Как решать логарифмы примеры простые. Преобразование выражений с логарифмами, примеры, решения


Перечисленные равенства при преобразовании выражений с логарифмами используются как справа налево, так и слева направо.

Стоит заметить, что запоминать следствия из свойств необязательно: при проведении преобразований можно обойтись основными свойствами логарифмов и другими фактами (например, тем, что при b≥0), из которых соответствующие следствия вытекают. «Побочный эффект» такого подхода проявляется лишь в том, что решение будет немного длиннее. К примеру, чтобы обойтись без следствия, которое выражается формулой , а отталкиваться лишь от основных свойств логарифмов, придется провести цепочку преобразований следующего вида: .

То же самое можно сказать и про последнее свойство из приведенного выше списка, которому отвечает формула , так как оно тоже следует из основных свойств логарифмов. Главное понимать, что всегда имеется возможность у степени положительного числа с логарифмом в показателе поменять местами основание степени и число под знаком логарифма. Справедливости ради, заметим, что примеры, подразумевающие осуществление преобразований подобного рода, на практике встречаются редко. Несколько примеров мы приведем ниже по тексту.

Преобразование числовых выражений с логарифмами

Свойства логарифмов вспомнили, теперь пора учиться применять их на практике для преобразования выражений. Естественно начать с преобразования числовых выражений, а не выражений с переменными, так как на них удобнее и проще познавать азы. Так мы и сделаем, причем начнем с очень простых примеров, чтобы научиться выбирать нужное свойство логарифма, но постепенно будем усложнять примеры, вплоть до момента, когда для получения конечного результата нужно будет применять несколько свойств подряд.

Выбор нужного свойства логарифмов

Свойств логарифмов не так мало, и понятно, что нужно уметь выбрать из них подходящее, которое в данном конкретном случае приведет к требуемому результату. Обычно это сделать нетрудно, сопоставив вид преобразуемого логарифма или выражения с видами левых и правых частей формул, выражающих свойства логарифмов. Если левая или правая часть одной из формул совпадает с заданным логарифмом или выражением, то, скорее всего, именно это свойство и надо применять при преобразовании. Следующие примеры это наглядно демонстрируют.

Начнем с примеров преобразования выражений с использованием определения логарифма, которому отвечает формула a log a b =b , a>0 , a≠1 , b>0 .

Пример.

Вычислите, если это возможно: а) 5 log 5 4 , б) 10 lg(1+2·π) , в) , г) 2 log 2 (−7) , д) .

Решение.

В примере под буквой а) явно видна структура a log a b , где a=5 , b=4 . Эти числа удовлетворяют условиям a>0 , a≠1 , b>0 , поэтому можно безбоязненно воспользоваться равенством a log a b =b . Имеем 5 log 5 4=4 .

б) Здесь a=10 , b=1+2·π , условия a>0 , a≠1 , b>0 выполнены. При этом имеет место равенство 10 lg(1+2·π) =1+2·π .

в) И в этом примере мы имеем дело со степенью вида a log a b , где и b=ln15 . Так .

Несмотря на принадлежность к тому же виду a log a b (здесь a=2 , b=−7 ), выражение под буквой г) нельзя преобразовать по формуле a log a b =b . Причина в том, что оно не имеет смысла, так как содержит отрицательное число под знаком логарифма. Более того, число b=−7 не удовлетворяет условию b>0 , что не дает возможности прибегнуть к формуле a log a b =b , так как она требует выполнения условий a>0 , a≠1 , b>0 . Итак, нельзя говорить о вычислении значения 2 log 2 (−7) . В этом случае запись 2 log 2 (−7) =−7 будет ошибкой.

Аналогично и в примере под буквой д) нельзя привести решение вида , так как исходное выражение не имеет смысла.

Ответ:

а) 5 log 5 4 =4 , б) 10 lg(1+2·π) =1+2·π , в) , г), д) выражения не имеют смысла.

Часто бывает полезно преобразование, при котором положительное число представляется в виде степени какого-то положительного и отличного от единицы числа с логарифмом в показателе. В его основе лежит то же определение логарифма a log a b =b , a>0 , a≠1 , b>0 , но формула применяется справа налево, то есть, в виде b=a log a b . Например, 3=e ln3 или 5=5 log 5 5 .

Переходим к применению свойств логарифмов для преобразования выражений.

Пример.

Найдите значение выражения: а) log −2 1 , б) log 1 1 , в) log 0 1 , г) log 7 1 , д) ln1 , е) lg1 , ж) log 3,75 1 , з) log 5·π 7 1 .

Решение.

В примерах под буквами a), б) и в) даны выражения log −2 1 , log 1 1 , log 0 1 , которые не имеет смысла, так как в основании логарифма не должно находиться отрицательное число, нуль или единица, ведь мы определили логарифм лишь для положительного и отличного от единицы основания. Поэтому, в примерах а) - в) не может быть и речи о нахождении значения выражения.

Во всех остальных заданиях, очевидно, в основаниях логарифмов находятся положительные и отличные от единицы числа 7 , e , 10 , 3,75 и 5·π 7 соответственно, а под знаками логарифмов всюду стоят единицы. А нам известно свойство логарифма единицы: log a 1=0 для любого a>0 , a≠1 . Таким образом, значения выражений б) – е) равны нулю.

Ответ:

а), б), в) выражения не имеют смысла, г) log 7 1=0 , д) ln1=0 , е) lg1=0 , ж) log 3,75 1=0 , з) log 5·e 7 1=0 .

Пример.

Вычислить: а) , б) lne , в) lg10 , г) log 5·π 3 −2 (5·π 3 −2) , д) log −3 (−3) , е) log 1 1 .

Решение.

Понятно, что нам предстоит воспользоваться свойством логарифма основания, которому отвечает формула log a a=1 при a>0 , a≠1 . Действительно, в заданиях под всеми буквами число под знаком логарифма совпадает с его основанием. Таким образом, хочется сразу сказать, что значение каждого из заданных выражений есть 1 . Однако не стоит торопиться с выводами: в заданиях под буквами а) – г) значения выражений действительно равны единице, а в заданиях д) и е) исходные выражения не имеют смысла, поэтому нельзя сказать, что значения этих выражений равны 1 .

Ответ:

а) , б) lne=1 , в) lg10=1 , г) log 5·π 3 −2 (5·π 3 −2)=1 , д), е) выражения не имеют смысла.

Пример.

Найти значение: а) log 3 3 11 , б) , в) , г) log −10 (−10) 6 .

Решение.

Очевидно, под знаками логарифмов стоят некоторые степени основания. Исходя из этого, понимаем, что здесь нам пригодится свойство степени основания: log a a p =p , где a>0 , a≠1 и p – любое действительное число. Учитывая это, имеем следующие результаты: а) log 3 3 11 =11 , б) , в) . А можно ли записать аналогичное равенство для примера под буквой г) вида log −10 (−10) 6 =6 ? Нет, нельзя, так как выражение log −10 (−10) 6 не имеет смысла.

Ответ:

а) log 3 3 11 =11 , б) , в) , г) выражение не имеет смысла.

Пример.

Представьте выражение в виде суммы или разности логарифмов по тому же основанию: а) , б) , в) lg((−5)·(−12)) .

Решение.

а) Под знаком логарифма находится произведение, а нам известно свойство логарифма произведения log a (x·y)=log a x+log a y , a>0 , a≠1 , x>0 , y>0 . В нашем случае число в основании логарифма и числа в произведении являются положительными, то есть, удовлетворяют условиям выбранного свойства, поэтому, мы его можем спокойно применять: .

б) Здесь воспользуемся свойством логарифма частного , где a>0 , a≠1 , x>0 , y>0 . В нашем случае основание логарифма есть положительное число e , числитель и знаменатель π положительны, значит, удовлетворяют условиям свойства, поэтому мы имеем право на применение выбранной формулы: .

в) Во-первых, заметим, что выражение lg((−5)·(−12)) имеет смысл. Но при этом для него мы не имеем права применять формулу логарифма произведения log a (x·y)=log a x+log a y , a>0 , a≠1 , x>0 , y>0 , так как числа −5 и −12 – отрицательные и не удовлетворяют условиям x>0 , y>0 . То есть, нельзя провести такое преобразование: lg((−5)·(−12))=lg(−5)+lg(−12) . А что же делать? В подобных случаях исходное выражение нуждается в предварительном преобразовании, позволяющем уйти от отрицательных чисел. Про подобные случаи преобразования выражений с отрицательными числами под знаком логарифма мы подробно поговорим в одном из , а пока приведем решение этого примера, которое понятно наперед и без объяснений: lg((−5)·(−12))=lg(5·12)=lg5+lg12 .

Ответ:

а) , б) , в) lg((−5)·(−12))=lg5+lg12 .

Пример.

Упростить выражение: а) log 3 0,25+log 3 16+log 3 0,5 , б) .

Решение.

Здесь нам помогут все те же свойства логарифма произведения и логарифма частного, которые мы использовали в предыдущих примерах, только сейчас мы будем их применять справа налево. То есть, сумму логарифмов преобразуем в логарифм произведения, а разность логарифмов – в логарифм частного. Имеем
а) log 3 0,25+log 3 16+log 3 0,5=log 3 (0,25·16·0,5)=log 3 2 .
б) .

Ответ:

а) log 3 0,25+log 3 16+log 3 0,5=log 3 2 , б) .

Пример.

Избавьтесь от степени под знаком логарифма: а) log 0,7 5 11 , б) , в) log 3 (−5) 6 .

Решение.

Несложно заметить, что мы имеем дело с выражениями вида log a b p . Соответствующее свойство логарифма имеет вид log a b p =p·log a b , где a>0 , a≠1 , b>0 , p - любое действительное число. То есть, при выполнении условий a>0 , a≠1 , b>0 от логарифма степени log a b p мы можем переходить к произведению p·log a b . Проведем это преобразование с заданными выражениями.

а) В этом случае a=0,7 , b=5 и p=11 . Так log 0,7 5 11 =11·log 0,7 5 .

б) Здесь , условия a>0 , a≠1 , b>0 выполняются. Поэтому

в) Выражение log 3 (−5) 6 имеет ту же структуру log a b p , a=3 , b=−5 , p=6 . Но для b не выполняется условие b>0 , что делает невозможным применение формулы log a b p =p·log a b . Так что же, нельзя справиться с поставленной задачей? Можно, но требуется предварительное преобразование выражения, о котором мы подробно поговорим ниже в пункте под заголовком . Решение будет таким: log 3 (−5) 6 =log 3 5 6 =6·log 3 5 .

Ответ:

а) log 0,7 5 11 =11·log 0,7 5 ,
б)
в) log 3 (−5) 6 =6·log 3 5 .

Довольно часто формулу логарифма степени при проведении преобразований приходится применять справа налево в виде p·log a b=log a b p (при этом требуется выполнение тех же условий для a , b и p ). Например, 3·ln5=ln5 3 и lg2·log 2 3=log 2 3 lg2 .

Пример.

а) Вычислите значение log 2 5 , если из известно, что lg2≈0,3010 и lg5≈0,6990 . б) Представьте дробь в виде логарифма по основанию 3 .

Решение.

а) Формула перехода к новому основанию логарифма позволяет данный логарифм представить в виде отношения десятичных логарифмов, значения которых нам известны: . Остается лишь провести вычисления, имеем .

б) Здесь достаточно воспользоваться формулой перехода к новому основанию, причем применить ее справа налево, то есть, в виде . Получаем .

Ответ:

а) log 2 5≈2,3223 , б) .

На этом этапе мы достаточно скрупулезно рассмотрели преобразование самых простых выражений с использованием основных свойств логарифмов и определения логарифма. В этих примерах нам приходилось применять какое-то одно свойство и ничего более. Теперь со спокойной совестью можно переходить к примерам, преобразование которых требует использования нескольких свойств логарифмов и других дополнительных преобразований. Ими мы и займемся в следующем пункте. Но перед этим еще вкратце остановимся на примерах применения следствий из основных свойств логарифмов.

Пример.

а) Избавьтесь от корня под знаком логарифма . б) Преобразуйте дробь в логарифм по основанию 5 . в) Освободитесь от степеней под знаком логарифма и в его основании . г) Вычислите значение выражения . д) Замените выражение степенью с основанием 3 .

Решение.

а) Если вспомнить про следствие из свойства логарифма степени , то можно сразу давать ответ: .

б) Здесь воспользуемся формулой справа налево, имеем .

в) В данном случае к результату приводит формула . Получаем .

г) А здесь достаточно применить следствие, которому отвечает формула . Так .

д) Свойство логарифма позволяет нам достичь нужного результата: .

Ответ:

а) . б) . в) . г) . д) .

Последовательное применение нескольких свойств

Реальные задания на преобразование выражений с использованием свойств логарифмов обычно сложнее тех, которыми мы занимались в предыдущем пункте. В них, как правило, результат получается не в один шаг, а решение уже состоит в последовательном применении одного свойства за другим вместе с дополнительными тождественными преобразованиями , такими как раскрытие скобок, приведение подобных слагаемых, сокращении дробей и т.п. Так давайте подбираться ближе к таким примерам. Сложного в этом ничего нет, главное действовать аккуратно и последовательно, соблюдая порядок выполнения действий .

Пример.

Вычислить значение выражения (log 3 15−log 3 5)·7 log 7 5 .

Решение.

Разность логарифмов в скобках по свойству логарифма частного можно заменить логарифмом log 3 (15:5) , и дальше вычислить его значение log 3 (15:5)=log 3 3=1 . А значение выражения 7 log 7 5 по определению логарифма равно 5 . Подставим эти результаты в исходное выражение, получаем (log 3 15−log 3 5)·7 log 7 5 =1·5=5 .

Приведем вариант решения без пояснений:
(log 3 15−log 3 5)·7 log 7 5 =log 3 (15:5)·5=
=log 3 3·5=1·5=5 .

Ответ:

(log 3 15−log 3 5)·7 log 7 5 =5 .

Пример.

Чему равно значение числового выражения log 3 log 2 2 3 −1 ?

Решение.

Преобразуем сначала логарифм, находящийся под знаком логарифма, по формуле логарифма степени: log 2 2 3 =3 . Таким образом, log 3 log 2 2 3 =log 3 3 и дальше log 3 3=1 . Так log 3 log 2 2 3 −1=1−1=0 .

Ответ:

log 3 log 2 2 3 −1=0 .

Пример.

Упростить выражение .

Решение.

Формула перехода к новому основанию логарифма позволяет отношение логарифмов по одному основанию представить как log 3 5 . При этом исходное выражение примет вид . По определению логарифма 3 log 3 5 =5 , то есть , а значение полученного выражения в силу того же определения логарифма равно двум.

Вот краткий вариант решения, который обычно и приводится: .

Ответ:

.

Для плавного перехода к информации следующего пункта давайте взглянем на выражения 5 2+log 5 3 , и lg0,01 . Их структура не подходит ни под одно из свойств логарифмов. Так что же получается, их нельзя преобразовать с использованием свойств логарифмов? Можно, если провести предварительные преобразования, подготавливающие данные выражения к применению свойств логарифмов. Так 5 2+log 5 3 =5 2 ·5 log 5 3 =25·3=75 , и lg0,01=lg10 −2 =−2 . Дальше мы подробно разберемся, как осуществляется подобная подготовка выражений.

Подготовка выражений к применению свойств логарифмов

Логарифмы в составе преобразуемого выражения очень часто по структуре записи отличаются от левых и правых частей формул, отвечающих свойствам логарифмов. Но не менее часто преобразование этих выражений подразумевает использование свойств логарифмов: для их использования лишь требуется предварительная подготовка. А заключается эта подготовка в проведении определенных тождественных преобразований, приводящих логарифмы к виду, удобному для применения свойств.

Справедливости ради, заметим, что в качестве предварительных преобразований могут выступать практически любые преобразования выражений, от банального приведения подобных слагаемых до применения тригонометрических формул. Это и понятно, так как преобразуемые выражения могут содержать какие угодно математические объекты: скобки, модули, дроби, корни, степени и т.д. Таким образом, нужно быть готовым выполнить любое требующееся преобразование, чтобы дальше получить возможность воспользоваться свойствами логарифмов.

Сразу скажем, что в этом пункте мы не ставим перед собой задачу классифицировать и разобрать все мыслимые предварительные преобразования, позволяющие в дальнейшем применить свойства логарифмов или определение логарифма. Здесь мы остановимся лишь на четырех из них, которые наиболее характерны и наиболее часто встречаются на практике.

А теперь подробно о каждом из них, после чего в рамках нашей темы останется лишь разобраться с преобразованием выражений с переменными под знаками логарифмов.

Выделение степеней под знаком логарифма и в его основании

Начнем сразу с примера. Пусть перед нами логарифм . Очевидно, в таком виде его структура не располагает к применению свойств логарифмов. А можно ли как-нибудь преобразовать данное выражение, чтобы упростить его, а еще лучше вычислить его значение? Для ответа на этот вопрос давайте внимательно поглядим на числа 81 и 1/9 в контексте нашего примера. Здесь несложно заметить, что эти числа допускают представление в виде степени числа 3 , действительно, 81=3 4 и 1/9=3 −2 . При этом исходный логарифм представляется в виде и появляется возможность применения формулы . Итак, .

Анализ разобранного примера рождает следующую мысль: при возможности можно попробовать выделить степень под знаком логарифма и в его основании, чтобы применить свойство логарифма степени или его следствия. Остается только выяснить, как эти степени выделять. Дадим некоторые рекомендации по этому вопросу.

Иногда довольно очевидно, что число под знаком логарифма и/или в его основании представляет собой некоторую целую степень, как в рассмотренном выше примере. Практически постоянно приходится иметь дело со степенями двойки, которые хорошо примелькались: 4=2 2 , 8=2 3 , 16=2 4 , 32=2 5 , 64=2 6 , 128=2 7 , 256=2 8 , 512=2 9 , 1024=2 10 . Это же можно сказать и про степени тройки: 9=3 2 , 27=3 3 , 81=3 4 , 243=3 5 , … Вообще, не помешает, если перед глазами будет находиться таблица степеней натуральных чисел в пределах десятка. Также не составляет труда работать с целыми степенями десяти, ста, тысячи и т.д.

Пример.

Вычислить значение или упростить выражение: а) log 6 216 , б) , в) log 0,000001 0,001 .

Решение.

а) Очевидно, что 216=6 3 , поэтому log 6 216=log 6 6 3 =3 .

б) Таблица степеней натуральных чисел позволяет представить числа 343 и 1/243 в виде степеней 7 3 и 3 −4 соответственно. Поэтому возможно следующее преобразование заданного логарифма:

в) Так как 0,000001=10 −6 и 0,001=10 −3 , то log 0,000001 0,001=log 10 −6 10 −3 =(−3)/(−6)=1/2 .

Ответ:

а) log 6 216=3 , б) , в) log 0,000001 0,001=1/2 .

В более сложных случаях для выделения степеней чисел приходится прибегать к .

Пример.

Преобразуйте выражение к более простому виду log 3 648·log 2 3 .

Решение.

Давайте посмотрим, что представляет собой разложение числа 648 на простые множители:

То есть, 648=2 3 ·3 4 . Таким образом, log 3 648·log 2 3=log 3 (2 3 ·3 4)·log 2 3 .

Теперь логарифм произведения преобразуем в сумму логарифмов, после чего применим свойства логарифма степени:
log 3 (2 3 ·3 4)·log 2 3=(log 3 2 3 +log 3 3 4)·log 2 3=
=(3·log 3 2+4)·log 2 3 .

В силу следствия из свойства логарифма степени, которому отвечает формула , произведение log32·log23 представляет собой произведение , а оно, как известно, равно единице. Учитывая это, получаем 3·log 3 2·log 2 3+4·log 2 3=3·1+4·log 2 3=3+4·log 2 3 .

Ответ:

log 3 648·log 2 3=3+4·log 2 3 .

Довольно часто выражения под знаком логарифма и в его основании представляют собой произведения или отношения корней и/или степеней некоторых чисел, например, , . Подобные выражения можно представить в виде степени. Для этого осуществляется переход от корней к степеням , и применяются и . Указанные преобразования позволяют выделить степени под знаком логарифма и в его основании, после чего применить свойства логарифмов.

Пример.

Вычислите: а) , б) .

Решение.

а) Выражение в основании логарифма есть произведение степеней с одинаковыми основаниями, по соответствующему свойству степеней имеем 5 2 ·5 −0,5 ·5 −1 =5 2−0,5−1 =5 0,5 .

Теперь преобразуем дробь под знаком логарифма: перейдем от корня к степени, после чего воспользуемся свойством отношения степеней с одинаковыми основаниями: .

Остается подставить полученные результаты в исходное выражение, воспользоваться формулой и закончить преобразования:

б) Так как 729=3 6 , а 1/9=3 −2 , то исходное выражение можно переписать в виде .

Дальше применяем свойство корня из степени, осуществляем переход от корня к степени и используем свойство отношения степеней, чтобы преобразовать основание логарифма в степень: .

Учитывая последний результат, имеем .

Ответ:

а) , б) .

Понятно, что в общем случае для получения степеней под знаком логарифма и в его основании могут требоваться различные преобразования различных выражений. Приведем пару примеров.

Пример.

Чему равно значение выражения: а) , б) .

Решение.

Дальше отмечаем, что заданное выражение имеет вид log A B p , где A=2 , B=x+1 и p=4 . Числовые выражения подобного вида мы преобразовывали по свойству логарифма степени log a b p =p·log a b , поэтому, с заданным выражением хочется поступить аналогично, и от log 2 (x+1) 4 перейти к 4·log 2 (x+1) . А теперь давайте вычислим значение исходного выражения и выражения, полученного после преобразования, например, при x=−2 . Имеем log 2 (−2+1) 4 =log 2 1=0 , а 4·log 2 (−2+1)=4·log 2 (−1) - не имеющее смысла выражение. Это вызывает закономерный вопрос: «Что мы сделали не так»?

А причина в следующем: мы выполнили преобразование log 2 (x+1) 4 =4·log 2 (x+1) , опираясь на формулу log a b p =p·log a b , но данную формулу мы имеем право применять лишь при выполнении условий a>0 , a≠1 , b>0 , p - любое действительное число. То есть, проделанное нами преобразование имеет место, если x+1>0 , что то же самое x>−1 (для A и p – условия выполнены). Однако в нашем случае ОДЗ переменной x для исходного выражения состоит не только из промежутка x>−1 , но и из промежутка x<−1 . Но для x<−1 мы не имели права осуществлять преобразование по выбранной формуле.

Необходимость учета ОДЗ

Продолжим разбирать преобразование выбранного нами выражения log 2 (x+1) 4 , и сейчас посмотрим, что происходит с ОДЗ при переходе к выражению 4·log 2 (x+1) . В предыдущем пункте мы нашли ОДЗ исходного выражения – это есть множество (−∞, −1)∪(−1, +∞) . Теперь найдем область допустимых значений переменной x для выражения 4·log 2 (x+1) . Она определяется условием x+1>0 , которому отвечает множество (−1, +∞) . Очевидно, что при переходе от log 2 (x+1) 4 к 4·log 2 (x+1) происходит сужение области допустимых значений. А мы договорились избегать преобразований, приводящих к сужению ОДЗ, так как это может приводить к различным негативным последствиям.

Здесь для себя стоит отметить, что полезно контролировать ОДЗ на каждом шаге преобразования и не допускать ее сужения. И если вдруг на каком-то этапе преобразования произошло сужение ОДЗ, то стоит очень внимательно посмотреть, а допустимо ли данное преобразование и имели ли мы право его проводить.

Справедливости ради скажем, что на практике обычно приходится работать с выражениями, у которых ОДЗ переменных такова, что позволяет при проведении преобразований использовать свойства логарифмов без ограничений в уже известном нам виде, причем как слева направо, так и справа налево. К этому быстро привыкаешь, и начинаешь проводить преобразования механически, не задумываясь, а можно ли было их проводить. И в такие моменты, как назло, проскальзывают более сложные примеры, в которых неаккуратное применение свойств логарифмов приводит к ошибкам. Так что нужно всегда быть на чеку, и следить, чтобы не происходило сужения ОДЗ.

Не помешает отдельно выделить основные преобразования на базе свойств логарифмов, которые нужно проводить очень внимательно, которые могут приводить к сужению ОДЗ, и как следствие – к ошибкам:

Некоторые преобразования выражений по свойствам логарифмов могут приводить и к обратному - расширению ОДЗ. Например, переход от 4·log 2 (x+1) к log 2 (x+1) 4 расширяет ОДЗ с множества (−1, +∞) до (−∞, −1)∪(−1, +∞) . Такие преобразования имеют место, если оставаться в рамках ОДЗ для исходного выражения. Так только что упомянутое преобразование 4·log 2 (x+1)=log 2 (x+1) 4 имеет место на ОДЗ переменной x для исходного выражения 4·log 2 (x+1) , то есть, при x+1>0 , что то же самое (−1, +∞) .

Теперь, когда мы обговорили нюансы, на которые нужно обращать внимание при преобразовании выражений с переменными с использованием свойств логарифмов, остается разобраться, как правильно нужно эти преобразования проводить.

X+2>0 . Выполняется ли оно в нашем случае? Для ответа на этот вопрос взглянем на ОДЗ переменной x . Она определяется системой неравенств , которая равносильна условию x+2>0 (при необходимости смотрите статью решение систем неравенств ). Таким образом, мы можем спокойно применять свойство логарифма степени.

Имеем
3·lg(x+2) 7 −lg(x+2)−5·lg(x+2) 4 =
=3·7·lg(x+2)−lg(x+2)−5·4·lg(x+2)=
=21·lg(x+2)−lg(x+2)−20·lg(x+2)=
=(21−1−20)·lg(x+2)=0 .

Можно действовать и иначе, благо ОДЗ позволяет это делать, например так:

Ответ:

3·lg(x+2) 7 −lg(x+2)−5·lg(x+2) 4 =0 .

А что делать, когда на ОДЗ не выполняются условия, сопутствующие свойствам логарифмов? Будем разбираться с этим на примерах.

Пусть от нас требуется упростить выражение lg(x+2) 4 −lg(x+2) 2 . Преобразование этого выражения, в отличие от выражения из предыдущего примера, не допускает вольготного использования свойства логарифма степени. Почему? ОДЗ переменной x в данном случае представляет собой объединение двух промежутков x>−2 и x<−2 . При x>−2 мы можем спокойно применять свойство логарифма степени и действовать как в разобранном выше примере: lg(x+2) 4 −lg(x+2) 2 =4·lg(x+2)−2·lg(x+2)=2·lg(x+2) . Но ОДЗ содержит еще один промежуток x+2<0 , для которого последнее преобразование будет некорректно. Что же делать при x+2<0 ? В подобных случаях на помощь приходит . Определение модуля позволяет выражение x+2 при x+2<0 представить как −|x+2| . Тогда при x+2<0 от lg(x+2) 4 −lg(x+2) 2 переходим к lg(−|x+2|) 4 −lg(−|x+2|) 2 и дальше в силу свойств степени к lg|x+2| 4 −lg|x+2| 2 . Полученное выражение можно преобразовывать по свойству логарифма степени, так как |x+2|>0 при любых значениях переменной. Имеем lg|x+2| 4 −lg|x+2| 2 =4·lg|x+2|−2·lg|x+2|=2·lg|x+2| . Теперь можно освободиться от модуля, так как он свое дело сделал. Так как мы проводим преобразование при x+2<0 , то 2·lg|x+2|=2·lg(−(x+2)) . Итак, можно считать, что мы справились с поставленной задачей. Ответ: . Полученный результат можно записать компактно с использованием модуля как .

Рассмотрим еще один пример, чтобы работа с модулями стала привычной. Пусть мы задумали от выражения перейти к сумме и разности логарифмов линейных двучленов x−1 , x−2 и x−3 . Сначала находим ОДЗ:

На промежутке (3, +∞) значения выражений x−1 , x−2 и x−3 – положительные, поэтому мы спокойно можем применять свойства логарифма суммы и разности:

А на интервале (1, 2) значения выражения x−1 – положительные, а значения выражений x−2 и x−3 – отрицательные. Поэтому, на рассматриваемом интервале представляем x−2 и x−3 с использованием модуля как −|x−2| и −|x−3| соответственно. При этом

Теперь можно применять свойства логарифма произведения и частного, так как на рассматриваемом интервале (1, 2) значения выражений x−1 , |x−2| и |x−3| - положительные.

Имеем

Полученные результаты можно объединить:

Вообще, аналогичные рассуждения позволяют на базе формул логарифма произведения, отношения и степени получить три практически полезных результата, которыми довольно удобно пользоваться:

  • Логарифм произведения двух произвольных выражений X и Y вида log a (X·Y) можно заменить суммой логарифмов log a |X|+log a |Y| , a>0 , a≠1 .
  • Логарифм частного вида log a (X:Y) можно заменить разностью логарифмов log a |X|−log a |Y| , a>0 , a≠1 , X и Y – произвольные выражения.
  • От логарифма некоторого выражения B в четной степени p вида log a B p можно перейти к выражению p·log a |B| , где a>0 , a≠1 , p – четное число и B – произвольное выражение.

Аналогичные результаты приведены, например, в указаниях к решению показательных и логарифмических уравнений в сборнике задач по математике для поступающих в вузы под редакцией М. И. Сканави .

Пример.

Упростите выражение .

Решение.

Было бы хорошо применить свойства логарифма степени, суммы и разности. Но можем ли мы здесь это делать? Для ответа на этот вопрос нам требуется знать ОДЗ.

Определим ее:

Довольно очевидно, что выражения x+4 , x−2 и (x+4) 13 на области допустимых значений переменной x могут принимать как положительные, так и отрицательные значения. Поэтому нам придется действовать через модули.

Свойства модуля позволяют переписать как , поэтому

Также ничто не мешает воспользоваться свойством логарифма степени, после чего привести подобные слагаемые:

К такому же результату приводит и другая последовательность преобразований:

и так как на ОДЗ выражение x−2 может принимать как положительные, так и отрицательные значения, то при вынесении четного показателя степени 14


Продолжаем изучать логарифмы. В этой статье мы поговорим про вычисление логарифмов , этот процесс называют логарифмированием . Сначала мы разберемся с вычислением логарифмов по определению. Дальше рассмотрим, как находятся значения логарифмов с использованием их свойств. После этого остановимся на вычислении логарифмов через изначально заданные значения других логарифмов. Наконец, научимся использовать таблицы логарифмов. Вся теория снабжена примерами с подробными решениями.

Навигация по странице.

Вычисление логарифмов по определению

В простейших случаях возможно достаточно быстро и легко выполнить нахождение логарифма по определению . Давайте подробно рассмотрим, как происходит этот процесс.

Его суть состоит в представлении числа b в виде a c , откуда по определению логарифма число c является значением логарифма. То есть, нахождению логарифма по определению отвечает следующая цепочка равенств: log a b=log a a c =c .

Итак, вычисление логарифма по определению сводится к нахождению такого числа c , что a c =b , а само число c есть искомое значение логарифма.

Учитывая информацию предыдущих абзацев, когда число под знаком логарифма задано некоторой степенью основания логарифма, то можно сразу указать, чему равен логарифм – он равен показателю степени. Покажем решения примеров.

Пример.

Найдите log 2 2 −3 , а также вычислите натуральный логарифм числа e 5,3 .

Решение.

Определение логарифма позволяет нам сразу сказать, что log 2 2 −3 =−3 . Действительно, число под знаком логарифма равно основанию 2 в −3 степени.

Аналогично находим второй логарифм: lne 5,3 =5,3 .

Ответ:

log 2 2 −3 =−3 и lne 5,3 =5,3 .

Если же число b под знаком логарифма не задано как степень основания логарифма, то нужно внимательно посмотреть, нельзя ли прийти к представлению числа b в виде a c . Часто такое представление бывает достаточно очевидно, особенно когда число под знаком логарифма равно основанию в степени 1 , или 2 , или 3 , ...

Пример.

Вычислите логарифмы log 5 25 , и .

Решение.

Несложно заметить, что 25=5 2 , это позволяет вычислять первый логарифм: log 5 25=log 5 5 2 =2 .

Переходим к вычислению второго логарифма . Число можно представить в виде степени числа 7 : (при необходимости смотрите ). Следовательно, .

Перепишем третий логарифм в следующем виде . Теперь можно увидеть, что , откуда заключаем, что . Следовательно, по определению логарифма .

Коротко решение можно было записать так: .

Ответ:

log 5 25=2 , и .

Когда под знаком логарифма находится достаточно большое натуральное число, то его не помешает разложить на простые множители. Это часто помогает представить такое число в виде некоторой степени основания логарифма, а значит, вычислить этот логарифм по определению.

Пример.

Найдите значение логарифма .

Решение.

Некоторые свойства логарифмов позволяют сразу указать значение логарифмов. К таким свойствам относятся свойство логарифма единицы и свойство логарифма числа, равного основанию: log 1 1=log a a 0 =0 и log a a=log a a 1 =1 . То есть, когда под знаком логарифма находится число 1 или число a , равное основанию логарифма, то в этих случаях логарифмы равны 0 и 1 соответственно.

Пример.

Чему равны логарифмы и lg10 ?

Решение.

Так как , то из определения логарифма следует .

Во втором примере число 10 под знаком логарифма совпадает с его основанием, поэтому десятичный логарифм десяти равен единице, то есть, lg10=lg10 1 =1 .

Ответ:

И lg10=1 .

Отметим, что вычисление логарифмов по определению (которое мы разобрали в предыдущем пункте) подразумевает использование равенства log a a p =p , которое является одним из свойств логарифмов.

На практике, когда число под знаком логарифма и основание логарифма легко представляются в виде степени некоторого числа, очень удобно использовать формулу , которая соответствует одному из свойств логарифмов. Рассмотрим пример нахождения логарифма, иллюстрирующий использование этой формулы.

Пример.

Вычислите логарифм .

Решение.

Ответ:

.

Не упомянутые выше свойства логарифмов также используются при вычислении, но об этом поговорим в следующих пунктах.

Нахождение логарифмов через другие известные логарифмы

Информация этого пункта продолжает тему использования свойств логарифмов при их вычислении. Но здесь основное отличие состоит в том, что свойства логарифмов используются для того, чтобы выразить исходный логарифм через другой логарифм, значение которого известно. Приведем пример для пояснения. Допустим, мы знаем, что log 2 3≈1,584963 , тогда мы можем найти, например, log 2 6 , выполнив небольшое преобразование с помощью свойств логарифма: log 2 6=log 2 (2·3)=log 2 2+log 2 3≈ 1+1,584963=2,584963 .

В приведенном примере нам было достаточно использовать свойство логарифма произведения. Однако намного чаще приходится применять более широкий арсенал свойств логарифмов, чтобы вычислить исходный логарифм через заданные.

Пример.

Вычислите логарифм 27 по основанию 60 , если известно, что log 60 2=a и log 60 5=b .

Решение.

Итак, нам нужно найти log 60 27 . Несложно заметить, что 27=3 3 , и исходный логарифм в силу свойства логарифма степени можно переписать как 3·log 60 3 .

Теперь посмотрим, как log 60 3 выразить через известные логарифмы. Свойство логарифма числа, равного основанию, позволяет записать равенство log 60 60=1 . С другой стороны log 60 60=log60(2 2 ·3·5)= log 60 2 2 +log 60 3+log 60 5= 2·log 60 2+log 60 3+log 60 5 . Таким образом, 2·log 60 2+log 60 3+log 60 5=1 . Следовательно, log 60 3=1−2·log 60 2−log 60 5=1−2·a−b .

Наконец, вычисляем исходный логарифм: log 60 27=3·log 60 3= 3·(1−2·a−b)=3−6·a−3·b .

Ответ:

log 60 27=3·(1−2·a−b)=3−6·a−3·b .

Отдельно стоит сказать о значении формулы перехода к новому основанию логарифма вида . Она позволяет от логарифмов с любыми основаниями переходить к логарифмам с конкретным основанием, значения которых известны или есть возможность их отыскать. Обычно от исходного логарифма по формуле перехода переходят к логарифмам по одному из оснований 2 , e или 10 , так как по этим основаниям существуют таблицы логарифмов, позволяющие с определенной степенью точности вычислять их значения. В следующем пункте мы покажем, как это делается.

Таблицы логарифмов, их использование

Для приближенного вычисления значений логарифмов могут быть использованы таблицы логарифмов . Наиболее часто используется таблица логарифмов по основанию 2 , таблица натуральных логарифмов и таблица десятичных логарифмов. При работе в десятичной системе счисления удобно пользоваться таблицей логарифмов по основанию десять. С ее помощью и будем учиться находить значения логарифмов.










Представленная таблица позволяет с точностью до одной десятитысячной находить значения десятичных логарифмов чисел от 1,000 до 9,999 (с тремя знаками после запятой). Принцип нахождения значения логарифма с помощью таблицы десятичных логарифмов разберем на конкретном примере – так понятнее. Найдем lg1,256 .

В левом столбце таблицы десятичных логарифмов находим две первые цифры числа 1,256 , то есть, находим 1,2 (это число для наглядности обведено синей линией). Третью цифру числа 1,256 (цифру 5 ) находим в первой или последней строке слева от двойной линии (это число обведено красной линией). Четвертую цифру исходного числа 1,256 (цифру 6 ) находим в первой или последней строке справа от двойной линии (это число обведено зеленой линией). Теперь находим числа в ячейках таблицы логарифмов на пересечении отмеченной строки и отмеченных столбцов (эти числа выделены оранжевым цветом). Сумма отмеченных чисел дает искомое значение десятичного логарифма с точностью до четвертого знака после запятой, то есть, lg1,236≈0,0969+0,0021=0,0990 .

А можно ли, используя приведенную таблицу, находить значения десятичных логарифмов чисел, имеющих больше трех цифр после запятой, а также выходящих за пределы от 1 до 9,999 ? Да, можно. Покажем, как это делается, на примере.

Вычислим lg102,76332 . Сначала нужно записать число в стандартном виде : 102,76332=1,0276332·10 2 . После этого мантиссу следует округлить до третьего знака после запятой, имеем 1,0276332·10 2 ≈1,028·10 2 , при этом исходный десятичный логарифм приближенно равен логарифму полученного числа, то есть, принимаем lg102,76332≈lg1,028·10 2 . Теперь применяем свойства логарифма: lg1,028·10 2 =lg1,028+lg10 2 =lg1,028+2 . Наконец, находим значение логарифма lg1,028 по таблице десятичных логарифмов lg1,028≈0,0086+0,0034=0,012 . В итоге весь процесс вычисления логарифма выглядит так: lg102,76332=lg1,0276332·10 2 ≈lg1,028·10 2 = lg1,028+lg10 2 =lg1,028+2≈0,012+2=2,012 .

В заключение стоит отметить, что используя таблицу десятичных логарифмов можно вычислить приближенное значение любого логарифма. Для этого достаточно с помощью формулы перехода перейти к десятичным логарифмам, найти их значения по таблице, и выполнить оставшиеся вычисления.

Для примера вычислим log 2 3 . По формуле перехода к новому основанию логарифма имеем . Из таблицы десятичных логарифмов находим lg3≈0,4771 и lg2≈0,3010 . Таким образом, .

Список литературы.

  • Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала анализа: Учебник для 10 - 11 классов общеобразовательных учреждений.
  • Гусев В.А., Мордкович А.Г. Математика (пособие для поступающих в техникумы).

Сейчас мы взглянем на преобразование выражений, содержащих логарифмы, с общих позиций. Здесь мы разберем не только преобразование выражений с использованием свойств логарифмов, а рассмотрим преобразование выражений с логарифмами общего вида, которые содержат не только логарифмы, но и степени, дроби, корни и т.д. Весь материал по обыкновению будем снабжать характерными примерами с детальными описаниями решений.

Навигация по странице.

Выражения с логарифмами и логарифмические выражения

Выполнение действий с дробями

В предыдущем пункте мы разобрали основные преобразования, которые проводятся с отдельными дробями, содержащими логарифмы. Эти преобразования, естественно, можно проводить с каждой отдельной дробью, являющейся частью более сложного выражения, например, представляющего собой сумму, разность, произведение и частное подобных дробей. Но помимо работы с отдельными дробями, преобразование выражений указанного вида часто подразумевает выполнение соответствующих действий с дробями. Дальше мы рассмотрим правила, по которым эти действия проводятся.

Еще с 5-6 классов нам известны правила, по которым выполняются . В статье общий взгляд на действия с дробями мы распространили эти правила с обыкновенных дробей на дроби общего вида A/B , где A и B – некоторые числовые, буквенные выражения или выражения с переменными, причем B тождественно не равно нулю. Понятно, что дроби с логарифмами являются частными случаями дробей общего вида. И в связи с этим понятно, что действия с дробями, которые содержат в своих записях логарифмы, проводятся по тем же правилам. А именно:

  • Чтобы сложить или вычесть две дроби с одинаковыми знаменателями, надо соответственно сложить или вычесть числители, а знаменатель оставить прежним.
  • Чтобы сложить или вычесть две дроби с разными знаменателями, надо привести их к общему знаменателю и выполнить соответствующие действия по предыдущему правилу.
  • Чтобы умножить две дроби, надо записать дробь, числителем которой является произведение числителей исходных дробей, а знаменателем – произведение знаменателей.
  • Чтобы разделить дробь на дробь, надо делимую дробь умножить на дробь, обратную делителю, то есть, на дробь, с переставленными местами числителем и знаменателем.

Приведем несколько примеров на выполнение действий с дробями, содержащими логарифмы.

Пример.

Выполните действия с дробями, содержащими логарифмы: а) , б) , в) , г) .

Решение.

а) Знаменатели складываемых дробей, очевидно, одинаковые. Поэтому, согласно правилу сложения дробей с одинаковыми знаменателями складываем числители, а знаменатель оставляем прежним: .

б) Здесь знаменатели различные. Поэтому, сначала нужно привести дроби к одинаковому знаменателю . В нашем случае знаменатели уже представлены в виде произведений, и нам остается взять знаменатель первой дроби и добавить к нему недостающие множители из знаменателя второй дроби. Так мы получим общий знаменатель вида . При этом к общему знаменателю вычитаемые дроби приводятся при помощи дополнительных множителей в виде логарифма и выражения x 2 ·(x+1) соответственно. После этого останется выполнить вычитание дробей с одинаковыми знаменателями, что не представляет сложностей.

Итак, решение таково:

в) Известно, что результатом умножения дробей является дробь, числитель которой есть произведение числителей, а знаменатель – произведение знаменателей, поэтому

Несложно заметить, что можно провести сокращение дроби на двойку и на десятичный логарифм, в результате имеем .

г) Переходим от деления дробей к умножению, заменяя дробь-делитель обратной ей дробью . Так

Числитель полученной дроби можно представить в виде , из которого явно виден общий множитель числителя и знаменателя – множитель x , на него можно сократить дробь:

Ответ:

а) , б) , в) , г) .

Следует помнить, что действия с дробями проводятся с учетом порядка выполнения действий : сначала умножение и деление, затем сложение и вычитание, а если есть скобки, то сначала проводятся действия в скобках.

Пример.

Выполните действия с дробями .

Решение.

Сначала выполняем сложение дробей в скобках, после чего будем проводить умножение:

Ответ:

В этом пункте остается проговорить вслух три довольно очевидных, но в то же время важных момента:

Преобразование выражений с использованием свойств логарифмов

Наиболее часто преобразование выражений с логарифмами подразумевает использование тождеств, выражающих определение логарифма и

Логарифмические выражения, решение примеров. В этой статье мы рассмотрим задачи связанные с решением логарифмов. В заданиях ставится вопрос о нахождении значения выражения. Нужно отметить, что понятие логарифма используется во многих заданиях и понимать его смысл крайне важно. Что касается ЕГЭ, то логарифм используется при решении уравнений, в прикладных задачах, также в заданиях связанных с исследованием функций.

Приведём примеры для понимания самого смысла логарифма:


Основное логарифмическое тождество:

Свойства логарифмов, которые необходимо всегда помнить:

*Логарифм произведения равен сумме логарифмов сомножителей.

* * *

*Логарифм частного (дроби) равен разности логарифмов сомножителей.

* * *

*Логарифм степени равен произведению показателя степени на логарифм ее основания.

* * *

*Переход к новому основанию

* * *

Ещё свойства:

* * *

Вычисление логарифмов тесно связано с использованием свойств показателей степени.

Перечислим некоторые из них:

Суть данного свойства заключается в том, что при переносе числителя в знаменатель и наоборот, знак показателя степени меняется на противоположный. Например:

Следствие из данного свойства:

* * *

При возведении степени в степень основание остаётся прежним, а показатели перемножаются.

* * *

Как вы убедились само понятие логарифма несложное. Главное то, что необходима хорошая практика, которая даёт определённый навык. Разумеется знание формул обязательно. Если навык в преобразовании элементарных логарифмов не сформирован, то при решении простых заданий можно легко допустить ошибку.

Практикуйтесь, решайте сначала простейшие примеры из курса математики, затем переходите к более сложным. В будущем обязательно покажу, как решаются «страшненькие» логарифмы, таких на ЕГЭ не будет, но они представляют интерес, не пропустите!

На этом всё! Успеха Вам!

С уважением, Александр Крутицких

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Вытекают из его определения. И так логарифм числа b по основанию а определяется как показатель степени, в которую надо возвести число a , чтобы получить число b (логарифм существует только у положительных чисел).

Из данной формулировки следует, что вычисление x=log a b , равнозначно решению уравнения a x =b. Например, log 2 8 = 3 потому, что 8 = 2 3 . Формулировка логарифма дает возможность обосновать, что если b=a с , то логарифм числа b по основанию a равен с . Также ясно, что тема логарифмирования тесно взаимосвязана с темой степени числа .

С логарифмами, как и с любыми числами, можно выполнять операции сложения , вычитания и всячески трансформировать. Но ввиду того, что логарифмы - это не совсем ординарные числа, здесь применимы свои особенные правила, которые называются основными свойствами .

Сложение и вычитание логарифмов.

Возьмем два логарифма с одинаковыми основаниями: log a x и log a y . Тогда сними возможно выполнять операции сложения и вычитания:

log a x+ log a y= log a (x·y);

log a x - log a y = log a (x:y).

log a (x 1 . x 2 . x 3 ... x k ) = log a x 1 + log a x 2 + log a x 3 + ... + log a x k .

Из теоремы логарифма частного можно получить еще одно свойство логарифма. Общеизвестно, что log a 1= 0, следовательно,

log a 1 / b = log a 1 - log a b = - log a b .

А значит имеет место равенство:

log a 1 / b = - log a b.

Логарифмы двух взаимно обратных чисел по одному и тому же основанию будут различны друг от друга исключительно знаком. Так:

Log 3 9= - log 3 1 / 9 ; log 5 1 / 125 = -log 5 125.