λ ตัวเลข 1 และ 2 เป็นตัวหารของตัวเลขด้วย 2 และ 3 , 3 และ 4 , .... และ n+1 . บทสนทนาก็เป็นจริงเช่นกัน นั่นคือตัวหารร่วมของตัวเลข และ n+1 ก็เป็นตัวหารของตัวเลขเช่นกัน n−1 และ ไม่ , .... , 2 และ 3 , 1 และ 2. แต่ตัวหารร่วมของตัวเลข และ n+1 คือตัวเลข n+1 เพราะ และ n+1 หารด้วย n+1 (จำไว้ว่า n+2 =0) เพราะฉะนั้น n+1 ก็เป็นตัวหารของตัวเลขเช่นกัน 1 และ 2 .

โปรดทราบว่าหมายเลข n+1 เป็นตัวหารที่มากที่สุดของตัวเลข และ n+1 เนื่องจากตัวหารที่ยิ่งใหญ่ที่สุด n+1 คือตัวมันเอง n+1 . ถ้า n+1 สามารถแสดงเป็นผลคูณของจำนวนเต็มได้ จากนั้นตัวเลขเหล่านี้ก็เป็นตัวหารร่วมของตัวเลขเช่นกัน 1 และ 2. ตัวเลข เรียกว่า n+1 ตัวหารร่วมมากตัวเลข 1 และ 2 .

ตัวเลข 1 และ 2 อาจเป็นจำนวนบวกหรือลบก็ได้ ถ้าตัวเลขตัวใดตัวหนึ่งมีค่าเท่ากับศูนย์ ตัวหารร่วมมากของตัวเลขเหล่านี้จะเท่ากับค่าสัมบูรณ์ของอีกจำนวนหนึ่ง ตัวหารร่วมมากที่สุดของจำนวนศูนย์นั้นไม่ได้ถูกกำหนดไว้

อัลกอริทึมข้างต้นเรียกว่า อัลกอริทึมแบบยุคลิดเพื่อหาตัวหารร่วมมากของจำนวนเต็มสองตัว

ตัวอย่างการหาตัวหารร่วมมากของตัวเลขสองตัว

ค้นหาตัวหารร่วมมากของตัวเลขสองตัว 630 และ 434

  • ขั้นตอนที่ 1 หารตัวเลข 630 ด้วย 434 ส่วนที่เหลือคือ 196
  • ขั้นตอนที่ 2 หารตัวเลข 434 ด้วย 196 ส่วนที่เหลือคือ 42
  • ขั้นตอนที่ 3 หารตัวเลข 196 ด้วย 42 ส่วนที่เหลือคือ 28
  • ขั้นตอนที่ 4 หารตัวเลข 42 ด้วย 28 ส่วนที่เหลือคือ 14
  • ขั้นตอนที่ 5 หารตัวเลข 28 ด้วย 14 ส่วนที่เหลือคือ 0

ในขั้นตอนที่ 5 ส่วนที่เหลือของการหารคือ 0 ดังนั้น ตัวหารร่วมมากของตัวเลข 630 และ 434 จึงเป็น 14 โปรดทราบว่าตัวเลข 2 และ 7 ก็เป็นตัวหารของตัวเลข 630 และ 434 เช่นกัน

ตัวเลขโคไพรม์

คำนิยาม 1. ให้ตัวหารร่วมมากของตัวเลข 1 และ 2 เท่ากับหนึ่ง จากนั้นจึงเรียกหมายเลขเหล่านี้ หมายเลขโคไพรม์โดยไม่มีตัวหารร่วมกัน

ทฤษฎีบท 1. ถ้า 1 และ 2 หมายเลขโคไพรม์ และ λ ตัวเลขจำนวนหนึ่ง แล้วก็ตัวหารร่วมของตัวเลข แล 1 และ 2 เป็นตัวหารร่วมของตัวเลขด้วย λ และ 2 .

การพิสูจน์. พิจารณาอัลกอริทึมแบบยุคลิดในการค้นหาตัวหารร่วมมากของตัวเลข 1 และ 2 (ดูด้านบน)

.

จากเงื่อนไขของทฤษฎีบท จะได้ว่าตัวหารร่วมมากของจำนวนนั้นเป็นไปตามนั้น 1 และ 2 และดังนั้น และ n+1 คือ 1 นั่นคือ n+1 = 1

ลองคูณความเท่าเทียมกันทั้งหมดนี้ด้วย λ , แล้ว

.

ให้ตัวหารร่วม 1 λ และ 2 ใช่ δ . แล้ว δ มาเป็นตัวคูณใน 1 λ , 1 2 λ และใน 1 λ - 1 2 λ = 3 λ (ดู "การหารตัวเลข" คำแถลง 2) ไกลออกไป δ มาเป็นตัวคูณใน 2 λ และ 2 3 λ และดังนั้นจึงเป็นปัจจัยในการ 2 λ - 2 3 λ = 4 λ .

เมื่อให้เหตุผลเช่นนี้ เราก็มั่นใจว่า δ มาเป็นตัวคูณใน n−1 λ และ n−1 n λ และด้วยเหตุนี้จึงเข้า n−1 λ n−1 n λ = n+1 λ . เพราะ n+1 =1 แล้ว δ มาเป็นตัวคูณใน λ . ดังนั้นจำนวน δ เป็นตัวหารร่วมของตัวเลข λ และ 2 .

ให้เราพิจารณากรณีพิเศษของทฤษฎีบท 1

ผลที่ตามมา 1. อนุญาต และ จำนวนเฉพาะค่อนข้างมาก . แล้วผลิตภัณฑ์ของพวกเขา เครื่องปรับอากาศเป็นจำนวนเฉพาะเทียบกับ .

จริงหรือ. จากทฤษฎีบท 1 เครื่องปรับอากาศและ มีตัวหารร่วมเหมือนกันกับ และ . แต่ตัวเลข และ ค่อนข้างง่าย เช่น มีตัวหารร่วมเพียงตัวเดียวคือ 1. แล้ว เครื่องปรับอากาศและ มีตัวหารร่วมร่วมตัวเดียวคือ 1 ดังนั้น เครื่องปรับอากาศและ เรียบง่ายซึ่งกันและกัน

ผลที่ตามมา 2. อนุญาต และ ตัวเลขโคไพรม์แล้วปล่อยให้ แบ่ง อาก้า. แล้ว แบ่งและ เค.

จริงหรือ. จากเงื่อนไขการอนุมัติ อาก้าและ มีตัวหารร่วมกัน . โดยอาศัยทฤษฎีบทที่ 1 จะต้องเป็นตัวหารร่วม และ เค. เพราะฉะนั้น แบ่ง เค.

ข้อพิสูจน์ที่ 1 สามารถสรุปได้

ผลที่ตามมา 3. 1. ให้ตัวเลข 1 , 2 , 3 , ..., m เป็นจำนวนเฉพาะสัมพันธ์กับจำนวน . แล้ว 1 2 , 1 2 · 3 , ..., 1 2 3 ··· m ผลคูณของจำนวนเหล่านี้เป็นจำนวนเฉพาะสัมพันธ์กับจำนวนนั้น .

2. ขอให้เรามีตัวเลขสองแถว

โดยให้ทุกจำนวนในชุดแรกเป็นจำนวนเฉพาะในอัตราส่วนของทุกจำนวนในชุดที่สอง แล้วสินค้า

คุณต้องค้นหาตัวเลขที่หารด้วยตัวเลขเหล่านี้แต่ละตัว

ถ้าจำนวนนั้นหารด้วย 1 แล้วก็มีรูปแบบ ซา 1 ที่ไหน หมายเลขบางอย่าง ถ้า ถามเป็นตัวหารร่วมมากของตัวเลข 1 และ 2 แล้ว

ที่ไหน 1 เป็นจำนวนเต็ม แล้ว

เป็น ผลคูณร่วมน้อยของตัวเลข 1 และ 2 .

1 และ 2 ค่อนข้างเป็นจำนวนเฉพาะ จากนั้นก็เป็นตัวคูณร่วมน้อยของจำนวนนั้น 1 และ 2:

เราจำเป็นต้องหาตัวคูณร่วมน้อยของจำนวนเหล่านี้

จากที่กล่าวมาข้างต้นจะเป็นไปตามจำนวนทวีคูณใดๆ 1 , 2 , 3 ต้องเป็นจำนวนทวีคูณ ε และ 3 และกลับ. ให้ตัวคูณร่วมน้อยของตัวเลข ε และ 3 ใช่ ε 1. ต่อไปเป็นทวีคูณของตัวเลข 1 , 2 , 3 , 4 ต้องเป็นจำนวนทวีคูณ ε 1 และ 4. ให้ตัวคูณร่วมน้อยของตัวเลข ε 1 และ 4 ใช่ ε 2. ดังนั้นเราจึงพบว่ามีจำนวนทวีคูณทั้งหมด 1 , 2 , 3 ,..., m ตรงกับผลคูณของจำนวนหนึ่ง ε n ซึ่งเรียกว่าตัวคูณร่วมน้อยของจำนวนที่กำหนด

ในกรณีพิเศษเมื่อมีตัวเลข 1 , 2 , 3 ,..., m ค่อนข้างเป็นจำนวนเฉพาะ จากนั้นก็เป็นตัวคูณร่วมน้อยของจำนวนนั้น 1 , 2 ดังรูปข้างบน มีแบบฟอร์ม (3) ต่อไปตั้งแต่ 3 ไพรม์สัมพันธ์กับตัวเลข 1 , 2 แล้ว 3 จำนวนเฉพาะ 1 · 2 (ข้อพิสูจน์ 1) หมายถึงตัวคูณร่วมน้อยของตัวเลข 1 , 2 , 3 เป็นตัวเลข 1 · 2 · 3. เมื่อพิจารณาในทำนองเดียวกัน เราก็ได้ข้อความต่อไปนี้

คำแถลง 1. ตัวคูณร่วมน้อยของจำนวนโคไพรม์ 1 , 2 , 3 ,..., m เท่ากับผลคูณของมัน 1 · 2 · 3 ··· ม.

คำแถลง 2. จำนวนใดๆ ที่หารด้วยจำนวนโคไพรม์แต่ละตัวลงตัว 1 , 2 , 3 ,..., m ก็หารด้วยผลคูณของมันได้เช่นกัน 1 · 2 · 3 ··· ม.


เนื้อหาที่นำเสนอด้านล่างเป็นความต่อเนื่องเชิงตรรกะของทฤษฎีจากบทความชื่อ LCM - ตัวคูณร่วมน้อยที่สุด คำจำกัดความ ตัวอย่าง การเชื่อมโยงระหว่าง LCM และ GCD ที่นี่เราจะพูดถึง การหาตัวคูณร่วมน้อย (LCM)และเราจะให้ความสนใจเป็นพิเศษกับการแก้ไขตัวอย่าง ขั้นแรก เราจะแสดงวิธีคำนวณ LCM ของตัวเลขสองตัวโดยใช้ GCD ของตัวเลขเหล่านี้ ต่อไป เราจะมาดูการหาตัวคูณร่วมน้อยโดยการแยกตัวประกอบตัวเลขให้เป็นตัวประกอบเฉพาะ หลังจากนี้ เราจะมุ่งเน้นไปที่การค้นหา LCM ของตัวเลขสามตัวขึ้นไป และให้ความสนใจกับการคำนวณ LCM ของจำนวนลบด้วย

การนำทางหน้า

การคำนวณตัวคูณร่วมน้อย (LCM) ผ่าน GCD

วิธีหนึ่งในการค้นหาตัวคูณร่วมน้อยจะขึ้นอยู่กับความสัมพันธ์ระหว่าง LCM และ GCD การเชื่อมต่อที่มีอยู่ระหว่าง LCM และ GCD ช่วยให้เราสามารถคำนวณตัวคูณร่วมน้อยของจำนวนเต็มบวกสองตัวผ่านตัวหารร่วมมากที่สุดเท่าที่ทราบ สูตรที่สอดคล้องกันคือ LCM(a, b)=a b:GCD(a, b) . ลองดูตัวอย่างการค้นหา LCM โดยใช้สูตรที่กำหนด

ตัวอย่าง.

ค้นหาตัวคูณร่วมน้อยของตัวเลข 126 และ 70 สองตัว

สารละลาย.

ในตัวอย่างนี้ a=126 , b=70 ให้เราใช้การเชื่อมต่อระหว่าง LCM และ GCD ซึ่งแสดงโดยสูตร LCM(a, b)=a b:GCD(a, b). นั่นคือ ก่อนอื่นเราต้องหาตัวหารร่วมมากของตัวเลข 70 และ 126 ก่อน จากนั้นจึงคำนวณ LCM ของตัวเลขเหล่านี้โดยใช้สูตรที่เขียนไว้

ลองหา GCD(126, 70) โดยใช้อัลกอริทึมแบบยุคลิด: 126=70·1+56, 70=56·1+14, 56=14·4 ดังนั้น GCD(126, 70)=14

ตอนนี้เราพบตัวคูณร่วมน้อยที่จำเป็นแล้ว: GCD(126, 70)=126·70:GCD(126, 70)= 126·70:14=630.

คำตอบ:

ล.ซม.(126, 70)=630

ตัวอย่าง.

LCM(68, 34) เท่ากับเท่าไร?

สารละลาย.

เพราะ 68 หารด้วย 34 ลงตัว แล้ว GCD(68, 34)=34 ตอนนี้เราคำนวณตัวคูณร่วมน้อย: GCD(68, 34)=68·34:GCD(68, 34)= 68·34:34=68.

คำตอบ:

ล.ซม.(68, 34)=68 .

โปรดทราบว่าตัวอย่างก่อนหน้านี้ตรงกับกฎต่อไปนี้ในการค้นหา LCM สำหรับจำนวนเต็มบวก a และ b: ถ้าจำนวน a หารด้วย b ลงตัวแล้วตัวคูณร่วมน้อยของจำนวนเหล่านี้ก็คือ a

การค้นหา LCM โดยการแยกตัวประกอบตัวเลขให้เป็นตัวประกอบเฉพาะ

อีกวิธีหนึ่งในการค้นหาตัวคูณร่วมที่น้อยที่สุดก็คือการนำจำนวนแยกตัวประกอบไปเป็นตัวประกอบเฉพาะ หากคุณเขียนผลคูณจากตัวประกอบเฉพาะทั้งหมดของตัวเลขที่กำหนด แล้วแยกปัจจัยเฉพาะทั่วไปทั้งหมดที่มีอยู่ในการสลายตัวของตัวเลขที่กำหนดออกจากผลิตภัณฑ์นี้ ผลลัพธ์ที่ได้จะเท่ากับตัวคูณร่วมน้อยของจำนวนที่กำหนด .

กฎที่ระบุไว้ในการค้นหา LCM เป็นไปตามความเท่าเทียมกัน LCM(a, b)=a b:GCD(a, b). แท้จริงแล้วผลคูณของตัวเลข a และ b เท่ากับผลคูณของปัจจัยทั้งหมดที่เกี่ยวข้องกับการขยายตัวเลข a และ b ในทางกลับกัน GCD(a, b) เท่ากับผลคูณของตัวประกอบเฉพาะทั้งหมดที่มีอยู่ในส่วนขยายของตัวเลข a และ b (ดังที่อธิบายไว้ในส่วนการค้นหา GCD โดยใช้การขยายตัวเลขให้เป็นตัวประกอบเฉพาะ)

ลองยกตัวอย่าง แจ้งให้เราทราบว่า 75=3·5·5 และ 210=2·3·5·7 ลองเขียนผลคูณจากปัจจัยทั้งหมดของการขยายเหล่านี้: 2·3·3·5·5·5·7 ตอนนี้จากผลิตภัณฑ์นี้ เราไม่รวมปัจจัยทั้งหมดที่มีอยู่ในทั้งการขยายตัวของเลข 75 และการขยายตัวของจำนวน 210 (ปัจจัยเหล่านี้คือ 3 และ 5) จากนั้นผลิตภัณฑ์จะอยู่ในรูปแบบ 2·3·5·5·7 . ค่าของผลคูณนี้เท่ากับตัวคูณร่วมน้อยของ 75 และ 210 นั่นคือ นอร์ค(75, 210)= 2·3·5·5·7=1,050.

ตัวอย่าง.

แยกตัวประกอบตัวเลข 441 และ 700 เป็นตัวประกอบเฉพาะแล้วหาตัวคูณร่วมน้อยของตัวเลขเหล่านี้

สารละลาย.

ลองแยกตัวเลข 441 และ 700 เป็นตัวประกอบเฉพาะ:

เราได้ 441=3·3·7·7 และ 700=2·2·5·5·7

ตอนนี้เรามาสร้างผลิตภัณฑ์จากปัจจัยทั้งหมดที่เกี่ยวข้องกับการขยายตัวเลขเหล่านี้: 2·2·3·3·5·5·7·7·7 ให้เราแยกปัจจัยทั้งหมดที่ปรากฏพร้อมกันในการขยายทั้งสองออกจากผลิตภัณฑ์นี้ (มีเพียงปัจจัยเดียวเท่านั้น - นี่คือหมายเลข 7): 2·2·3·3·5·5·7·7 ดังนั้น, ล.ซม.(441, 700)=2·2·3·3·5·5·7·7=44 100.

คำตอบ:

NOC(441, 700)= 44 100

กฎในการค้นหา LCM โดยใช้การแยกตัวประกอบของตัวเลขให้เป็นตัวประกอบเฉพาะสามารถกำหนดสูตรให้แตกต่างออกไปเล็กน้อย ถ้าปัจจัยที่หายไปจากการขยายจำนวน b ถูกบวกเข้ากับปัจจัยจากการขยายตัวของจำนวน a แล้วค่าของผลิตภัณฑ์ที่ได้จะเท่ากับตัวคูณร่วมน้อยของตัวเลข a และ b.

ตัวอย่างเช่น ลองใช้ตัวเลข 75 และ 210 ที่เท่ากัน โดยการสลายตัวของพวกมันเป็นตัวประกอบเฉพาะมีดังนี้ 75=3·5·5 และ 210=2·3·5·7 สำหรับปัจจัย 3, 5 และ 5 จากการขยายตัวของตัวเลข 75 เราได้บวกปัจจัยที่ขาดหายไป 2 และ 7 จากการขยายตัวของตัวเลข 210 เราได้ผลลัพธ์ 2·3·5·5·7 ซึ่งมีค่าเท่ากับ เท่ากับ LCM(75, 210)

ตัวอย่าง.

ค้นหาตัวคูณร่วมน้อยของ 84 และ 648

สารละลาย.

ก่อนอื่นเราได้รับการสลายตัวของตัวเลข 84 และ 648 ให้เป็นปัจจัยเฉพาะ พวกมันดูเหมือน 84=2·2·3·7 และ 648=2·2·2·3·3·3·3 สำหรับปัจจัย 2, 2, 3 และ 7 จากการขยายหมายเลข 84 เราบวกปัจจัยที่ขาดหายไป 2, 3, 3 และ 3 จากการขยายหมายเลข 648 เราได้ผลิตภัณฑ์ 2 2 2 3 3 3 3 7 ซึ่งเท่ากับ 4 536 . ดังนั้น ตัวคูณร่วมน้อยที่ต้องการของ 84 และ 648 คือ 4,536

คำตอบ:

ลซม.(84, 648)=4,536 .

การค้นหา LCM ของตัวเลขสามตัวขึ้นไป

ตัวคูณร่วมน้อยของตัวเลขสามตัวขึ้นไปสามารถหาได้โดยการค้นหา LCM ของตัวเลขสองตัวตามลำดับ ขอให้เรานึกถึงทฤษฎีบทที่สอดคล้องกัน ซึ่งให้วิธีการหา LCM ของตัวเลขสามตัวขึ้นไป

ทฤษฎีบท.

ให้เลขจำนวนเต็มบวก a 1 , a 2 , …, a k หาได้ โดยการคำนวณตามลำดับ m 2 = LCM(a 1 , a 2) , m 3 = LCM(m 2 , a 3) , … , m k = LCM(m k−1 , a k) .

ลองพิจารณาการประยุกต์ใช้ทฤษฎีบทนี้โดยใช้ตัวอย่างการค้นหาตัวคูณร่วมน้อยของตัวเลขสี่จำนวน

ตัวอย่าง.

ค้นหา LCM ของตัวเลขสี่ตัว 140, 9, 54 และ 250

สารละลาย.

ในตัวอย่างนี้ 1 =140, 2 =9, 3 =54, 4 =250

ก่อนอื่นเราจะพบ ม. 2 = LOC(ก 1 , ก 2) = LOC(140, 9). ในการทำสิ่งนี้ โดยใช้อัลกอริธึมแบบยุคลิด เราจะหา GCD(140, 9) ได้ 140=9·15+5, 9=5·1+4, 5=4·1+1, 4=1·4, ดังนั้น GCD(140, 9)=1 จากที่ไหน GCD(140, 9)=140 9:GCD(140, 9)= 140·9:1=1,260. นั่นคือ ม. 2 =1 260.

ตอนนี้เราพบว่า ม. 3 = LOC (ม. 2 , ก 3) = LOC (1 260, 54). ลองคำนวณมันโดยใช้ GCD(1 260, 54) ซึ่งเรายังกำหนดโดยใช้อัลกอริทึมแบบยุคลิด: 1 260=54·23+18, 54=18·3 จากนั้น gcd(1,260, 54)=18 โดยที่ gcd(1,260, 54)= 1,260·54:gcd(1,260, 54)= 1,260·54:18=3,780 นั่นคือ ม. 3 =3 780

สิ่งที่เหลืออยู่ก็คือการค้นหา ม. 4 = LOC(ม. 3, a 4) = LOC(3 780, 250). ในการทำเช่นนี้ เราค้นหา GCD(3,780, 250) โดยใช้อัลกอริทึมแบบยุคลิด: 3,780=250·15+30, 250=30·8+10, 30=10·3 ดังนั้น GCM(3,780, 250)=10 โดยที่ GCM(3,780, 250)= 3 780 250: GCD(3 780, 250)= 3,780·250:10=94,500. นั่นคือ ม. 4 =94,500.

ดังนั้นตัวคูณร่วมน้อยของตัวเลขสี่ตัวเดิมคือ 94,500

คำตอบ:

ล.ซม.(140, 9, 54, 250)=94,500.

ในหลายกรณี จะสะดวกที่จะหาตัวคูณร่วมน้อยของตัวเลขสามตัวขึ้นไปโดยใช้การแยกตัวประกอบเฉพาะของตัวเลขที่กำหนด ในกรณีนี้คุณควรปฏิบัติตามกฎต่อไปนี้ ตัวคูณร่วมน้อยของจำนวนหลายตัวจะเท่ากับผลคูณซึ่งประกอบด้วยดังนี้ ตัวประกอบที่หายไปจากการขยายของตัวเลขตัวที่สองจะถูกบวกเข้ากับตัวประกอบทั้งหมดจากการขยายตัวของตัวเลขตัวแรก ตัวประกอบที่หายไปจากการขยายตัวของ ตัวเลขที่สามจะถูกบวกเข้ากับตัวประกอบผลลัพธ์ เป็นต้น

ลองดูตัวอย่างการหาตัวคูณร่วมน้อยโดยใช้การแยกตัวประกอบเฉพาะ

ตัวอย่าง.

ค้นหาตัวคูณร่วมน้อยของตัวเลขทั้งห้าตัว 84, 6, 48, 7, 143

สารละลาย.

อันดับแรก เราจะได้การสลายตัวของจำนวนเหล่านี้ให้เป็นตัวประกอบเฉพาะ: 84=2·2·3·7, 6=2·3, 48=2·2·2·2·3, 7 (7 เป็นจำนวนเฉพาะ มันเกิดขึ้นพร้อมกัน โดยมีการสลายตัวเป็นปัจจัยเฉพาะ) และ 143=11·13

ในการค้นหา LCM ของตัวเลขเหล่านี้จนถึงตัวประกอบของเลข 84 ตัวแรก (คือ 2, 2, 3 และ 7) คุณต้องบวกปัจจัยที่ขาดหายไปจากการขยายเลขตัวที่สอง 6 การสลายตัวของเลข 6 ไม่มีปัจจัยที่ขาดหายไป เนื่องจากทั้ง 2 และ 3 มีอยู่แล้วในการสลายตัวของเลข 84 ตัวแรก ต่อไปสำหรับปัจจัย 2, 2, 3 และ 7 เราบวกปัจจัยที่หายไป 2 และ 2 จากการขยายตัวของหมายเลขที่สาม 48 เราจะได้ชุดของปัจจัย 2, 2, 2, 2, 3 และ 7 ไม่จำเป็นต้องเพิ่มตัวคูณให้กับชุดนี้ในขั้นตอนถัดไป เนื่องจากมี 7 อยู่แล้ว ในที่สุด สำหรับปัจจัย 2, 2, 2, 2, 3 และ 7 เราได้บวกปัจจัยที่หายไป 11 และ 13 จากการขยายตัวของจำนวน 143 เราได้ผลลัพธ์ 2·2·2·2·3·7·11·13 ซึ่งเท่ากับ 48,048

เครื่องคิดเลขออนไลน์ช่วยให้คุณค้นหาตัวหารร่วมมากและตัวคูณร่วมน้อยของตัวเลขสองตัวหรือจำนวนอื่นๆ ได้อย่างรวดเร็ว

เครื่องคิดเลขสำหรับค้นหา GCD และ LCM

ค้นหา GCD และ LOC

พบ GCD และ LOC: 5806

วิธีใช้เครื่องคิดเลข

  • ป้อนตัวเลขในช่องป้อนข้อมูล
  • หากคุณป้อนอักขระไม่ถูกต้อง ช่องป้อนข้อมูลจะถูกเน้นด้วยสีแดง
  • คลิกปุ่ม "ค้นหา GCD และ LOC"

วิธีใส่ตัวเลข

  • ป้อนตัวเลขโดยคั่นด้วยช่องว่าง จุด หรือลูกน้ำ
  • ความยาวของตัวเลขที่ป้อนไม่ จำกัดดังนั้นการค้นหา GCD และ LCM ของตัวเลขยาวจึงไม่ใช่เรื่องยาก

GCD และ NOC คืออะไร?

ตัวหารร่วมมากตัวเลขหลายตัวเป็นจำนวนเต็มธรรมชาติที่ใหญ่ที่สุด โดยที่ตัวเลขเดิมทั้งหมดหารลงตัวได้โดยไม่มีเศษ ตัวหารร่วมมากใช้อักษรย่อว่า จีซีดี.
ตัวคูณร่วมน้อยตัวเลขหลายตัวคือจำนวนที่น้อยที่สุดที่หารด้วยตัวเลขเดิมแต่ละตัวโดยไม่มีเศษเหลือ ตัวคูณร่วมน้อยใช้อักษรย่อว่า NOC.

จะตรวจสอบได้อย่างไรว่าตัวเลขนั้นหารด้วยอีกจำนวนหนึ่งโดยไม่มีเศษ?

หากต้องการทราบว่าตัวเลขตัวหนึ่งหารด้วยอีกจำนวนหนึ่งลงตัวหรือไม่ คุณสามารถใช้คุณสมบัติบางประการของการหารตัวเลขได้ จากนั้นเมื่อรวมเข้าด้วยกัน คุณจะสามารถตรวจสอบการแบ่งแยกของบางส่วนและชุดค่าผสมได้

สัญญาณบางประการของการหารตัวเลข

1. การทดสอบการหารจำนวนด้วย 2 ลงตัว
ในการพิจารณาว่าตัวเลขหารด้วยสองลงตัวหรือไม่ (ไม่ว่าจะเป็นเลขคู่) ก็เพียงพอแล้วที่จะดูหลักสุดท้ายของตัวเลขนี้: ถ้ามันเท่ากับ 0, 2, 4, 6 หรือ 8 แสดงว่าตัวเลขนั้นเป็นเลขคู่ ซึ่งหมายความว่าหารด้วย 2 ลงตัว.
ตัวอย่าง:ตรวจสอบว่าตัวเลข 34938 หารด้วย 2 ลงตัวหรือไม่
สารละลาย:เราดูที่หลักสุดท้าย: 8 - นั่นหมายความว่าตัวเลขนั้นหารด้วยสองลงตัว

2. การทดสอบการหารจำนวนด้วย 3 ลงตัว
ตัวเลขหารด้วย 3 เมื่อผลรวมของตัวเลขหารด้วย 3 ลงตัว ดังนั้น เพื่อตรวจสอบว่าตัวเลขหารด้วย 3 ลงตัวหรือไม่ คุณต้องคำนวณผลรวมของตัวเลขและตรวจสอบว่าตัวเลขหารด้วย 3 ลงตัวหรือไม่ แม้ว่าผลรวมของตัวเลขจะมีขนาดใหญ่มาก คุณก็สามารถทำซ้ำขั้นตอนเดิมอีกครั้งได้
ตัวอย่าง:ตรวจสอบว่าตัวเลข 34938 หารด้วย 3 ลงตัวหรือไม่
สารละลาย:เรานับผลรวมของตัวเลข: 3+4+9+3+8 = 27 27 หารด้วย 3 ลงตัว ซึ่งหมายความว่าตัวเลขนั้นหารด้วยสามลงตัว

3. การทดสอบการหารจำนวนด้วย 5 ลงตัว
ตัวเลขหารด้วย 5 ลงตัวเมื่อหลักสุดท้ายเป็นศูนย์หรือห้า
ตัวอย่าง:ตรวจสอบว่าตัวเลข 34938 หารด้วย 5 ลงตัวหรือไม่
สารละลาย:ดูที่หลักสุดท้าย: 8 หมายความว่าตัวเลขหารด้วยห้าไม่ลงตัว

4. การทดสอบการหารจำนวนด้วย 9 ลงตัว
เครื่องหมายนี้คล้ายกับเครื่องหมายหารด้วยสามลงตัวมาก โดยตัวเลขจะหารด้วย 9 ลงตัวเมื่อผลรวมของตัวเลขหารด้วย 9 ลงตัว
ตัวอย่าง:ตรวจสอบว่าตัวเลข 34938 หารด้วย 9 ลงตัวหรือไม่
สารละลาย:เรานับผลรวมของตัวเลข: 3+4+9+3+8 = 27 27 หารด้วย 9 ลงตัว ซึ่งหมายความว่าตัวเลขนั้นหารด้วย 9 ลงตัว

วิธีค้นหา GCD และ LCM ของตัวเลขสองตัว

วิธีค้นหา gcd ของตัวเลขสองตัว

วิธีที่ง่ายที่สุดในการคำนวณตัวหารร่วมมากของตัวเลขสองตัวคือค้นหาตัวหารร่วมที่เป็นไปได้ทั้งหมดของตัวเลขเหล่านั้น แล้วเลือกตัวที่มากที่สุด

ลองพิจารณาวิธีนี้โดยใช้ตัวอย่างการค้นหา GCD(28, 36):

  1. เราแยกตัวประกอบตัวเลขทั้งสอง: 28 = 1·2·2·7, 36 = 1·2·2·3·3
  2. เราพบตัวประกอบร่วม นั่นคือ ตัวเลขทั้งสองมี: 1, 2 และ 2
  3. เราคำนวณผลคูณของปัจจัยเหล่านี้: 1 2 2 = 4 - นี่คือตัวหารร่วมมากของตัวเลข 28 และ 36

วิธีค้นหา LCM ของตัวเลขสองตัว

มีสองวิธีที่ใช้กันทั่วไปในการค้นหาผลคูณน้อยที่สุดของตัวเลขสองตัว วิธีแรกคือคุณสามารถจดเลขทวีคูณแรกของตัวเลขสองตัว จากนั้นเลือกตัวเลขที่จะเหมือนกันกับตัวเลขทั้งสองและในเวลาเดียวกันก็มีค่าน้อยที่สุด อย่างที่สองคือหา gcd ของตัวเลขเหล่านี้ ลองพิจารณาดูเท่านั้น

ในการคำนวณ LCM คุณต้องคำนวณผลคูณของตัวเลขเดิมแล้วหารด้วย GCD ที่พบก่อนหน้านี้ มาหา LCM สำหรับตัวเลข 28 และ 36 ที่เหมือนกัน:

  1. ค้นหาผลคูณของตัวเลข 28 และ 36: 28·36 = 1008
  2. GCD(28, 36) ตามที่ทราบอยู่แล้ว มีค่าเท่ากับ 4
  3. ล.ซม.(28, 36) = 1008/4 = 252 .

ค้นหา GCD และ LCM สำหรับตัวเลขหลายตัว

ตัวหารร่วมมากสามารถหาได้จากหลายจำนวน ไม่ใช่เพียงสองเท่านั้น เมื่อต้องการทำเช่นนี้ ตัวเลขที่จะหาได้สำหรับตัวหารร่วมมากจะถูกแบ่งออกเป็นตัวประกอบเฉพาะ จากนั้นจึงหาผลคูณของตัวประกอบร่วมเฉพาะของตัวเลขเหล่านี้ คุณยังสามารถใช้ความสัมพันธ์ต่อไปนี้เพื่อค้นหา gcd ของตัวเลขหลายตัวได้: GCD(a, b, c) = GCD(GCD(a, b), c).

ความสัมพันธ์ที่คล้ายกันใช้กับตัวคูณร่วมน้อย: ล.ซม.(a, b, c) = ล.ซม.(ล.ม.(a, b), c)

ตัวอย่าง:ค้นหา GCD และ LCM สำหรับหมายเลข 12, 32 และ 36

  1. ก่อนอื่น ให้แยกตัวประกอบตัวเลขก่อน: 12 = 1·2·2·3, 32 = 1·2·2·2·2·2, 36 = 1·2·2·3·3
  2. มาหาปัจจัยร่วม: 1, 2 และ 2
  3. ผลิตภัณฑ์ของพวกเขาจะให้ GCD: 1·2·2 = 4
  4. ทีนี้ เรามาค้นหา LCM กันดีกว่า โดยจะหา LCM(12, 32): 12·32 / 4 = 96 ก่อน
  5. หากต้องการค้นหา LCM ของตัวเลขทั้งสามตัว คุณต้องค้นหา GCD(96, 36): 96 = 1·2·2·2·2·2·3 , 36 = 1·2·2·3·3 , GCD = 1·2· 2 3 = 12.
  6. ล.ซม.(12, 32, 36) = 96·36 / 12 = 288