Характеристика металла алюминия. Свойства и применение алюминия

Алюми́ний - элемент 13-й группы периодической таблицы химических элементов, третьего периода, с атомным номером 13. Относится к группе лёгких металлов. Наиболее распространённый металл и третий по распространённости химический элемент в земной коре (после кислорода и кремния).

Простое вещество алюминий - лёгкий, парамагнитный металл серебристо-белогоцвета, легко поддающийся формовке, литью, механической обработке. Алюминий обладает высокой тепло- иэлектропроводностью, стойкостью к коррозии за счёт быстрого образования прочных оксидных плёнок, защищающих поверхность от дальнейшего взаимодействия.

Современный метод получения, процесс Холла-Эру. Он заключается в растворении оксида алюминия Al2O3 в расплаве криолита Na3AlF6 с последующим электролизом с использованием расходуемых коксовых илиграфитовых анодных электродов. Такой метод получения требует очень больших затрат электроэнергии, и поэтому получил промышленное применение только в XX веке.

Лабораторный способ получения алюминия: восстановлением металлическим калием безводного хлорида алюминия (реакция протекает при нагревании без доступа воздуха):

Металл серебристо-белого цвета, лёгкий, плотность - 2,7 г/см³, температура плавления у технического алюминия - 658 °C, у алюминия высокой чистоты - 660 °C, высокая пластичность: у технического - 35 %, у чистого - 50 %, прокатывается в тонкий лист и даже фольгу. Алюминий обладает высокой электропроводностью (37·106 См/м) и теплопроводностью (203,5 Вт/(м·К)), 65 %, обладает высокой светоотражательной способностью.

Алюминий образует сплавы почти со всеми металлами. Наиболее известны сплавы с медью и магнием (дюралюминий) и кремнием(силумин).

По распространённости в земной коре Земли занимает 1-е место среди металлов и 3-е место среди элементов, уступая только кислороду и кремнию. Массовая концентрация алюминия в земной коре по данным различных исследователей оценивается от 7,45 до 8,14 %. В природе алюминий, в связи с высокой химической активностью, встречается почти исключительно в виде соединений.

Природный алюминий состоит практически полностью из единственного стабильного изотопа 27Al с ничтожными следами 26Al, наиболее долгоживущего радиоактивного изотопа с периодом полураспада 720 тыс. лет, образующегося в атмосфере при расщеплении ядер аргона 40Ar протонами космических лучей с высокими энергиями.

При нормальных условиях алюминий покрыт тонкой и прочной оксидной плёнкой и потому не реагирует с классическими окислителями: с H2O (t°), O2, HNO3 (без нагревания). Благодаря этому алюминий практически не подвержен коррозии и потому широко востребован современной промышленностью. Однако при разрушении оксидной плёнки (например, при контакте с растворами солей аммония NH4+, горячими щелочами или в результате амальгамирования), алюминий выступает как активный металл-восстановитель. Не допустить образования оксидной пленки можно, добавляя к алюминию такие металлы как галлий,индий или олово. При этом поверхность алюминия смачивают легкоплавкие эвтектики на основе этих металлов.

Легко реагирует с простыми веществами:

с кислородом, образуя оксид алюминия:

с галогенами (кроме фтора), образуя хлорид, бромид или иодид алюминия:

с другими неметаллами реагирует при нагревании:

со фтором, образуя фторид алюминия:

с серой, образуя сульфид алюминия:

с азотом, образуя нитрид алюминия:

с углеродом, образуя карбид алюминия:

Сульфид и карбид алюминия полностью гидролизуются:

Со сложными веществами:

с водой (после удаления защитной оксидной пленки, например, амальгамированием или растворами горячей щёлочи):

со щелочами (с образованием тетрагидроксоалюминатов и других алюминатов):

Легко растворяется в соляной и разбавленной серной кислотах:

При нагревании растворяется в кислотах - окислителях, образующих растворимые соли алюминия:

восстанавливает металлы из их оксидов (алюминотермия):

44.Соединения алюминия, их амфотерные свойства

Электронная конфигурация внешнего уровня алюминия … 3s23p1.

В возбужденном состоянии один из s-электронов переходит на свободную ячейку p-подуровня, такое состояние отвечает валентности III и степени окисления +3. Во внешнем электронном слое атома алюминия существуют свободные d-подуровни.

Важнейшие природные соединения – алюмосиликаты:

белая глина Al2O3 ∙ 2SiO2 ∙ 2H2O, полевой шпат K2O ∙ Al2O3 ∙ 6SiO2, слюда K2O ∙ Al2O3 ∙ 6SiO2 ∙ H2O

Из других природных форм нахождения алюминия наибольшее значение имеют бокситы А12Оз ∙ nН2О, минералы корунд А12Оз и криолит А1Fз ∙3NaF.

Легкий, серебристо-белый, пластичный металл, хорошо проводит электрический ток и тепло.

На воздухе алюминий покрывается тончайшей (0,00001 мм), но очень плотной пленкой оксида, предохраняющей металл от дальнейшего окисления и придающей ему матовый вид.

Оксид алюминия А12О3

Белое твердое вещество, нерастворимое в воде, температура плавления 20500С.

Природный А12О3 - минерал корунд. Прозрачные окрашенные кристаллы корунда - красный рубин – содержит примесь хрома - и синий сапфир - примесь титана и железа - драгоценные камни. Их получают так же искусственно и используют для технических целей, например, для изготовления деталей точных приборов, камней в часах и т.п.

Химические свойства

Оксид алюминия проявляет амфотерные свойства

1. взаимодействие с кислотами

А12О3 +6HCl = 2AlCl3 + 3H2O

2. взаимодействие со щелочами

А12О3 + 2NaOH – 2NaAlO2 + H2O

Al2O3 + 2NaOH + 5H2O = 2Na

3. при накаливании смеси оксида соответствующего металла с порошком алюминия происходит бурная реакция, ведущая к выделению из взятого оксида свободного металла. Метод восстановления при помощи Al (алюмотермия) часто применяют для получения ряда элементов (Cr, Мп, V, W и др.) в свободном состоянии

2А1 + WO3 = А12Оз + W

4. взаимодействие с солями, имеющими сильнощелочную среду, вследствие гидролиза

Al2O3 + Na2CO3 = 2 NaAlO2 + CO2

Гидроксид алюминия А1(ОН)3

А1(ОН)3 представляет собой объемистый студенистый осадок белого цвета, практически нерастворимый в воде, но легко растворяющийся в кислотах и сильных щелочах. Он имеет, следовательно, амфотерный характер.

Получают гидроксид алюминия реакцией обмена растворимых солей алюминия со щелочами

AlCl3 + 3NaOH = Al(OH)3↓ + 3NaCl

Al3+ + 3OH- = Al(OH)3↓

Данную реакцию можно использовать как качественную на ион Al3+

Химические свойства

1. взаимодействие с кислотами

Al(OH)3 +3HCl = 2AlCl3 + 3H2O

2. при взаимодействии с сильными щелочами образуются соответствующие алюминаты:

NaOH + А1(ОН)з = Na

3. термическое разложение

2Al(OH)3 = Al2О3 + 3H2O

Соли алюминияподвергаются гидролизу по катиону, среда кислая (рН < 7)

Al3+ + Н+ОН- ↔ AlОН2+ + Н+

Al(NO3)3 + H2O↔ AlOH(NO3)2 + HNO3

Растворимые соли алюминия и слабых кислот подвергаются полному (необратимому гидролизу)

Al2S3+ 3H2O = 2Al(OH)3 +3H2S

Оксид алюминия Al2O3 – входит в состав некоторых антацидных средств (например, Almagel), используется при повышенной кислотности желудочного сока.

КAl(SO4)3 12H2О – алюмокалиевые квасцы применяются в медицине для лечения кожных заболеваний, как кровоостанавливающие средство. А также используют как дубильное вещество в кожевенной промышленности.

(CH3COO)3Al - Жидкость Бурова- 8% раствор ацетата алюминия оказывает вяжущее и противовоспалительное действие, в больших концентрациях обладает умеренными антисептическими свойствами. Применяется в разведенном виде для полоскания, примочек, при воспалительных заболеваниях кожи и слизистых оболочек.

AlCl3 - применяется в качестве катализатора в органическом синтезе.

Al2(SO4)3 · 18 H20 – применяется при очистки воды.

Сколько стоит написать твою работу?

Выберите тип работы Дипломная работа (бакалавр/специалист) Часть дипломной работы Магистерский диплом Курсовая с практикой Курсовая теория Реферат Эссе Контрольная работа Задачи Аттестационная работа (ВАР/ВКР) Бизнес-план Вопросы к экзамену Диплом МВА Дипломная работа (колледж/техникум) Другое Кейсы Лабораторная работа, РГР Он-лайн помощь Отчет о практике Поиск информации Презентация в PowerPoint Реферат для аспирантуры Сопроводительные материалы к диплому Статья Тест Чертежи далее »

Спасибо, вам отправлено письмо. Проверьте почту .

Хотите промокод на скидку 15% ?

Получить смс
с промокодом

Успешно!

?Сообщите промокод во время разговора с менеджером.
Промокод можно применить один раз при первом заказе.
Тип работы промокода - "дипломная работа ".

Алюминий

Министерство образования и науки РФ



«АЛЮМИНИЙ»


2007 год


АЛЮМИНИЙ (лат. Aluminium; от "alumen" - квасцы), Al, химический элемент III группы периодической системы, атомный номер 13, атомная масса 26,98154.


1.Общая характеристика алюминия


Природный алюминий состоит из одного нуклида 27Al. Конфигурация внешнего электронного слоя 3s2p1. Практически во всех соединениях степень окисления алюминия +3 (валентность III).

Радиус нейтрального атома алюминия 0,143 нм, радиус иона Al3+ 0,057 нм. Энергии последовательной ионизации нейтрального атома алюминия равны, соответственно, 5,984, 18,828, 28,44 и 120 эВ. По шкале Полинга электроотрицательность алюминия 1,5.

Простое вещество алюминий - мягкий легкий серебристо-белый металл.


2.Свойства

Алюминий - типичный металл, кристаллическая решетка кубическая гранецентрированная, параметр а = 0,40403 нм. Температура плавления чистого металла 660°C, температура кипения около 2450°C, плотность 2,6989 г/см3. Температурный коэффициент линейного расширения алюминия около 2,5·10–5 К–1 Стандартный электродный потенциал Al 3+/ Al - 1,663В.

Химически алюминий - довольно активный металл. На воздухе его поверхность мгновенно покрывается плотной пленкой оксида Al 2 О 3 , которая препятствует дальнейшему доступу кислорода (O) к металлу и приводит к прекращению реакции, что обусловливает высокие антикоррозионные свойства алюминия. Защитная поверхностная пленка на алюминии образуется также, если его поместить в концентрированную азотную кислоту.


С остальными кислотами алюминий активно реагирует:


6НСl + 2Al = 2AlCl 3 + 3H 2 ,


3Н 2 SO 4 + 2Al = Al 2 (SO 4) 3 + 3H 2 .


Алюминий реагирует с растворами щелочей. Сначала растворяется защитная оксидная пленка:


Al 2 О 3 + 2NaOH + 3H 2 O = 2Na.


Затем протекают реакции:


2Al + 6H 2 O = 2Al(OH) 3 + 3H 2 ,


NaOH + Al(OH) 3 = Na,


или суммарно:


2Al + 6H 2 O + 2NaOH = Na + 3Н 2 ,


и в результате образуются алюминаты: Na - алюминат натрия (Na) (тетрагидроксоалюминат натрия), К - алюминат калия (K) (терагидроксоалюминат калия) или др. Так как для атома алюминия в этих соединениях характерно координационное число 6, а не 4, то действительные формулы указанных тетрагидроксосоединений следующие:


Na и К.


При нагревании алюминий реагирует с галогенами:


2Al + 3Cl 2 = 2AlCl 3 ,


2Al + 3 Br 2 = 2AlBr 3 .


Интересно, что реакция между порошками алюминия и иода (I) начинается при комнатной температуре, если в исходную смесь добавить несколько капель воды, которая в данном случае играет роль катализатора:


2Al + 3I 2 = 2AlI 3 .


Взаимодействие алюминия с серой (S) при нагревании приводит к образованию сульфида алюминия:


2Al + 3S = Al 2 S 3 ,


который легко разлагается водой:


Al 2 S 3 + 6Н 2 О = 2Al(ОН) 3 + 3Н 2 S.


С водородом (H) алюминий непосредственно не взаимодействует, однако косвенными путями, например, с использованием алюминийорганических соединений, можно синтезировать твердый полимерный гидрид алюминия (AlН 3) х - сильнейший восстановитель.

В виде порошка алюминий можно сжечь на воздухе, причем образуется белый тугоплавкий порошок оксида алюминия Al 2 О 3 .

Высокая прочность связи в Al 2 О 3 обусловливает большую теплоту его образования из простых веществ и способность алюминия восстанавливать многие металлы из их оксидов, например:


3Fe 3 O 4 + 8Al = 4Al 2 O 3 + 9Fe и даже


3СаО + 2Al = Al 2 О 3 + 3Са.


Такой способ получения металлов называют алюминотермией.

Амфотерному оксиду Al 2 О 3 соответствует амфотерный гидроксид - аморфное полимерное соединение, не имеющее постоянного состава. Состав гидроксида алюминия может быть передан формулой xAl 2 O 3 ·yH 2 O, при изучении химии в школе формулу гидроксида алюминия чаще всего указывают как Аl(OH) 3 .

В лаборатории гидроксид алюминия можно получить в виде студенистого осадка обменными реакциями:


Al 2 (SO 4) 3 + 6NaOH = 2Al(OH) 3 + 3Na 2 SO 4 ,


или за счет добавления соды к раствору соли алюминия:


2AlCl 3 + 3Na 2 CO 3 + 3H 2 O = 2Al(OH) 3 + 6NaCl + 3CO 2 ,


а также добавлением раствора аммиака к раствору соли алюминия:


AlCl 3 + 3NH 3 ·H2O = Al(OH) 3 + 3H 2 O + 3NH 4 Cl.


Название и история открытия: латинское aluminium происходит от латинского же alumen, означающего квасцы (сульфат алюминия и калия (K) KAl(SO 4) 2 ·12H 2 O), которые издавна использовались при выделке кож и как вяжущее средство. Из-за высокой химической активности открытие и выделение чистого алюминия растянулось почти на 100 лет. Вывод о том, что из квасцов может быть получена «земля» (тугоплавкое вещество, по-современному - оксид алюминия) сделал еще в 1754 немецкий химик А. Маргграф. Позднее оказалось, что такая же «земля» может быть выделена из глины, и ее стали называть глиноземом. Получить металлический алюминий смог только в 1825 датский физик Х. К. Эрстед. Он обработал амальгамой калия (сплавом калия (K) со ртутью (Hg)) хлорид алюминия AlCl 3 , который можно было получить из глинозема, и после отгонки ртути (Hg) выделил серый порошок алюминия.

Только через четверть века этот способ удалось немного модернизировать. Французский химик А. Э. Сент-Клер Девиль в 1854 году предложил использовать для получения алюминия металлический натрий (Na), и получил первые слитки нового металла. Стоимость алюминия была тогда очень высока, и из него изготовляли ювелирные украшения.

Промышленный способ производства алюминия путем электролиза расплава сложных смесей, включающих оксид, фторид алюминия и другие вещества, независимо друг от друга разработали в 1886 году П. Эру (Франция) и Ч. Холл (США). Производство алюминия связано с высоким расходом электроэнергии, поэтому в больших масштабах оно было реализовано только в 20-ом веке. В Советском Союзе первый промышленный алюминий был получен 14 мая 1932 года на Волховском алюминиевом комбинате, построенном рядом с Волховской гидроэлектростанцией.


3.Нахождение в природе

По распространенности в земной коре алюминий занимает первое место среди металлов и третье место среди всех элементов (после кислорода (O) и кремния (Si)), на его долю приходится около 8,8% массы земной коры. Алюминий входит в огромное число минералов, главным образом, алюмосиликатов, и горных пород. Соединения алюминия содержат граниты, базальты, глины, полевые шпаты и др. Но вот парадокс: при огромном числе минералов и пород, содержащих алюминий, месторождения бокситов - главного сырья при промышленном получении алюминия, довольно редки. В России месторождения бокситов имеются в Сибири и на Урале. Промышленное значение имеют также алуниты и нефелины. В качестве микроэлемента алюминий присутствует в тканях растений и животных. Существуют организмы-концентраторы, накапливающие алюминий в своих органах, - некоторые плауны, моллюски.


4.Получение


Промышленное получение: при промышленном производстве бокситы сначала подвергают химической переработке, удаляя из них примеси оксидов кремния (Si), железа (Fe) и других элементов. В результате такой переработки получают чистый оксид алюминия Al 2 O 3 - основное сырье при производстве металла электролизом. Однако из-за того, что температура плавления Al 2 O 3 очень высока (более 2000°C), использовать его расплав для электролиза не удается.

Выход ученые и инженеры нашли в следующем. В электролизной ванне сначала расплавляют криолит Na 3 AlF 6 (температура расплава немного ниже 1000°C). Криолит можно получить, например, при переработке нефелинов Кольского полуострова. Далее в этот расплав добавляют немного Al 2 О 3 (до 10% по массе) и некоторые другие вещества, улучающие условия проведения последующего процесса. При электролизе этого расплава происходит разложение оксида алюминия, криолит остается в расплаве, а на катоде образуется расплавленный алюминий:


2Al 2 О 3 = 4Al + 3О 2 .


Так как анодом при электролизе служит графит, то выделяющийся на аноде кислород (O) реагирует с графитом и образуется углекислый газ СО 2 .

При электролизе получают металл с содержанием алюминия около 99,7%. В технике применяют и значительно более чистый алюминий, в котором содержание этого элемента достигает 99,999% и более.


5.Применение


По масштабам применения алюминий и его сплавы занимают второе место после железа (Fe)и его сплавов. Широкое применение алюминия в различных областях техники и быта связано с совокупностью его физических, механических и химических свойств: малой плотностью, коррозионной стойкостью в атмосферном воздухе, высокой тепло- и электропроводностью, пластичностью и сравнительно высокой прочностью. Алюминий легко обрабатывается различными способами - ковкой, штамповкой, прокаткой и др. Чистый алюминий применяют для изготовления проволоки (электропроводность алюминия составляет 65,5% от электропроводности меди, но алюминий более чем в три раза легче меди, поэтому алюминий часто заменяет медь в электротехнике) и фольги, используемой как упаковочный материал. Основная же часть выплавляемого алюминия расходуется на получение различных сплавов. Сплавы алюминия отличаются малой плотностью, повышенной (по сравнению с чистым алюминием) коррозионной стойкостью и высокими технологическими свойствами: высокой тепло- и электропроводностью, жаропрочностью, прочностью и пластичностью. На поверхности сплавов алюминия легко наносятся защитные и декоративные покрытия.

Разнообразие свойств алюминиевых сплавов обусловлено введением в алюминий различных добавок, образующих с ним твердые растворы или интерметаллические соединения. Основную массу алюминия используют для получения легких сплавов - дуралюмина (94% - алюминий, 4% медь (Cu), по 0,5% магний (Mg), марганец (Mn), железо (Fe) и кремний (Si)), силумина (85-90% - алюминий, 10-14% кремний (Si), 0,1% натрий (Na)) и др. В металлургии алюминий используется не только как основа для сплавов, но и как одна из широко применяемых легирующих добавок в сплавах на основе меди (Cu), магния (Mg),железа (Fe), >никеля (Ni) и др.

Сплавы алюминия находят широкое применение в быту, в строительстве и архитектуре, в автомобилестроении, в судостроении, авиационной и космической технике. В частности, из алюминиевого сплава был изготовлен первый искусственный спутник Земли. Сплав алюминия и циркония (Zr) - циркалой - широко применяют в ядерном реакторостроении. Алюминий применяют в производстве взрывчатых веществ.

Особо следует отметить окрашенные пленки из оксида алюминия на поверхности металлического алюминия, получаемые электрохимическим путем. Покрытый такими пленками металлический алюминий называют анодированным алюминием. Из анодированного алюминия, по внешнему виду напоминающему золото (Au), изготовляют различную бижутерию.

При обращении с алюминием в быту нужно иметь в виду, что нагревать и хранить в алюминиевой посуде можно только нейтральные (по кислотности) жидкости (например, кипятить воду). Если, например, в алюминиевой посуде варить кислые щи, то алюминий переходит в пищу и она приобретает неприятный «металлический» привкус. Поскольку в быту оксидную пленку очень легко повредить, то использование алюминиевой посуды все-таки нежелательно.


6.Биологоческая роль


В организм человека алюминий ежедневно поступает с пищей (около 2-3 мг), но его биологическая роль не установлена. В среднем в организме человека (70 кг) в костях, мышцах содержится около 60 мг алюминия.

Похожие рефераты:

Общая характеристика титана как химического элемента IV группы периодической системы Д.И. Менделеева. Химические и физические свойства титана. История открытия титана У. Грегором в 1791 году. Основные свойства титана и его применение в промышленности.

Классификация и основные свойства металлов: низкие потенциалы ионизации и применение в качестве восстановителей. Особенности электронной структуры и положения в периодической системе элементов. Изучение неметаллов на основе кремния и его соединений.

Классификация основных коррозионных процессов в металлах. Пути повышения и способы оценки эффективности действия ингибиторов. Защита от коррозии в органических электропроводящих средах. Подготовка металлических образцов к импедансным измерениям.

Окружающие нас металлические предметы редко состоят из чистых металлов. Только алюминиевые кастрюли или медная проволка имеют чистоту около 99,9%. В большинстве же других случаев люди имеют дело со сплавами. Так, различные виды железа и стали, содержат наряду с металлическими добавками незначительны...

Развитие алюминиевой промышленности. Основы электролиза криолитоглиноземных расплавов. Альтернативные способы получения алюминия. Электротермическое получение алюминиево-кремниевых сплавов. Субгалогенидный процесс. Электролиз хлоридных расплавов.

Основные деформируемые алюминиевые сплавы. Механические свойства силуминов. Маркировка литейных алюминиевых сплавов. Кремний как основной легирующий элемент в литейных алюминиевых силуминах. Типичные механические свойства термически неупрочняемых сплавов.

Курсовая работа по химии Алюминий - самый распостраненный в земной коре металл. На его долю приходится 5,5-6,6 мол. доли % или 8 масс. %. Главная масса его сосредоточена в алюмосиликатах. Чрезвычайно распространенным продуктом разрушения образованных ими горных пород является глина, основной состав...

Введение Металловедение – наука,. Изучающая строение и свойства металлов и устанавливающая связь между их составом, строением и свойствами. В данном реферате приведены общие и теоретические сведения по деформируемым алюминиевым сплавам и дополнены конкретными данными справочного характера о состав...

Электролиз криолит-глиноземного расплава на анодах из углеродистых материалов, состав электролита и процесс рафинирования алюминия. Получение хлора при электролизе хлорида алюминия. Разработка безотходной технологии утилизации отходов производства.

Тип урока . Комбинированный.

Задачи:

Образовательные:

1. Актуализировать знания учащихся о строении атома, физических смыслах порядкового номера, номера группы, номера периода на примере алюминия.

2. Сформировать у учащихся знания о том, что алюминию в свободном состоянии присущи особые, характерные физические и химические свойства.

Развивающие:

1. Возбудить интерес к изучению науки путем предоставления кратких исторических и научных сообщений о прошлом, настоящем и будущем алюминия.

2. Продолжить формирование исследовательских навыков учащихся при работе с литературой, выполнением лабораторной работы.

3. Расширить понятие амфотерности раскрытием электронного строения алюминия, химических свойств его соединений.

Воспитательные:

1. Воспитывать бережное отношение к окружающей среде, предоставляя сведения о возможном использовании алюминия вчера, сегодня, завтра.

2. Формировать умения работать коллективом у каждого учащегося, считаться с мнением всей группы и отстаивать свое корректно, выполняя лабораторную работу.

3. Знакомить учащихся с научной этикой, честностью и порядочностью естествоиспытателей прошлого, предоставляя сведения о борьбе за право быть первооткрывателем алюминия.

ПОВТОРЕНИЕ ПРОЙДЕННОГО МАТЕРИАЛЛА по темам щелочные и щелочноземельные М (ПОВТОРЕНИЕ):

    Какое количество электронов на внешнем энергетическом уровне щелочных и щелочноземельных М?

    Какие продукты образуются при взаимодействии с кислородом натрия или калия? (пероксид), способен ли литий в реакции с кислородом давать пероксид? (нет, в результате реакции образуется оксид лития.)

    Как получают оксиды натрия и калия? (прокаливанием пероксидов с соответствующими Ме, Пр: 2Na+Na 2 O 2 =2Na 2 O).

    Проявляют ли щелочные и щелочноземельные металлы отрицательные степени окисления? (нет, не имеют, так как являются сильными восстановителями.).

    Как изменяется радиус атома в главных подгруппах (сверху вниз) Переодической системы? (увеличивается), с чем это связано? (с увеличением числа энергетических уровней).

    Какие из изученных нами групп металлов легче воды? (у щелочных).

    При каких условиях идет образование гидридов у щелочноземельных металлов? (при высоких температурах).

    Какое вещество кальций или магний активнее реагирует с водой? (более активно реагирует кальций. Магний активно реагирует с водой только при нагревании ее до 100 0 С).

    Как изменяется растворимость гидроксидов щелочноземельных металлов в воде, в ряду от кальция до бария? (растворимость в воде увеличивается).

    Расскажите про особенности хранения щелочных и щелочноземельных металлов, почему их хранят именно так? (т.к. данные металлы очень реакциоспособны, то их хранят в таре под слоем керосина).

КОНТРОЛЬНАЯ РАБОТА по темам щелочные и щелочноземельные М:

КОНСПЕКТ УРОКА (ИЗУЧЕНЕ НОВОГО МАТЕРИАЛА):

Учитель: Здравствуйте ребята, сегодня мы с вами переходим к изучению IIIА подгруппы. Перечислите элементы расположенные в IIIА подгруппе?

Обучаемые: Она включает в себя такие элементы как бор, алюминий, галлий, индий и таллий.

Учитель: Какое число электронов они содержат на внешнем энергетическом уровне, степени окисления?

Обучаемые: Три электрона, степень окисления +3, хотя для таллия более устойчивой является степень окисления +1.

Учитель: Металлические свойства элементов подгруппы бора выражены значительно слабее, чем у элементов подгруппы бериллия. Бор является неМ. В дальнейшем внутри подгруппы с возрастанием заряда ядра М свойства усиливаются. А l – уже М, но не типичный. Его гидроксид обладает амфотерными свойствами.

Из М главной подгруппы III группы наибольшее значение имеет алюминий, свойства которого мы изучим подробно. Он интересен нам потому, что является переходным элементом.

Алюминий обладает многими ценными свойствами:

  • небольшой плотностью - около 2,7 г/см 3 ,
  • высокой теплопроводностью и высокой электропроводностью 13,8 107 Ом/м,
  • хорошей пластичностью и достаточной механической прочностью.

Алюминий образует сплавы со многими элементами . В сплавах алюминий сохраняет свои свойства. В расплавленном состоянии Al жидкотекуч и хорошо заполняет формы, в твердом виде он хорошо деформируется и легко поддается резанию, пайке и сварке.

Сродство алюминия к кислороду очень большое . При его окислении выделяется большое количество тепла (~ 1670000Дж/моль). Тонкоизмельченный алюминий при: нагревании воспламеняется и сгорает на воздухе. Al соединяется с кислородом воздуха и в атмосферных условиях. При этом алюминий покрывается тонкой (толщиной ~ 0,0002 мм) плотной пленкой окиси алюминия, защищающей его от дальнейшего окисления; поэтому Al стоек против коррозии. Поверхность Al хорошо защищается от окисления этой пленкой и в расплавленном состоянии.

Из сплавов алюминия наибольшее значение имеют дюралюминий и силумины . В состав дюралюминия, кроме Al, входят 3,4-4% меди, 0,5% Mn и 0,5% Mg, допускается не более 0,8% Fe и 0,8% Si . Дюралюминий хорошо деформируется и по своим механическим свойствам близок к некоторым сортам стали, хотя он в 2,7 раза легче стали (плотность дюралюминия 2,85 г/см 3 ).

Механические свойства этого сплава повышаются после термической обработки и деформации в холодном состоянии. Сопротивление на разрыв повышается со 147-216 МПа до 353 - 412 МПа, а твердость по Бринелю с 490-588 до 880-980 МПа. При этом относительное удлинение дюралюминия почти не изменяется и остается достаточно высоким (18-24 %).

Силумины - литейные сплавы алюминия с кремнием. Они обладают хорошими литейными качествами и механическими свойствами.

Применение

Алюминий и сплавы широко применяют во многих отраслях промышленности, в том числе в авиации, транспорте, металлургии, пищевой промышленности и др . Из алюминия и его сплавов изготовляют корпуса самолетов, моторы, блоки цилиндров, коробки передач, насосы и другие детали в авиационной, автомобильной и тракторной промышленности, сосуды для хранения химических продуктов. Алюминий широко применяют в быту, пищевой промышленности, в ядерной энергетике и электронике. Многие части искусственных спутников нашей планеты и космических кораблей изготовлены из алюминия и его сплавов.

Вследствие большого химического сродства алюминия к кислороду его применяют в черной металлургии как раскислитель, а также для получения при использовании так называемого алюминотермического процесса трудно восстанавливаемых металлов (кальция, лития и др .). По общему производству металла в мире алюминий занимает второе место после железа.

Общие сведения и методы получения

Алюминий(А1) - серебристо-белый металл; при обычных условиях по­крыт тонкой пленкой оксидов. Название алюминий происходит от ла­тинского alumen (алюминиевые квасцы). Впервые алюминий в свобод­ном виде получил в 1825 г. датский ученый Эрстед, воздействуя амальгамой калия на хлорид алюминия. Двумя годами позже, в 1827 г., не­мецкий химик Ф. Вёлер также получил алюминий, заменив амальгаму калия металдическим калием. Первый промышленный способ производ­ства алюминия предложен в 1854 г. французским ученым Сенг-Клер-Девилем. В 1865 г. русский физико-химик Н. Н. Бекетов предложил способ получения алюминия путем вытеснения его магнием из рас­плавленного криолита. В 1886 г, Эру во Франции и Холл в США не­зависимо друг от друга предложили способ получения алюминия электролизом глинозема, растворенного в расплавленном кри­олите.

По распространенности в природе алюминий занимает первое место среди металлов. Его содержание в земной коре 8,8 % (по массе). Алю­миний входит в состав бокситов, нефелинов, алунитов, каолинов и дру­гих горных пород. Наиболее ценная алюминиевая руда - бокситы, в них содержится около 50 % оксида алюминия.

Производство алюминия состоит из трех технологических процессов:

1) получение из алюминиевых руд глинозема (АI 2 0 3);

2) получение первичного алюминия электролизом глинозема, раство­ренного в расплавленном криолите;

3) рафинирование первичного алюминия.

Глинозем получают из руд щелочным, кислотным, электротермиче­ским или комбинированным методами. Выбор метода зависит от состава и характера примесей, входящих в состав алюминиевой руды.

Металлический алюминий получают электролизом глинозема (АI 2 0 3), растворенного в криолите (Na 3 AIF 6) ; в состав электролита входят не­большие добавки других солей CaF 2 , MgF 2 , NaCl, которые повышают эффективность работы электролизера. В электролите содержится обычно 6-8 % глинозема; после того как в процессе электролиза коли-.чество глинозема уменьшается до 1,5-2 %. вводят очередную его пор­цию. Электролиз ведут при температуре около 950 °С и напряжении "4,0-4,5 В. Расход электроэнергии иа 1 т алюминия составляет,~ 15000 кВт "Ч. Катодом служит подина ванны, анодом - погруженные в распаав угольные обожженные блоки или набивные самообжигаю-тциеся электроды. Черновой алюминий содержит ряд примесей, поэтому его очищают продувкой хлором при 750-770°С в течение 10-15 мин, а затем разливают в чушки. Таким путем получают алюминий чистотой 99,7-99,5 %. При условии применения очень чистых исходных материалов удается получить первичный алюминий марок А85 и А8

Для получения алюминия высокой чистоты (А995-А95) первичный алюминий технической чистоты дополнительно электролитически рафи­нируют по трехслойному способу в расплавленных солях. Алюминий особой чистоты (А999) получают илн зонной плавкой, или дистилля­цией через субгалогениды электрически рафинированного алюминия.

Первичный алюминий поставляют в форме чушек, слитков, катанки, ленты и т. д.

Алюминий особой чистоты марки А999 контролируют по величине остаточного электрического сопротивления при температуре жидкою гелия, которое ие должно превышать 4*10 -12 Ом-м.

Допускается контроль чистоты алюминия марки А999 по величине затухания ультразвука, характеризуемого временем звучания, которое не должно превышать 500 мкс.

В алюминии марок А5Е и А7Е, предназначенных для изготовления проводов и других кабельных изделий, ограничивается содержание ти­тана, ванадия, марганца, хрома, так как они наиболее сильно снижают электропроводность.

Удельное электрическое сопротивление р при 20 °С проволоки, изго­товленной из алюминия марок А7Е и А5Е и отожженной при 350± ±20°С в течение 3 ч, должно быть не более 0,0277 мкОм-м для марки А7Е и 0,0280 мкОм-м для марки А5Е.

Алюминий технической чистоты для производства деформируемых полуфабрикатов поставляется в чушках с отношением примесей железа к кремнию не менее 1,2: 1,0, а в слитках -не менее 1,0: 1,0. Для про­изводства деформируемых сплавов системы алюминий-магний алюми­ний высокой и технической чистоты поставляют с содержанием натрия s£ 0,002 %.

Физические свойства

Атомные характеристики. Атомный номер 13, атомная масса 26,981 а. е. м., атомный объем 10,0*10 -6 м 3 /моль, атомный радиус 0,143 нм, ионный радиус АI 3 + 0,057 нм. Электронная конфигурация внешней оболочки атома алюминия 3s 2 3p. Электроотрнцательиость 1,5. Значения потенциалов ионизации 7(эВ): 5,984, 18,82, 28,44. Алюминий состоит из одного стабильного изотопа 27 AI. Установлено существова­ние нескольких радиоактивных изотопов алюминия с массовыми числа­ми 24, 25, 26, 28, 29 с периодами полураспада соответственно равными: 2,1; 7,6; 6,7; 138; 394 с.

Алюминий имеет г. ц. к. решетку с периодом (при 298 К) 0,404958 нм для алюминия чистотой 99,9998 % и 0,404947 нм для алюминия 99,99 %. Величина параметра решетки алюминия сильно зависит от температуры (данные для алюминия чистотой 99,99 %):

Химические свойства

Нормальный электродный потенциал реакции А1-Зе^=А1 3+ ф 0 = -1,66 В. Электрохимический эквивалент равен 0,09316 мг/Кл

Во всех устойчивых соединениях алюминий имеет степень окисления + 3, при высоких температурах он может проявлять степень окисления + 1 и значительно реже +2.

Алюминий имеет высокую химическую активность, в ряду напряже­ний он расположен среди наиболее электроотрицательных элементов.

Алюминий восстанавливает большинство металлических оксидов до металла, энергично реагирует с галогенами, а при высоких температу­рах - с серой, азотом и фосфором В щелочах алюминий растворяется, образуя алюминаты. При нагревании алюминий легко растворяется в

разведенных азотной и серной кислотах, но холодная азотная кислота его пассивирует.

Обладая большим сродством к кислороду, алюминий на воздухе быстро покрывается сплошной тонкой очень прочной и беспористой ок­сидной пленкой. Слой оксидов образуется в сухой атмосфере в течение нескольких минут, достигая при комнатной температуре толщины 5- 10 нм. Если этот слой повредить, то немедленно возникает новый (са­мозащита). Пленка имеет высокое электрическое сопротивление (на­пряжение пробоя превышает 500 В) и в отличие от органических изо­ляторов выдерживает высокие температуры.

Окисление алюминия ускоряется выше температуры его плавле­ния; мелко раздробленный алюминий при нагревании на воздухе сго­рает. Присутствие примесей магния, натрия, меди, кремния усиливает окисление алюминия.

При температурах выше 100 "С алюминий образует с хлором соеди­нение А1С1 3 . Прн атмосферном давлении хлорид алюминия возгоняется, не плавясь, при 183 °С. Металлический алюминий образует с хлористым алюминием при нагреве в вакууме выше 1000 °С субхлорид алюминия А1С1; при охлаждении до 800 °С субхлорид алюминия вновь распада­ется на алюминий и нормальный хлорид алюминия.

С фотором алюминий образует соединение, которое возгоняется, не плавясь, при температурах 1000-1100°С и атмосферном давлении.

При температуре выше 1000 °С алюминий образует с серой сульфид A1 2 S 3 , имеющий температуру плавления 1100"С. Сульфид алюминия полностью разлагается водой с образованием сероводорода.

Карбид алюминия АЦСз образуется при нагреве на воздухе до 2000°С; в вакууме -при 1000-1200°С. При нагреве выше 2000°С А1 4 С Э распадается с выделением графита.

С азотом алюминий начинает соединяться при 700 °С с образова­нием нитрида A1N; наиболее энергично взаимодействие алюминия с азо­том протекает при 830 °С. Нитрид алюминия легко гидролизуется: A1N+3H 2 0-WU(0H) 3 +NH 3 .

При нагревании алюминий реагирует с фосфором (500°С), образуя соединение А1Р. Фосфид алюминия очень гигроскопичен, поэтому его применяют в качестве осушающего вещества.

При взаимодействии алюминия с молекулярным водородом гидриды не образуются. Однако водород - единственный газ, заметно растворя­ющийся и в жидком, и в твердом алюминии.

Растворимость водорода в алюминии (см 3 /Ю0 г):

Вследствие резкого уменьшения растворимости водорода при перехо­де металла из жидкого состояния в твердое происходит выделение ею из алюминия, что приводит к пористости отливок и развитию дефектов (расслоений) при их последующей деформации. Присутствие в алюми­нии легирующих присадок сильно сказывается на растворимости в нем водорода, особенно в жидком состоянии. Установлено, что медь, крем-

иий, олово снижают растворимость водорода в алюминии, а марганец, хром, железо, церий и магний повышают.

Все металлы ограниченно растворяются в твердом алюминии; мак­симальной растворимостью в твердом состоянии обладают магний, медь, цинк, серебро, галлий, германий; ряд элементов (К, Na , Rb , Cs , In , TI , Pb , Bi) имеет ограниченную растворимость в жидком состоянии и прак­тически не растворяется в твердом состоянии.

Алюминий обладает высокой коррозионной стойкостью, что связа­но с его способностью легко пассивироваться. Наличие оксидной пленки на поверхности алюминия создает существенную разницу между ста­ционарным потенциалом алюминия в кислых и нейтральных средах и стандартным электродным потенциалом алюминия. Коррозионная стой­кость алюминия различных сортов определяется главным образом со­держанием железа; и меньшей степени влияет кремний при содержании до 0,3 %, так как в отсутствие железа ои находится в твердом раство­ре. Влияние железа зависит от рН среды. В кислой среде, где процесс идет с водородной деполяризацией, железо сильно снижает коррозион­ную стойкость алюминия; в нейтральной и щелочной средах содержание железа до 0,5 % практически не влияет на коррозионную стойкость.

Области применения

Благодаря хорошему сочетанию физических, механических и технологи­ческих свойств алюминий широко применяется в различных областях народного хозяйства.

Широко используются алюминиевые сплавы в строительстве для из­готовления ограждающих и несущих конструкций, строительства мосюв, силосных башен, бассейнов и т. д.

Свариваемые, коррозионностойкие алюминиевые сплавы (АД1, АМц, АМгЗ, АМг5; АМгб и др.) применяют в судостроении для изготовления корпусов судов и их надстроек, трубопроводов, различного судового оборудования. Применение алюминиевых сплавов позволяет значитель­но облегчить судно, что приводит к повышению его грузоподъемности или улучшению технических характеристик (повышение скорости).

Алюминиевые сплавы системы Al - Mg и Al - Zn - Mg применяют в железнодорожном и автомобильном транспорте для изготовления гру­зовых пассажирских вагонов, цистерн, кузовов автомашин, что связано с высокой удельной прочностью сплавов, позволяющей снизить массу, и, следовательно, уменьшить расход горючего, высокой коррозионной стойкостью и сопротивлением истиранию сыпучими грузами.

В нефтяной и химической промышленности алюминий и его сплавы иашли широкое применение в качестве конструкционных материалов для изготовления деталей нефтепромыслового оборудования (буриль­ные трубы, буровые вышки), аппаратуры для переработки нефти и хи­мических процессов (конденсаторы, емкости, колонны). К достоинствам алюминия и его сплавов в этом случае относится образование продук­тов коррозии, не окрашивающих среду, не способных к ценообразова­нию, отсутствие воздействия ча жизнедеятельность микроорганизмов.

Высокая электропроводность алюминия позволяет использовать его для изготовления проводов, кабелей, электротехнических шин и т. д. Относительно низкое сечение захвата тепловых нейтронов и малая чув­ствительность структуры и свойств к радиационным воздействиям, хо­рошая коррозионная стойкость в средах-теплоносителях позволяют использовать алюминий и некоторые его сплавы в атомном реакторо-строении для изготовления защитных оболочек тепловыделяющих эле­ментов, трубопроводов и т. д. Наиболее часто используют технический алюминий в реакторах с водяным охлаждением при температурах до 130 "С. С середины 20-х годов началось широкое применение алюми­ния и его сплавов в авиастроении. Чистый алюминий применяют глав­ным образом в виде фольги для сотовых конструкций. Высокопрочные сплавы систем Al -Си- Mg и Al - Zn - Mg -Си используют для сило­вых элементов планера и крыльев самолетов. Ковочные и жаропрочные сплавы используют для изготовления шасси, лопастей воздушных вин­тов, шпангоутов, а также для различных деталей двигателей. Около 70 % материалов, применяемых в современных дозвуковых самолетах, приходится на алюминиевые сплавы.

Успешно применяют алюминиевые сплавы в военной технике для корпусов и баков горючего ракет, для брони бронетранспортеров и легких танков и т. д

В металлургии алюминий используют для раскисления стали, полу­чения некоторых металлов методом алюмотермии.

Особенно широко алюминии и его малолегированные сплавы при­меняют для изготовления предметов широкого потребления: посуда и домашняя утварь; бытовые электроприборы, мебель и спортивный ин­вентарь; тара ДЛя хранения и транспортировки пищевых продуктов. В последнее время большим спросом пользуется алюминиевая посуда с отделкой наружной поверхности цветным эмалированием и антипригарным покрытием рабочей поверхности. Для упаковочных материалов применяют алюминиевую фольгу, а использование алюминиевых кон­сервных банок позволяет уменьшить потребление дефицитного в на­стоящее время олова.