Что такое геология определение кратко. Каким личностными качествами должен обладать геолог? Геологическое образование в России

Геология — это наука о составе, строении и закономерностях развития Земли, других планет Солнечной системы и их естественных спутников.

Существует три основных направления геологических исследований: описательная, динамическая и историческая геология. У каждого направления существуют свои основные принципы и методы исследования. Описательная геология занимается изучением размещения и состава геологических тел, в том числе их форма, размер, взаимоотношение, последовательность залегания, а также описанием различных минералов и горных пород. Динамическая геология рассматривает эволюцию геологических процессов, таких как разрушение горных пород, перенос их ветром, ледниками, наземными или подземными водами, накопление осадков (внешние по отношению к земной коре) или движение земной коры, землетрясения, извержения вулканов (внутренние). Историческая геология занимается изучением последовательности геологических процессов прошлого.

Происхождение названия

Первоначально слово «геология» являлось противоположностью к слову «теология». Науке о духовной жизни противопоставлялась наука о закономерностях и правилах земного бытия. В таком контексте это слово использовал епископ Р. де Бьюри в своей книге «Philobiblon» («Любовь к книгам»), которая вышла в свет в 1473 году в Кёльне. Слово происходит от греческого γῆ, означающее «Земля» и λόγος, означающее «учение».

Мнения о первом использовании слова «геология» в современном понимании расходятся. По одним источникам, включая БСЭ, этот термин впервые использовал норвежский учёный Миккель Педерсон Эсхолт (М. П. Эшольт, Mikkel Pedersøn Escholt, 1600-1699) в своей книге «Geologica Norvegica» (1657). По другим источникам, слово «геология» было впервые использовано Улиссе Альдрованди в 1603 году, затем Жан Андре Делюк в 1778 году, закрепил термин Орасом Бенедиктом де Соссюром в 1779 году.

Исторически использовался также термин «геогнозия» (или геогностика). Такое название для науки o минералах, рудах, и горных породах было предложено немецкими геологами Г. Фюкселем (в 1761) и A. Г. Bернером (в 1780). Авторы термина обозначили им практические области геологии, изучавщие объекты, которые можно было наблюдать на поверхности, в отличие от чисто теоретической тогда геологии, которая занималась происхождением и историей Земли, её корой и внутренним строением. Термин использовался в специальной литературе в XVIII и начале XIX векa, но начал выходить из употребления уже во второй половине XIX века. В России термин сохранялся до конца XIX века в названиях учёного звания и степени «доктор минералогии и геогнозии» и «профессор минералогии и геогнозии».

Разделы геологии

Геологические дисциплины работают во всех трёх направлениях геологии и точного деления на группы не существует. Новые дисциплины появляются на стыке геологии с другими областями знаний. В БСЭ приводится следующая классификация: науки о земной коре, науки о современных геологических процессах, науки о исторической последовательности геологических процессов, прикладные дисциплины, а также региональная геология.

Минералы образуются в результате природных физико-химических процессов и обладающее определённым химическим составом и физическими свойствами.

Науки о земной коре:

  • Минералогия - раздел геологии, изучающий минералы, вопросы их генезиса, квалификации. Изучением пород, образованных в процессах, связанных с атмосферой, биосферой и гидросферой Земли, занимается литология. Эти породы не совсем точно называются ещё осадочными горными породами. Многолетнемёрзлые горные породы приобретают ряд характерных свойств и особенностей, изучением которых занимается геокриология.
  • Петрография - раздел геологии, изучающий магматические и метоморфические породы преимущественно с описательной стороны - их генезис, состав, текстурно-структурные особенности, а также классификацию.
  • Структурная геология - раздел геологии, изучающий формы залегания геологических тел и нарушения земной коры.
  • Кристаллография - первоначально одно из напралений минералогии, в настоящее время скорее физическая дисциплина.

Науки о современных геологических процессах (динамическая геология):

  • Тектоника - раздел геологии, изучающий движение земной коры (геотектоника, неотектоника и экспериментальная тектоника).
  • Вулканология — раздел геологии, изучающий вулканизм.
  • Сейсмология — раздел геологии, изучающий геологические процессы при землетрясениях, сейсморайонирование.
  • Геокриология — раздел геологии, изучающий многолетнемёрзлые породы.
  • Петрология - раздел геологии, изучающий генезис и условия происхождения магматических и метаморфических горных пород.

Науки о исторической последовательности геологических процессов (историческая геология):

  • Историческая геология - отрасль геологии, изучающая данные о последовательности важнейших событий в истории Земли. Все геологические науки в той или иной степени имеют исторический характер, рассматривают существующие образования в историческом аспекте и занимаются в первую очередь выяснением истории формирования современных структур. История Земли делится на два крупнейших этапа - эона, по появлению организмов с твёрдыми частями, оставляющих следы в осадочных породах и позволяющих по данным палеонтологии провести определение относительного геологического возраста. С появлением ископаемых на Земле начался фанерозой - время открытой жизни, а до этого был криптозой или докембрий - время скрытой жизни. Геология докембрия выделяется в особую дисциплину, так как занимается изучением специфических, часто сильно и многократно метаморфизованных комплексов и имеет особые методы исследования.
  • Палеонтология изучает древние формы жизни и занимается описанием ископаемых остатков, а также следов жизнедеятельности организмов.
  • Стратиграфия - наука об определении относительного геологического возраста осадочных горных пород, расчленении толщ пород и корреляции различных геологических образований. Одним из основных источников данных для стратиграфии является палеонтологические определения.

Прикладные дисциплины:

  • Геология полезных ископаемых изучает типы месторождений, методы их поисков и разведки. Делится на геологию нефти газа, геологию угля, металлогению.
  • Гидрогеология - раздел геологии, изучающий подземные воды.
  • Инженерная геология - раздел геологии, изучающий взаимодействия геологической среды и инженерных сооружений.

Внизу перечислены остальные разделы геологии, в основном стоящие на стыке с другими науками:

  • Геохимия - раздел геологии, изучающий химический состав Земли, процессы, концентрирующие и рассеивающие химические элементы в различных сферах Земли.
  • Геофизика - раздел геологии, изучающий физические свойства Земли, включающая также комплекс разведочных методов: гравиразведка, сейсморазведка, магниторазведка, электроразведка различных модификаций и пр.
  • Геобаротермометрия - наука, изучающая комплекс методов определения давления и температур образования минералов и горных пород.
  • Микроструктурная геология - раздел геологии, изучающий деформацию пород на микроуровне, в масштабе зёрен минералов и агрегатов.
  • Геодинамика - наука, изучающая процессы самого планетарного масштаба в результате эволюции Земли. Она изучает связь процессов в ядре, мантии и земной коре.
  • Геохронология - раздел геологии, определяющий возраст пород и минералов.
  • Литология (Петрография осадочных пород) - раздел геологии, изучающий Осадочные породы.

Изучением Солнечной системы занимаются следующие разделы геологии: космохимия, космология, космическая геология и планетология.

Основные принципы геологии

Геология - наука историческая, и важнейшей её задачей является определение последовательности геологических событий. Для выполнения этой задачи с давних времён разработан ряд простых и интуитивно очевидных признаков временных соотношений пород.

Интрузивные взаимоотношения представлены контактами интрузивных пород и вмещающих их толщ. Обнаружение признаков таких взаимоотношений (зоны закалки, даек и т. п.) однозначно указывает на то, что интрузия образовалась позже, чем вмещающие породы.

Секущие взаимоотношения также позволяют определить относительный возраст. Если разлом рвёт горные породы, значит он образовался позже, чем они.

Ксенолиты и обломки попадают в породы в результате разрушения своего источника, соответственно они образовались раньше вмещающих их пород, и могут быть использованы для определения относительного возраста.

Принцип актуализма постулирует, что геологические силы, действующие в наше время, аналогично работали и в прежние времена. Джеймс Хаттон сформулировал принцип актуализма фразой «Настоящее - ключ к прошлому».

Утверждение не совсем точное. Понятие «сила» - понятие не геологическое, а физическое, к геологии имеющее опосредованное отношение. Правильнее говорить о геологических процессах. Выявление сил, сопровождающих эти процессы, могло бы стать главной задачей геологии, чего, к сожалению, нет.

«Принцип актуализма» (или метод актуализма) являются синонимом метода «аналогии». Но метод аналогии не является методом доказательства, он является методом формулирования гипотез и, следовательно, все закономерности, полученные методом актуализма, должны были бы пройти процедуру доказательства их объективности.

В настоящее время принцип актуализма стал тормозом в развитии представлений о геологических процессах.

Принцип первичной горизонтальности утверждает, что морские осадки при образовании залегают горизонтально.

Принцип суперпозиции заключается в том, что породы находящиеся в не нарушенном складчатостью и разломами залегании, следуют в порядке их образования, породы залегающие выше моложе, а те которые находятся ниже по разрезу - древнее.

Принцип финальной сукцессии постулирует, что в одно и то же время в океане распространены одни и те же организмы. Из этого следует, что палеонтолог, определив набор ископаемых остатков в породе, может найти одновременно образовавшиеся породы.

История геологии

Первые геологические наблюдения относятся к динамической геологии - это информация о землетрясениях, извержениях вулканов, размывании гор, перемещении береговых линий. Подобные высказывания встречаются в работах таких учёных как Пифагор, Аристотель, Плиний Старший, Страбон. Изучение физических материалов (минералов) Земли восходит по крайней мере к древней Греции, когда Теофраст (372-287 до н. э.) написал работу «Peri Lithon» («О камнях»). В римский период Плиний Старший подробно описал многие минералы и металлы, и их практическое использование, а также правильно определил происхождение янтаря.

Описание минералов и попытки классификации геологических тел встречаются у Аль-Бируни и Ибн Сины (Авиценны) в X-XI веках. В работах Аль-Бируни содержится раннее описание геологии Индии, он предполагал, что индийский субконтинент был когда-то морем. Авиценна предложил подробное объяснение формирования гор, происхождение землетрясений и другие темы, которые являются центральными в современной геологии, и в котором содержится необходимый фундамент для дальнейшего развития науки. Некоторые современные ученые, такие как Филдинг Х. Гаррисон, считают, что современная геология началась в средневековом исламском мире.

В Китае энциклопедист Shen Kuo (1031-1095) сформулировал гипотезу о процессе формирования земли: на основе наблюдений над ископаемыми раковин животных в геологическом слое в горах в сотнях километров от океана он сделал вывод, что суша была сформирована в результате эрозии гор и осаждения ила.

В эпоху Возрождения геологические исследования проводили учёные Леонардо да Винчи и Джироламо Фракасторо. Они впервые предположили, что ископаемые раковины являются остатками вымерших организмов, а также, что история Земли длиннее библейских представлений. Нильс Стенсен дал анализ геологическому разрезу в Тоскане, он объяснил последовательность геологических событий. Ему приписывают три определяющих принципа стратиграфии: принцип суперпозиции (англ.), принцип первичной горизонтальности слоёв (англ.) и принцип последовательности образования геологических тел (англ.).

В конце XVII - начале XVIII века появилась общая теория Земли, которая получила название дилювианизма. По мнению учёных того времени осадочные породы и окаменелости в них образовались в результате всемирного потопа. Эти воззрения разделяли Роберт Гук (1688), Джон Рэй (1692), Джоэнн Вудворд (1695), И. Я. Шёйкцер (1708) и другие.

Во второй половине XVIII века резко возросли потребности в полезных ископаемых, что привело к изучению недр, в частности накоплению фактического материала, описанию свойств горных пород и услови их залегания, разработке приёмов наблюдения. В 1785 году Джеймс Хаттон представил для Королевского общества Эдинбурга документ, озаглавленный «Теория Земли». В этой статье он объяснил свою теорию о том, что Земля должна быть намного старше, чем ранее предполагалось, для того, чтобы обеспечить достаточное время для эрозии гор, и чтобы седименты (отложения) образовали новые породы на дне моря, которые, в свою очередь, были подняты чтобы стать сушей. В 1795 Хаттон опубликовал двухтомный труд, описывающий эти идеи (Vol. 1, Vol. 2). Джеймс Хаттон часто рассматривается как первый современный геолог. Последователи Хаттона были известны как плутонисты, из-за того что они считали, что некоторые породы (базальты и граниты) были сформированы в результате вулканической деятельности и являются результатом осаждения лавы из вулкана. Другой точки зрения придерживались нептунисты, во главе с Абраамом Вернером, который считал, что все породы осели из большого океана, уровень которого с течением времени постепенно снизился, а вулканическую деятельность объяснял подземным горением каменного угля. В то же время в России увидели свет геологические труды Ломоносова «Слово о рождении металлов от трясения Земли» (1757) и «О слоях земных» (1763), в которых он признавал влияние и внешних, и внутрених сил на развитие Земли.

Уильям Смит (1769-1839) нарисовал одни из первых геологических карт и начал процесс упорядочивания горных пластов, изучая содержащиеся в них окаменелости. Смит составил «шкалу осадочных образований Англии». Работы по разделению пластов продолжились учёными Жоржем Кювье и А. Броньяру. В 1822 была выделена каменноугольная и меловая системы, что положило начало стратиграфической систематике. Основные подразделения современной стратиграфической шкалы были приняты официально в 1881 году в Болонье на 2-м Международном геологическом конгрессе. Первыми геологическими картами в России были работы Д. Лебедева и М. Иванова (карта Восточного Забайкалья, 1789-1794), Н. И. Кокшарова (Европейская Россия, 1840), Г. П. Гельмерсена («Генеральная карта горных формаций Европейской России», 1841). На картах Кокшарова уже были отмечены силурийская, девонская, нижне карбонская, лиасовая и третичная формации.

Вместе с тем, методологические основы такого деления ещё уточнялись в рамках нескольких теорий. Ж. Кювье разработал теорию катастроф, утверждающую, что особенности Земли формируются в одном, катастрофическом событии и остаются неизменными в дальнейшем. Л.Бух объяснял движения земной коры вулканизмом (теория «кратеров поднятия»), Л. Эли де Бомон связывал дислокацию слоёв со сжатием земной коры при остывании центрального ядра. В 1830 году Чарлз Лайель впервые опубликовал свою знаменитую книгу «Основы геологии». Книга, которая повлияла на идеи Чарльза Дарвина, успешно способствовала распространению актуализма. Эта теория утверждает, что медленные геологические процессы имели место на протяжении истории Земли и все еще происходят сегодня. Хотя Хаттона верил в актуализм, идея не была широко принята в то время.

Большую часть XIX века геология вращалась вокруг вопроса о точном возрасте Земли. Оценки варьировались от 100 000 до нескольких миллиардов лет. В начале XX века радиометрическое датирование позволило определить возраст Земли, оценка составила два миллиарда лет. Осознание этого огромного промежутка времени открыло двери для новых теорий о процессах, которые сформировали планету. Самым значительным достижением геологии в XX веке было развитие теории тектоники плит в 1960 году и уточнение возраста планеты. Теория тектоники плит возникла из двух отдельных геологических наблюдений: спрединга морского дна и континентального дрейфа. Теория революционизировала науки о Земле. В настоящее время известно, что возраст Земли составляет около 4,5 миллиардов лет.

В конце XIX века экономические потребности стран в отношении недр привели к изменению статуса науки. Появилось множество геологических служб, в частности геологическая служба США (1879) и геологический комитет России (1882). Была введена подготовка специалистов-геологов.

С целью пробудить интерес к геологии Организацией Объединённых Наций 2008 год провозглашён «Международным годом планеты Земля».

(Visited 51 times, 1 visits today)

Геология – это наука, которая изучает состав, строение и закономерности Земли, а также других планет и их спутников, входящих в Солнечную систему.

Геологические области

На сегодняшний день существуют, как минимум, три области геологии: историческая, описательная и динамическая. У абсолютно каждого из этих направлений имеются свои методы, а также принципы исследования. Историческая геология изучает последовательность геологических процессов, которые происходили в прошлом. Описательная геология изучает размещение и состав геологических объектов, а также их размер и форму, залегание и описание разнообразных минеральных и горных отложений или пород. Динамическая геология изучает развитие геологических процессов: разрушение горных пород движение земной коры, а также землетрясения и внутренние извержения вулканов. В этих понятиях и заключаются основы геологии

Геологические разделы

Геологические науки ведут свою деятельность во всех трех областях геологии и, следовательно, точного разделения на группы нет. Однако новые науки появляются при симбиозе геологии с другими областями познания. Во многих источниках имеется следующая классификация:

  1. Науки о земной коре (минералогия, геокриология, петрография, структурная геология, кристаллография).
  2. Науки о геологических процессах, происходящих сегодня (тектоника, вулканология, сейсмология, геокриология, петрология).
  3. Науки о историческом происхождении и развитии геологических процессов (историческая геология, палеонтология, стратиграфия).
  4. Прикладные науки (геология полезных ископаемых, гидрогеология, инженерная геология)
  5. Симбиоз геологии с другими науками (геохимия, геофизика, геодинамика, геохронология, литология).

Принципы и задачи геологии

Геология – это историческая наука, поэтому наиболее важными ее задачами является определение происходящих геологических событий. Также к задачам геологии можно отнести:

  1. Более рациональное использование природных недр, а также их охрана
  2. Нахождение новых месторождений полезных ископаемых, а также разработка новых методов и способов их добычи
  3. Изучение происхождения подземных вод
  4. Другие геологические задачи, которые связаны с изучением условий строительства разнообразных зданий и сооружений.

Методы геологии

Для выполнения всех этих задач разработан простейший ряд очевидных методов геологии:

  • нтрузивный метод представлен связью интрузивных пород и вмещающих их толщ. Нахождение таких связей указывает на то, что сами интрузии появились гораздо раньше, чем вмещающие их толщи.
  • Секущий метод также позволяет определить относительный возраст. Если какой-либо разлом разрывает горную породу, то явно он появился позже, чем сами горные породы.
  • Ксенолиты и обломки могут попадать в породы из-за разрушения своего первоначального источника. Следовательно, они образовались намного раньше, чем вмещающие их породы и могут быть использованы специалистами для определения геологического возраста.
  • Метод первичной горизонтальности полагает, что при своем образовании морские осадки залегают горизонтально.
  • Метод суперпозиции утверждает, что породы, которые находятся в ненарушенном залегании, следуют по порядку или по степени их образования. Например, те породы, которые залегают выше моложе, а те породы, которые залегают ниже, соответственно более древние.
  • Метод финальной сукцессии полагает, что по всему океану распространены абсолютно одинаковые организмы. Следовательно, палеонтологи, определив некоторые остатки ископаемых в породе, при этом одновременно могут найти другие породы, которые также образовались с этими породами.

Теперь Вы знаете ответ на вопрос о том, что такое геология. Рад был помочь.

Геология как наука

Вступление

Геология - комплекс наук о земной коре и более глубоких сферах Земли, в узком смысле слова - наука о составе, строении, движении и истории развития земной коры, размещении в ней полезных ископаемых.

Так выглядит современное определение геологии. Однако, как и большинство важнейших естественных наук, геология берет свое начало в глубокой древности, наверное, с самого появления человека. Возникновение геологии связано с удовлетворением насущных потребностей людей: в жилище, его обогреве, в успешной охоте. Ведь надо знать свойства горных пород, чтобы научиться применять их. Так же необходимо уметь добывать горные породы, различать их и открывать новые месторождения. Для решения связанных с этим задач и необходимы геологические знания. Но изучение минералов для удовлетворения потребностей человека - это лишь корни геологии. В те давние времена ее еще сложно именовать наукой, т.к. люди не обобщали знания, не записывали их, не развивали, а лишь накапливали и применяли на практике.

Однако постепенно геология развивалась. Во времена античности уже зарождалось представление о минералах и геологических процессах, но только в рамках натурфилософии. Как науку геологию можно рассматривать с начала XIX века . Для этого этапа ее развития характерно обобщение накопленных знаний, создание научных гипотез и поиск их доказательств; использование новых методов исследования, разработанных другими науками, например, химией и физикой. Благодаря всему этому геология становится важной частью системы наук, помогающих человеку осуществлять научно-технический прогресс, удовлетворять его потребности, изучать и использовать природу. На этом этапе геология уже исследует очень сложные вопросы строения веществ, составляющих нашу планету, изучает историю развития Земли и одновременно решает практические проблемы. Это разведка и добыча полезных ископаемых, их переработка и использование, применение земных богатств в повседневной жизни.

Как мы видим, геология очень важна для современного человека, она имеет древнюю историю и изучает широкий спектр вопросов о природе, имеет большую практическую направленность.

Об истории, методах исследования и о будущих перспективах этой важной и очень интересной науки я написал в своей работе, основная цель которой описать геологию как науку.

Для достижения цели определены следующие задачи:

1.) Описать историю геологии, выделить основные особенности науки в различные периоды ее развития.

.) Рассказать о методах исследования, применяемых в геологии.

.) Объяснить значение геологии в современном мире.

.) Показать важность связи геологии с другими науками.

.) Рассказать о будущих перспективах развития геологии.

1. История геологии

геология наука знание

По моему мнению, чтобы понять какую-либо науку, необходимо знать, зачем она возникла, как развивалась, что новое появлялось в ней со временем. Эти вопросы наиболее полно раскрываются при изучении развития науки. Поэтому я решил начать свою работу с описания истории геологии.

Раскрывая историю геологии, я хочу выделить особенности ее развития в разные периоды, рассказать об основных идеях и открытиях, объяснить их смысл и значение и описать итоги достигнутого наукой.

Историю геологии обычно делят на два этапа - донаучный и научный. Их в свою очередь подразделяют на периоды. Именно по такой схеме я описал историю геологии.

.1 Донаучный этап (с древности до середины XVIII века)

Период становления человеческой цивилизации (с древнейших времен до V в. до н.э.)

В этот период люди накапливали самые первые сведения об окружающем мире. Как я уже говорил, сначала люди удовлетворяли свои важнейшие потребности при помощи различных горных пород, и для более полноценного применения требовалось изучить их свойства, места распространения и способы добычи. Начало изучения, связанных с этим вопросов, мы уже можем рассматривать как зарождение науки геологии.

Сейчас мы не можем точно сказать что значил камень для древних людей, мы можем лишь рассмотреть следы применения различных горных пород при раскопках стоянок древних людей и сделать свои выводы о применении ими минералогических богатств планеты. Как и наши предположения о необходимости для древних людей горных пород, так и результаты раскопок, говорят о том, что человек использовал камень, чуть ли не сразу после своего появления. Ведь применение орудий труда и отличает человека от обезьяны. Возможно, конечно, что самым примитивным орудием труда первоначально служила деревянная палка, но когда человек обнаружил такие свойства камня, как острота и твердость, он начал использовать острые куски кварца и кремния для своих нужд. Такой вывод о свойствах камней уже является примером накопления геологических знаний. Археологи находят на местах стоянок древних людей не только простые острые камни, но и каменные топоры, наконечники стрел. Несколько позже люди стали применять металлы для изготовления орудий труда. А ведь их поиск и выплавка требуют от человека еще больше знаний и умений.

Потребность человечества в минеральном сырье еще больше возросла с началом массового строительства городов, с развитием ремесел.

К концу периода человек уже занимался добычей и переработкой самородных меди, железа, золота, серебра, олова и других металлов. Глина широко применялась для строительства жилья и изготовления гончарных изделий. Драгоценные камни использовались для изготовления ювелирных украшений .

Так в древности уже начинается накопление некоторых знаний о свойствах горных пород, их добыче и применении.

Теоретическая ветвь геологии пополняется многочисленными гипотезами о происхождении и строении Земли. Однако в них всегда присутствует вымысел, т.к. древние не могли объяснить многие явления природы .

В период становления человеческой цивилизации люди используют для дальнейшего совершенствования умений обращения с камнем лишь опыт предыдущих поколений. Человек еще не обобщает знания, что является важной характеристикой периода.

При переходе к античному периоду развития геологии люди уже знали множество примет для поиска месторождений полезных ископаемых, обладали практическими навыками их использования. Для будущих поколений была создана база геологических знаний.

Античный период (V в. до н.э. - V в. н.э.)

В античный период геология развивалась в основном в Греции и в Римской империи. Первоначальный запас знаний о свойствах и применении горных пород в это время уже существовал, однако эти знания в основном имели практическое значение: добыча и использование минералогических богатств планеты. Но поскольку в античные времена люди уже рассуждали о жизни, интересовались устройством мира, то геологические знания стали пополнятся более логическими объяснениями различных явлений и гипотезами их происхождения. Выводы делались на основе осмысления и переработки данных, полученных при наблюдениях. Были более правдоподобными и обоснованными.

Практическое направление геологии так же продолжало развиваться. Важным как для людей того времени, так и для нас стало, то, что в античный период многие наблюдения и гипотезы записывались. Эти сведения стали служить будущим поколениям, а мы по ним можем судить о развитии науки, в т.ч. и геологии, того времени.

Достижениями античных ученых-философов можно считать, например, вывод о том, что раньше на месте некоторых областей суши было море. Данный вывод был сделан Ксенофаном на основе нахождения морских раковин в земле. Так же в период античности уже предполагали, что наша планета шарообразная. Такое предположение было сделано на основании наблюдений земной тени на Луне во время лунного затмения. Тень имеет круглую форму, соответственно - отбрасывается круглым или шарообразным телом. А Эратосфен даже вычислил длину окружности Земли. Полученные им результаты лишь незначительно отличались от современных данных.

Большой вклад в развитие геологии внёс древнегреческий ученый и философ Аристотель. Он предлагал картину шарообразной Земли, внутри которой находятся полости и каналы, в которых циркулируют вода и воздух. Их перемещениями ученый объяснял происходящие на поверхности землетрясения. Интересно, что такая система взглядов соответствует природе Греции, для которой характерны карстовые полости, частые землетрясения. Аристотель внес в науку и некоторые минералогические сведения: составил первую классификацию ископаемых, разделив их на руды, камни и земли.

Плиний Старший, кроме землетрясений, выделял медленные вертикальные движения земли.

Страбон высказывал идею о вулканическом происхождении острова Сицилия .

Именно в период античности были созданы две основные гипотезы формирования Земли. Это плутонизм и нептунизм. Эти гипотезы существовали много веков и равноправно принимались многими великими людьми .

Плутонизм - это система взглядов, в основу которой входит понимание внутренних геологических сил Земли, как основных факторов формирования ее поверхности и недр. Нептунизм же подразумевает, что все горные породы образовались из вод океана при кристаллизации растворов. Воздействие внутренних сил Земли отвергается.

Борьба этих гипотез принесла большую пользу геологии, ведь для поиска их доказательств проводилось много исследований. Сейчас мы знаем, что победили сторонники идеи формирования Земли под действием ее внутренних сил (плутонисты). Однако доказано, что минералы могут образовываться и из водных растворов.

В античный период также были усовершенствованы способы применения геологических знаний на практике. Для обработки металлов стали использовать ковку. А добычу полезных ископаемых стали осуществлять с применением шахт вместо открытых карьеров .

Таким образом, античный период принес геологии множество полезных знаний. Было положено начало теоретической ветви геологии, записаны результаты наблюдений, что позволило в будущем отталкиваться от этих достижений.

Следующий период развития геологии был труден не только для нее. Эпоха средневековья характеризовалась застоем науки вообще. Но все-таки знания о Земле продолжали развиваться.

Схоластический период

Схоластический период длился с V по XV вв. в Западной Европе. В других странах он продолжался с VII по XVII вв. С падением Римской Империи научные знания прекращают свое стремительное развитие в ее пределах. Греция уже не являлась центром научных идей. Однако и в Западной Европе наука развивалась слабо. Естествознание в это время переходит к ученым Средней Азии, но об их исследованиях сохранилось очень мало данных. До нас дошли лишь некоторые их труды .

Ибн-Сина (или Авиценна) объяснял изменение земной поверхности двумя причинами. Одна - это воздействие внутренних сил Земли (под ними ученый подразумевал ветер, дующий в подземных пустотах). Благодаря этим силам земная поверхность поднимается, образуя возвышенность. Другая причина - внешние (метеорологические, гидросферные и др.) воздействия, разрушающие участки поверхности планеты, создающие углубления. В этой гипотезе даже учитывалось, что плотность составляющих поверхности, разрушающейся извне, различна. Тогда на месте рыхлых пород образуется понижение рельефа, на месте твердых - его повышение, т.к. вокруг них породы выветриваются сильнее.

Ибн-Сина также предполагал, что море неоднократно наступало на сушу и снова отступало. Свидетельством этого он видел нахождение в горах слоев различных горных пород. Ученый полагал, что когда суша освободилась от моря, реки промыли в ней долины, т.о. образовался современный ему рельеф.

Ибн-Синой была создана новая классификация минералов и горных пород. Он разделил их на камни, плавкие тела (металлы), горючие серные вещества и соли. Классификацию переняли европейцы, и она просуществовала достаточно долго.

Другой ученый Средней Азии - Бируни описал более 100 минералов и назвал их месторождения. Он также научился определять удельный вес минералов, сделав это почти на 700 лет раньше европейцев.

Некоторые другие азиатские исследователи продолжали развивать идеи античных представлений о мире.

Причиной медленного развития геологии в Европе явилось влияние церкви. Она вмешивалась в науку с библейской картиной мира и его происхождения. А поскольку геологи предлагали не соответствующее библейскому мировоззрение, их учения и труды подвергались критике или даже запрещались. Из-за этого возникло множество неверных гипотез, ложных учений. Произошло даже некоторое отставание науки от античной. Например, о найденных в земле останках ископаемых живых организмов говорили, будто это игра природы или пример самозарождения жизни, т.к. по церковному учению жизнь создана Богом в таком виде, в каком она есть сейчас, а находками были ныне не существующие организмы. Также вводились ложные учения о том, что Земля является прямоугольником, а звезды на небе передвигают ангелы.

Некоторые ученые в Европе, игнорируя церковь, предлагали свои идеи о мире. Но они лишь заимствовали античное мировоззрение .

Однако, несмотря на торможение развития теоретической геологии ее практическая направленность (прикладная геология) развивалась более успешно, особенно в Европе. Это было связано с развитием человечества, и как следствие, с возрастанием потребностей в минеральном сырье.

Строительство городов требовало природного материала для создания зданий. Возрастание числа городских ремесленников, нуждавшихся в материале для своих изделий, часто изготавливаемых из камня, также способствовало развитию горнорудного дела. Следствием этих факторов стало увеличение количества полезных ископаемых, извлекаемых людьми из земных недр .

Период возрождения (с XV-XVII вв. до середины XVIII в.)

Период был подготовлен эпохой великих географических открытий. Путешествия Колумба, Магеллана, Васко да Гама способствовали накоплению большого материала о всей поверхности Земли . Так, во время кругосветного путешествия Магеллана было окончательно доказано, что наша планета имеет шарообразную форму. Гипотезы ученых периода возрождения становятся настолько убедительными, подтверждаются такими неоспоримыми фактами, что церковь отступает перед наукой.

В период возрождения Николай Коперник, Галилео Галилей и Джордано Бруно утвердили гелиоцентрическую модель мира .

Как известно, в эпоху Возрождения происходит духовный подъем человечества. Хотя влияние церкви еще сохранялось, ее учения перестают быть единственным толкованием мира. Люди начинают верить науке.

Поскольку города продолжали расти, техника развивалась, добыча богатств Земли становилась более быстрой и эффективной. Увеличилось и количество разрабатываемых месторождений.

Конечно, во время добычи полезных ископаемых люди накапливали знания о свойствах горных пород, об особенностях их залегания, о строении земной коры. Обобщение этого материала приводило к важным теоретическим выводам.

Среди людей, внесших вклад в геологию во времена периода возрождения, следует выделить немецкого ученого Георга Бауэра (или Агриколу). Он обобщил все достижения горняков Западной Европы. Ученый описал способы прокладки шахт, их особенности. Также Агриколой впервые было установлено отличие минералов от горных пород. Ученый описал свойства множества минералов, что позволило другим геологам определять минералы. Агрикола занимался и изучением кристаллов.

Знаменитый Леонардо-да-Винчи тоже внес в науку, некоторые геологические сведения. Например, он высказал идею о том, что горные породы могут располагаться пластами, залегающими горизонтально, или в виде складок. Также Леонардо считал находки древних вымерших организмов действительно их останками, а не игрой природы, в противоположность ученым схоластического периода.

В период возрождения вклад в геологию внесла Россия. Поиск месторождений широко организовывался правительством. В 1584 г. был создан приказ Каменных дел. В пределах Российской империи добывалось множество полезных ископаемых. Они также экспортировались в другие страны.

Датчанин Нильс Стено основал стратиграфию и открыл первый закон кристаллографии о постоянстве углов кристаллов, сделал первое научное обобщение-сводку по земному магнетизму .

Закончился донаучный этап развития геологии. Уже было накоплено достаточно материала о Земле. Его необходимо было лишь обобщить и дополнить теоретическими выводами. В научный этап, вооружившись новыми технологиями, духовными силами человечество стало решать эту задачу. Но конечно, донаучный этап развития геологии не мог мгновенно смениться научным. Поэтому в ее истории выделяют также переходный период.

1.2 Переходный период (вторая половина XVIII в.)

Переходный период в развитии геологии характеризуется тем, что в это время одновременно встречаются как старые учения донаучного периода, так и научные обобщения. Накопленные донаучным этапом геологические знания систематизируются и, таким образом, в переходный период происходит становление геологии как науки.

Важным отличием переходного периода от донаучного стало то, что в это время в геологии утвердилась идея об изменчивости мира, тогда как раньше большинство ученых считало, что мир всегда существовал в неизменном виде. Идею развития Земли высказывали многие ученые переходного периода, но в первую очередь она связана с именами Ж. Бюффона, И. Канта и М.В. Ломоносова. В своих трудах они рассматривали всю историю Земли, от ее происхождения и до современного состояния, как единую картину мира. По мнению этих ученых Земля постоянно изменялась .

Достижением геологии стала классификация диагностических признаков минералов, разработанная Вернером. Он также исследовал рудные полезные ископаемые и предложил систему стратиграфической последовательности горных пород. В развитии теоретической геологии ученый сыграл скорее отрицательную роль: он разработал схему формирования горных стран на идеях нептунизма.

В противоположность А.Г. Вернеру Джеймс Геттон доказывал теорию плутонизма, говоря о решающем значении в формировании Земли ее внутренних сил .

Ученый И. Кант в 1755 г. выдвинул гипотезу происхождения Солнечной системы. Согласно ей элементарные частицы первоначально рассеянные во Вселенной, собирались в сгустки под действием взаимного притяжения. При сжатии и раскаливании одного из сгустков вещества образовалось Солнце. Вокруг него собрались туманности, в которых возникли планеты, в т.ч. Земля. Ж. Бюффон создал гипотезу развития Земли. Он считал, что когда наша планета затвердела, она покрылась океанами. Благодаря движениям вод в них образовались неровности дна. Возвышенности стали материками при отступании воды. Период существования Земли Бюффон определял в 75 тыс. лет. Сейчас нам кажется, что это очень малый срок, однако богословы подвергли критике гипотезу Бюффона, т.к. по библейскому учению Земля существует 6000 лет .

Итак, к началу XIX века геология сформировалась как наука. Следующий этап ее развития - научный, пополнил знания людей о Земле новейшими сведениями.


Героический период (первая половина XIX века)

С началом периода связано появление биостратиграфического метода. Он позволял определять относительный возраст горных пород по сложности устройства находящихся в них останков древних организмов (данный метод подробнее описан мной в п. 2.1 настоящей работы).

В качестве самостоятельной дисциплины в геологии выделилась палеонтология. (см. п. 1.4.).

В начале XIX века К.Л. фон Бухом была выдвинута первая тектоническая гипотеза. В ней ученый рассматривал вулканизм, как ведущий процесс, формирующий горы. Гипотеза была подтверждена исследованиями А. Гумбольдта. Ее приняли многие ученые, и она играла важную роль в представлении людей о горообразовательных процессах.

Сведения, полученные о химическом составе минералов и о законах образования их кристаллов, позволили к концу героического периода создать химическую классификацию минералов. Эта классификация длительное время составляла основу минералогии.

В конце героического периода в геологию был внесен еще один важный вклад. Представители стратиграфии заметили, что в некоторых слоях горных пород между организмами, относящимися к разному геологическому времени, не обнаружена эволюционная связь. Т.е. у одних организмов не могли найти предков, у других потомков. Чтобы объяснить эти факты, ученые создали теорию катастроф. Теория включала в себя идею существования в истории Земли многочисленных катастроф, которые, по мнению ученых, периодически полностью уничтожали жизнь на планете, затем она возникала заново. Ч. Лайель впервые возразил против этого в своем труде «Основы геологии…» (1830-1833 гг.). Он писал, что органический мир развивался на Земле последовательно и постоянно. Однако идеи ученого были подтверждены и приняты лишь спустя 20 лет .

В героический период геологами была решена еще одна задача. Давно стоял вопрос происхождения странных валунов, районы распространения которых удалены на тысячи километров от мест их находок. Объяснить этот факт позволила ледниковая теория, которая предполагала влияние многочисленных оледенений на земную поверхность. Впоследствии эта гипотеза не только доказала перенос валунов ледниками, но и была подтверждена сама, а эпохи оледенений стали считать частью истории Земли.

Итак, героический период недаром получил свое название. Геология действительно достигла огромных успехов. Итогами периода стало создание первых геологических обществ, национальных геологических служб в России, Англии, Франции. Также характерными для этого периода стали большой масштаб исследований и более организованный характер их проведения .

Геология стала самостоятельной дисциплиной естествознания. Появилась новая профессия - геолог.

Классический период (вторая половина XIX века)

В начале классического периода появилась книга Ч. Дарвина «Происхождение видов путем естественного отбора…». Она подтверждала гипотезу Ч. Лайеля. Поскольку гипотеза эволюционного развития жизни стала подтверждаться и находками организмов, являющихся переходным звеном между теми формами жизни, которые раньше считались несвязанными друг с другом, то геологи, наконец, отказались от катастрофизма. Они приняли теорию эволюции.

Период также характеризуется появлением гипотезы контракции, выдвинутой Эли де Бомоном. Ученый считал, что в процессе остывания Земли ее объем уменьшался, это приводило к появлению складок в земной коре. Так он объяснял происхождение гор. Кажущаяся внутренняя логичность гипотезы контракции и отсутствие ей альтернативы привело к тому, что эта идея закрепилась в геологии на весь классический период .

В классический период возникло понятие о магме - жидком веществе, которое в некоторых случаях может образовываться в твердой земной мантии. В частности магма извергается через кратеры вулканов и, освобождаясь от газов, превращается в лаву. Дифференциацией магмы назвали процесс превращения ее в различные горные породы при застывании. Этим объяснялось происхождение многих горных пород.

Хочется отметить, что во второй половине XIX века в связи с развитием промышленности во многих странах увеличился и объем добычи полезных ископаемых. Мировая выплавка стали выросла с 500 тыс. до 28 млн. тонн, в 3 раза больше стала мировая добыча угля. Поскольку все страны нуждались в еще большем количестве минерального сырья, то их правительства выделяли большие средства на развитие геологии. Следствием этого стало появление геофизики, которая позволила изучать глубинное строение нашей планеты .

Можно также выделить, что в классический период многое было сделано для изучения геологического строения России. В 1882 г. был основан Геологический комитет России.

В классический период произошло значительное развитие петрографии. В руках специалистов о горных породах появился поляризационный микроскоп. С его помощью изучали тончайшие прозрачные пластинки горных пород - шлифы (оптическая петрография).

Из минералогии как самостоятельная дисциплина выделилась кристаллография.

Также было положено начало геологии нефти. Ее стали рассматривать как полезное ископаемое, были созданы гипотезы ее образования .

Таким образом, классический период развития геологии принес этой науке много пользы. Геология стала играть важную роль среди естественных научных дисциплин.

Следующий период развития геологии - «критический», стал переломным этапом в развитии естествознания в целом. Почва для совершенных в «критический» период открытий была подготовлена геологическими достижениями классического периода.

«Критический» период» (первая половина XX века)

Этот период развития геологии, не случайно получил такое название. Стоит отметить, что его становление как «критического» периода обусловлено многочисленными новыми открытиями в разных областях науки. Это и успехи в познании микромира, и открытие рентгеновского излучения, естественной радиоактивности. Все это оказывало существенное влияние и на геологию .

В начале периода произошло крушение гипотезы контракции. Вместо нее появились другие тектонические гипотезы. Наиболее соответствующей современным представлениям о Земле стала гипотеза дрейфа континентов, предложенная А. Вегенером. Она подразумевала, что земная кора состоит из целостных блоков - литосферных плит, которые двигаются относительно друг друга, а вместе с ними и материки (см. рис. 1). Гипотеза играла очень важную роль в геологии. Она объясняла процессы горообразования смятием земной коры при столкновении литосферных плит. Также этим объяснялись землетрясения и вулканизм. Гипотеза находила подтверждение в том, что горные области зоны землетрясений и вулканизма почти всегда совпадают - они соответствуют границам литосферных плит. Также гипотезу подтверждало и то, что восточное побережье Южной Америки соответствовало западному берегу Африки, т.е., если убрать Атлантический океан, приблизив Африку к Южной Америке, они бы составили единый континент, который и образовал эти материки, расколовшись в прошлом.

Однако, несмотря на такие веские доводы в пользу правильности гипотезы, она подвергалась критике и долго не принималась в геологии. Из-за неправдоподобности гипотеза была отклонена . Основной же стала ундационная гипотеза. Она подразумевала формирование рельефа за счет вертикальных движений в земной коре .

В «критический» период происходит выделение геотектоники в отдельную научную дисциплину. Она оказала большое влияние на развитие теоретической и прикладной геологии. Раздел этой дисциплины учение о геосинклиналях - подвижных поясах на границах литосферных плит, также продолжал развиваться, объясняя многие особенности Земли.

В.А. Обручев, С.С. Шульц, Н.И. Николаев стали основателями геотектоники - дисциплины, изучающей тектонические движения недалекого прошлого и современности.

При помощи геофизических методов была создана модель оболочного строения Земли. В ней выделили ядро, мантию, земную кору. Как мы знаем, эти геосферы выделяются и современными учеными.

В петрографии стало интенсивно развиваться физико-химическое направление исследований и, как следствие, возникла кристаллохимия. Для изучения кристаллов стал применяться рентгеноструктурный анализ.

Продолжала развиваться геология горючих полезных ископаемых. Также появилось мерзлотоведение. К концу «критического» периода были составлены геологические карты разных территорий, были написаны труды, обобщающие геологические материалы для некоторых территорий.

Увеличилась потребность в полезных ископаемых, стали добываться и применяться новые их виды - урановые руды, нефть. Для поиска месторождений разрабатывались новые методы .

Новейший период (1960-1990-е гг.)

В начале новейшего периода произошло техническое перевооружение геологии. Появились электронный микроскоп, электронно-вычислительные машины, масс-cпектрометр (определитель массы химических элементов). Стало возможным глубоководное бурение, изучение Земли из космоса.

Важным стало то, что Землю смогли исследовать, сравнивая ее с другими планетами. Также появилась возможность определения абсолютного возраста горных пород.

Значительных успехов достигла палеонтология - выведены новые группы ископаемых останков, закономерности развития живых организмов, выделены великие вымирания в истории биосферы.

В новейший период ученые стали решать некоторые проблемы геологии, например, вопросы минералогии, в лаборатории с помощью экспериментов.

Были открыты законы метасоматической зональности (особенностей залегания минералов, видоизмененных при взаимодействии с водными растворами) и создана теория различных типов литогенеза (пути превращения горных пород в метаморфические). Также в новейший период были созданы тектонические карты Евразии и палеогеографические карты мира.

В новейший период были приняты и продолжили развитие идеи мобилизма, в т.ч. гипотеза дрейфа континентов.

Палеонтологи выявили самые ранние этапы развития жизни на Земле.

С возникновением экологических проблем связано появление геотехнологии - науки, решающей задачи рационального использования недр нашей планеты. Также появилась экологическая геология.

В новейший период был разработан механизм спрединга. Он включал идею о том, что новая океаническая кора образуется в зонах выхода и застывания магмы. Таким зонам соответствуют срединно-океанические хребты. Затем новая кора продвигается к континентам и на границе континентальной земной коры заходит под нее. В этих местах образуются глубоководные желоба, а на континентах часто происходит образование гор .

Геология новейшего периода мало отличается от современной. Но на этом ее развитие не остановилось, оно продолжается в настоящем и будет продолжаться в будущем.

Как вывод к истории геологии я хочу выделить основные разделы науки, сформировавшиеся к настоящему времени.

.4 Разделы геологии

К настоящему времени в геологии сформировались следующие основные разделы.

1. Динамическая или физическая геология. Этот раздел изучает современные геологические явления, изменяющие Землю на глазах людей (атмосфера, вода, флора и фауна, вулканизм).

. Петрография или наука о горных породах. Этот раздел уже почти достиг размеров самостоятельной науки, ведь изучение свойств горных пород важно для их применения.

. Палеонтология - наука об ископаемых живых организмах, составляет третий раздел геологии. Он изучает развитие, происхождение древних живых существ и даже восстанавливает их среду обитания.

Изучением последовательности и условий залегания различных горных пород, а также следов жизни в них занимается стратиграфия . Она относится к четвертому разделу геологии. Подразделяясь на петрографическую и палеонтологическую, стратиграфия занимает важное место в геологии - она охватывает изучение сразу множества закономерностей на Земле. О стратиграфии подробнее написано в п. 2.1. настоящей работы.

. Историческая геология составляет пятый раздел науки о Земле. Она как бы подводит итоги всем исследованиям нашей планеты: распределяет геологические памятники, процессы и явления во времени.

Это основные разделы геологии. Они в свою очередь подразделяются на множество более мелких направлений, изучающих либо разные стороны вопроса, касающегося основного раздела, либо исследующих его разными методами .

Итак, описана история развития геологических наук. С ее помощью сформировано представление о геологии, выделены основные идеи и положения этой науки.

2. Методы исследования

Сейчас я опишу методы, с помощью которых геология изучает Землю. Понять их очень интересно и важно. Хочу также заметить, что названия многих методов совпадают с названиями различных разделов геологии, которые их применяют.

.1 Определение относительного возраста горных пород

Чтобы изучать прошлое планеты и развитие жизни на ней необходимо уметь определять какие горные породы образовались на Земле раньше, какие - позже. Для этого существуют самые различные способы.

Первоначально датчанин Нильс Стено выдвинул принцип: «Слой, лежащий выше, образовался позже слоя, лежащего ниже». Отраслью геологии, изучающей последовательность образования и закономерности размещения горных пород, используя этот и другие принципы, стала стратиграфия. Это одна из основных отраслей геологии.

Однако у принципа Стено имеются и свои недостатки. Например, невозможно сопоставить возраст пород, лежащих в разных местах. Позже и эта проблема была решена. Ученые заметили, что живые организмы устроены тем сложнее, чем они моложе. Так, сопоставляя особенности строения их останков в горных породах, определяют какие организмы, а следовательно и породы, более молодые. Теперь даже при перемешивании пластов горных пород можно определить первоначальную последовательность их залегания (см. рис. 2).

В настоящее время ученые выбрали для каждого периода в истории Земли наиболее характерные формы жизни. Их останки называют руководящими ископаемыми. По ним точно определяют последовательность накопления горных пород.

Благодаря этим открытиям была составлена геохронологическая шкала, в которой история Земли разделена на эоны, эры, периоды и эпохи. Шкала общепринята, используется повсеместно и важна для многих отраслей науки. Однако в ней первоначально указана лишь последовательность периодов. Их длительность, даты начали и конца были установлены при помощи изотопного метода определения абсолютного возраста горных пород .

.2 Определение абсолютного возраста горных пород

Как определить возраст одних горных пород относительно других, геологи уже поняли. Но еще одна задача была не решена - определить, сколько лет существуют те или иные горные породы. С развитием ядерной физики люди научились при помощи новейших приборов определять абсолютный возраст горных пород.

Суть изотопного метода (так называется способ определения абсолютного возраста горных пород) заключается в следующем. Установлено, что нестабильные изотопы химических элементов распадаются и превращаются в более легкие стабильные атомы. Причем скорость этого распада почти не зависит от внешних условий. Так по количеству нестабильного элемента и по количеству продуктов его распада определяют, насколько сильно распался элемент. В некоторых случаях определяют не количество продуктов распада, а количество треков - областей, выжженных в породе осколками ядер нестабильного изотопа. Это позволяет узнать число делений ядер. Зная всегда постоянную скорость распада, определяют, когда он начался, а значит и как давно образовалась порода.

Самым точным является радиоуглеродный метод, при котором используется распад нестабильного изотопа углерода с атомной массой 14. Период его полураспада - достаточно короткий промежуток времени - 5768 лет. Но поскольку за время равное десяти периодам полураспада эффективность течения реакции снижается в 1024 раза, то становится затруднительно зарегистрировать такие малые изменения вещества. Поэтому время, измеряемое этим методом, не превышает 60 000 лет. В этом промежутке возраст определяется наиболее точно.

При помощи радиоуглеродного метода определяют возраст органических останков, поскольку живые организмы при жизни поглощают углерод из атмосферы. В ней содержание изотопов углерода постоянно, т.к. поддерживается образованием C14 при помощи космической радиации. А после смерти организма нестабильный углерод начинает распадаться .

Для определения количества изотопов углерода часто применяют метод масс-спектрометрии (см. рис. 3). В этом случае содержащийся в образце углерод окисляют, превращая его в углекислый газ. Затем молекулы газа превращают в ионы и пропускают через магнитную камеру. В ней CO2 с легким углеродом откланяется сильнее, чем газ с тяжелым изотопом. Регистрируя отклонения от прямолинейной траектории, определяют, сколько в веществе осталось нестабильных тяжелых изотопов. Чем меньше осталось нестабильных атомов, тем древнее образец, возраст которого определяют. В годах это рассчитывают при помощи специальных формул.

Период полураспада урана с атомной массой 238 - 4,51 млрд. лет. Поэтому ураново-свинцовый метод (свинец - продукт распада урана) позволяет датировать древнейшие события, хотя при этом и снижается точность измерений. Технология метода заключается в следующем. Среди пород, возраст которых необходимо определить, отбираются те, которые содержат циркон - ураносодержащий минерал. Затем породу измельчают до кристаллов и их просеивают через специальные сетки, что бы отделить кристаллы одного размера. При погружении этих кристаллов в растворы высокой плотности, самый тяжелый из кристаллов - циркон оседает на дно. Его выбирают и слоем в один кристалл наклеивают на специальную пластинку. Затем кристаллы на пластинке шлифуют и опускают в раствор кислоты. При этом вещество внутри треков растворяется, и они становятся видными через микроскоп. Затем количество треков в единице площади подсчитывают. В годах возраст определяют по специальным математическим формулам. При этом учитывают и уменьшение скорости распада со временем.

Изотопный метод в настоящее время является наиболее точным, но существуют и другие способы определения абсолютного возраста горных пород. Например, определив скорость накопления осадочных горных пород и зная толщину их слоя, приблизительно оценивают и время образования этих пород. Но ведь скорость накопления пород может меняться, а слой их способен сжиматься и, потому подобные методики недостаточно точны.

2.3 Спектральный анализ

Люди давно заметили, что разные химические элементы, помещенные в пламя, окрашивают его в разные цвета (см. рис. 4). Например, медный купорос - в зеленый, поваренная соль - в ярко-желтый. Однако точно определить химические элементы по цвету огня невозможно, т.к. некоторые из них дают одинаковый цвет.

В 1859 г. немецкие ученые химик Роберт Бунзен и физик Гистаф Кирхгоф нашли способ различать оттенки цветов пламени. Они воспользовались своим изобретением - спектроскопом. Он представляет собой стеклянную призму, помещенную перед белым экраном. Призма раскладывает луч света на монохроматические лучи, благодаря чему видны различия между спектрами элементов, которые визуально одинаково окрашивают пламя.

Вообще, спектральный анализ оказался важен как для геологов, так и для представителей новой науки, им же и порожденной - космохимии .

2.4 Гравиразведка

Вес - это та сила, с которой тело, притягиваясь к Земле, давит на опору или оттягивает подвес. Оказывается, даже притяжение тел к Земле используют в геологии.

Любое тело, обладающее массой, обладает притяжением. Мы очень хорошо наблюдаем это, ведь земная гравитация и есть сила притяжения Земли. Но, если все тела притягиваются друг к другу, тогда почему мы не замечаем, например, притяжения между двумя людьми? Дело в том, что эти силы очень малы, но все-таки они существуют. Экспериментальным путем доказано, что отвес отклоняется от вертикального положения вблизи большой горы. Так же установлено, что два больших свинцовых шара на близком расстоянии катятся друг к другу .

В соответствии с эти можно сделать вывод, что в зависимости от плотности пород, залегающих под землей, будет меняться и величина силы тяжести (в физике - ускорение свободного падения). Но проблема в том, что эти изменения очень малы, и человек их не замечает. Только при помощи точных приборов можно установить изменения притяжения.

Первоначально силу тяжести определяли по периоду качания маятника и его длине. Однако, в связи с неудобством применения маятника, его заменили более удобным прибором - гравиметром. Его принцип действия прост: на пружинку подвешен массивный груз и по степени ее закрученности определяют силу тяжести.

Сейчас метод гравиразведки применяется повсеместно для поиска месторождений нефти (над пустотой в земле притяжение меньше) и месторождений очень плотных минералов, например, руд железа. Метод чрезвычайно прост и недорог, а для исключения ошибок его часто применяют вместе с другими методами. Составлены карты гравитационного поля Земли.

При помощи измерения силы тяжести ученые изучают вопросы, связанные с формой Земли и строением ее недр .

2.5 Применение окаменелостей

Находки палеонтологов, следы прежних форм жизни, могут рассказать не только о развитии живых организмов, их строении, но и еще о многих закономерностях их формирования, об окружающей их среде и ее свойствах.

Например, зная, что растительность различных климатических поясов неодинакова, ученые, изучая останки древних растений, делают выводы о климате той или иной местности в прошлом. А зная условия жизни современных сообществ живых организмов (температура, количество потребляемой пищи, грунт) можно определить условия среды обитания подобных им сообществ в прошлом. Так же, изучая ритмичность роста некоторых организмов (кораллов, двухстворчатых и головоногих моллюсков, усоногих раков и др.) определяют скорость вращения Земли, периодичность приливов, наклон земной оси, частоту штормов и многое другое. К примеру, установлено, что 370-390 млн. лет назад в году было примерно 385-410 дней, значит, Земля вращалась вокруг своей оси быстрее, чем сейчас.

На практике для поиска месторождений нефти применяют зависимость цвета останков конодонтов (живых организмов) от температуры недр, где они залегали. Если температура была до 250°С, то из органических веществ не могла образоваться нефть. Если же температура была больше 800°С, то нефть которая могла там существовать разрушилась. Но если температура была между этими пределами, то поиск нефти можно продолжить.

По особенностям состава останков морских организмов можно определить температуру и состав воды в определенное время. А исходя из всех этих данных, можно дальше выводить закономерности, существующие в мире, и применять их во всех областях науки .

2.6 Биогеохимический метод

Биогеохимический метод основан на изучении особенностей растений, обусловленных присутствием определенных минералов в земной коре.

Люди еще до открытия современных методов поиска полезных ископаемых пользовались тем, что у растений, растущих над разными рудами, появляются свои особенности. Например, определенные виды мхов, мяты и гвоздичных, растущие в большем, чем обычно количестве, указывают на наличие в недрах земли меди. А месторождения алюминия, вызывающие повышенное содержание этого металла в почве, приводят к укорачиванию корней и пятнистости листьев. Никель приводит к появлению белых мертвых пятен на листьях. Так, люди, визуально наблюдая растения, успешно открывали месторождения необходимых им горных пород.

В XX веке биогеохимический метод стал применяться еще более успешно: появилась возможность выявлять аномалии растительного мира с помощью аэрофотосъемки, начали применять спектроскопию для определения повышенного содержания минералов в растениях, свидетельствующего об их избытке в почве. Преимуществом метода является возможность нахождения руд, залегающих на значительных глубинах.

В настоящее время для упрощения биогеохимического метода созданы списки растений индикаторов с известной реакцией на определенные минералы. Более 60 растений из списка проверены и с их помощью можно искать почти все виды ископаемых металлов. Многие месторождения уже открыты с применением данного метода .

2.7 Сейсмометрия

В начале ХХ века один из основоположников сейсмологии Борис Борисович Голицын писал: «Можно уподобить всякое землетрясение фонарю, который зажигается на короткое время и освещает внутренность Земли». Действительно, скрытые от нас многокилометровыми толщами горных пород земные недра, поддаются исследованию в основном во время землетрясений. Ведь даже при помощи бурения в земную кору не проникают дальше 12 км.

Для изучения недр используют возникающие при землетрясении сейсмические волны. Применяется особенность распространения волн с разной скоростью в веществах с разными свойствами (либо через разные агрегатные состояния одного вещества), а на границе разных веществ волны либо отражаются, либо искажаются. Если источник сейсмических волн расположен вблизи поверхности Земли, то многие волны, отражаясь от нижележащих слоев возвращаются к поверхности, где их фиксируют сейсмоприемниками. Эти приборы во много раз усиливают ничтожно маленькие колебания почвы. Зная время распространения волн и учитывая их свойства делают вывод о расположении отражающих поверхностей, узнают глубину их залегания, угол наклона и структуру. Причем источником сейсмических волн часто используют искусственный взрыв, т.к. тогда точно известно время начала движения волн.

В сейсморазведке регистрируют преломленные и отраженные волны. Первые из них более сильные. При этом и методы их исследования различны.

Отраженные волны сразу дают подробный разрез изучаемого участка. Впервые при помощи отраженных волн удалось обнаружить нефтяные месторождения в 30-х годах ХХ века. После этого сейсморазведка стала ведущим методом в геофизике. Чтобы составить полное представление о строении недр Земли колебания регистрируют одновременно во многих местах.

Метод преломленных волн также успешно совершенствовался. С их помощью стало возможным проводить исследования на больших глубинах. Геологи смогли изучать строение земной коры, особенности формирования материков и океанов, причины тектонических движений.

С появлением цифровой обработки сигнала в 60-х годах анализ сейсмологической информации стал более полным и быстрым. Также ученые заменили источник сейсмических волн с взрывчатки на экологически безопасные и позволяющие выбирать частоту колебаний вибраторы.

Сейсморазведка имеет огромное значение в геологии. В основном с ее помощь определены геосферы Земли, их толщина, состояние вещества в них.

.8 Магниторазведка

Земля, подобно гигантскому магниту окружена магнитным полем. Оно простирается в пространстве на 20-25 земных радиусов. О происхождении магнитного поля Земли до сих пор идут споры. Т.к. оно может возникнуть либо под действием электричества, либо намагниченного тела, выдвигают гипотезу, согласно которой поле земли возникает из-за электрических токов, появляющихся в земном ядре при вращении планеты.

Но, независимо от происхождения, поле оказывает огромное влияние на обитателей Земли - оно защищает от космической радиации. Также именно благодаря полю стрелка компаса ориентируется на север. Замечено, что северный конец стрелки компаса склоняется вниз по отношению к горизонтальному положению. Это наводит на мысль, что источник магнетизма находится в земных недрах.

Изучение явлений, связанных с магнитным полем помогает понять строение нашей планеты, частично узнать ее историю, выяснить связь Земли с космосом.

Замечено, что намагниченные горные породы также влияют на ориентацию стрелки компаса. Благодаря этому магнитные аномалии (отклонения от нормального поля Земли) используют при поиске полезных ископаемых, имеющих большую намагниченность (железосодержащие минералы). Уже в XVII веке в России и Швеции для поиска железных руд использовали компас. Позднее был создан более точный прибор, определяющий изменения магнитного поля Земли и его силу - магнитометр (см. рис. 6).

Изучая остаточную намагниченность горных пород, которая была ими приобретена под действием магнитного поля Земли в прошлом, ученые определяют положение магнитных полюсов и силу магнитного поля Земли в древнейшие геологические периоды. Например, установлено, что раньше на месте современного северного полюса был южный и наоборот. Предполагают, что во время их смены магнитное поле ослабевает, космическая радиация проникает на Землю, что отрицательно влияет на ее обитателей.

Магниторазведка важна для людей не только поиском полезных ископаемых. С ее помощью составляют специальные карты магнитного склонения (отклонение стрелки компаса от северного направления в градусах). Это важно для точного ориентирования на местности .

2.9 Электроразведка

Электроразведка - это раздел геофизики, определяющий состав и строение земной коры с применением естественных или созданных искусственно электрических токов. Этот способ разведки насчитывает, пожалуй, наибольшее число разнообразных методов и их разновидностей - более 50.

Вот основные из них:

. Метод сопротивлений - основан на пропускании через землю постоянного тока при помощи двух электродов. Затем измеряют напряжение, вызванное этим током, другими электродами. Зная силу тока и напряжение рассчитывают сопротивление. По сопротивлению узнают какие породы его вызывают (разные породы имеют различное сопротивление). А учитывая расположение электродов, узнают в каком месте находятся породы, обладающие высоким сопротивлением.

При помощи метода сопротивлений рассматривают слои, составляющие исследуемый участок, их распределение. В частности возможен поиск месторождений нефти и газа.

Для индукционного метода используют искусственно созданное переменное электрическое или магнитное поле. Под его воздействием в земле возникает электромагнитное поле. Зная параметры созданного поля и фиксируя свойство поля, возникшего в земле, определяют какой по свойствам средой оно испускается и где она расположена. Источник искусственного поля можно перемещать и тогда картина недр становится более подробной. Способы обработки данных, полученных индукционным методом, очень сложны.

Отдельно выделяют электроразведку скважин . Для нее применимы как названные выше методы, так и многие другие. Это и радиоволновое просвечивание, и изучение естественного электрического поля, и метод погружных электродов. Электроразведка скважин позволяет определить форму, размер и состав горных пород в пространстве около скважин и в них самих .

2.10 Определение месторождений по космическим снимкам

С появлением возможности получения фотографий обширных участков земной поверхности из космоса, геологи смогли выявить связь между внешним видом, формой различных интрузий и их составом.

К примеру, замечено, что горные породы, содержащие апатит, часто выходят на поверхность в форме «колец» и «бус». Эту закономерность можно наблюдать в форме наших Хибинских гор - они представляют собой полукольцо, в котором находятся богатейшие залежи апатит-нефелиновых руд. Меднопорфировые месторождения также связаны со специфичными видами массивов, которым даны специальные названия: «дракон», «пень» и «корень».

Изучение космических снимков древних и современных вулканов также позволяет находить месторождения полезных ископаемых.

Таким образом, с появлением нового метода исследования существенно расширились возможности геологии. Теперь геологи могут судить о распространенности месторождений в масштабах планеты. А также экономятся время и силы ученых: сначала выясняется местоположение возможного месторождения, затем туда снаряжается экспедиция, в то время как раньше приходилось сложными методами непосредственно изучать всю поверхность земли. Увеличилась и вероятность нахождения месторождений.

2.11 Что можно узнать, изучая гальку

Изучая обычную речную гальку, можно выявить много интересного. Ученые могут определить откуда галька начала свой путь. Если в гальке содержатся полезные ископаемые, она может привести к их месторождениям. При сохранении у гальки первоначального контура можно определить условия ее формирования. Рассчитывая скорость движения гальки, скорость уменьшения ее веса, степень окатанности, определяют и расстояние, пройденное ей. Для этого выведены специальные формулы. По тому, как ориентирована галька, находят направление движения несуществующего ныне водного потока, а по углу наклона гальки определяют скорость его движения .

3. Место, занимаемое геологией в современном мире

.1 Связь геологии с другими науками

Сейчас, когда методы исследования, применяемые в геологии, описаны, я бы хотел уделить внимание связи геологии с другими науками.

Связь между различными науками очень важна. Совместными усилиями ученые лучше познают мир. Взаимосвязь проявляется в двух видах. 1.) Готовые данные, полученные одной наукой, принимаются и используются другой наукой. Например, таблица Менделеева используется почти всеми естественными науками как аксиома. 2.) Постоянное применение методов исследования одной науки в другой. Например, использование методов физики в геологии, когда среда или явление не поддается непосредственному наблюдению.

Связь между науками часто двухсторонняя. Примеров успешного взаимодействия различных наук с геологией существует множество. Некоторые из них я приведу.

Для изучения эволюции живого, биология обращается к находкам палеонтологии - ископаемым остаткам. Это разумно, т.к. необходимо знать строение организмов на разных этапах эволюции, что бы понять как они все лучше приспосабливались к окружающей среде, как природа выбирала и сохраняла наилучшие формы жизни. Вопрос о происхождении человека биологи тоже решают совместно с палеонтологами, анализируя останки предков людей.

С другой стороны, переработка полезных ископаемых может производится с помощью биологических методов. Известно, что золото часто включено в кристаллическую решетку минералов в очень малых количествах и его сложно извлечь. Тогда на помощь приходят бактерии. Они разрушают кристалл минерала и таким образом золото извлекается.

Для поиска полезных ископаемых с помощью биогеохимического метода используют особенности растений, изученные ботаниками .

Часто бывает, что гипотеза, выдвинутая специалистами одной научной области, находит подтверждение в других областях. Взаимодействие наук также важно для подтверждения и сопоставления результатов исследований, так как разностороннее изучение какого-либо вопроса более эффективно.

Поэтому для получения ответов на важные вопросы должны чаще проводиться совместные исследования представителей разных наук, тогда точнее и полнее будут результаты исследований.

.2 Значение геологии в современном мире

Как вывод ко всему сказанному, я бы хотел добавить о значении геологии в современном мире.

Геология - одна из немногих наук, рассматривающая последовательность, длительность событий. Таким образом, она оказывает влияние на (духовное) представление о мире у людей: об обитателях Земли, облике нашей планеты в прошлом. Геология помогает человеку понять, как Природа создала современные сообщества организмов, как в прошлом накапливались используемые сейчас полезные ископаемые и каково место человека среди современной биоты. Обладая такими знаниями, человек делает вывод как важно уберечь Землю и жизнь на ней от загрязнений, сохранить и рационально использовать полезные ископаемые.

Итак, значение геологии велико для духовного развития человека.

Велика ее роль для обычного человека и просто в быту. Ведь полезные ископаемые добывают при помощи геологических методов. А уж роль полезных ископаемых в жизни человека сложно переоценить: с помощью угля и продуктов переработки нефти производится отопление домов в городах, на бензине ездят автомобили, природный газ используется для приготовления пищи, при помощи урана, нефти или угля вырабатываются всем необходимое электричество. Также почти все, созданное человеком, - дома, машины, дороги, ювелирные украшения, стекло - сделаны из природных материалов, добываемых в земле.

Геологическими достижениями пользуются люди самых различных профессий. Геокриология - раздел геологии, изучающий многолетнюю мерзлоту. Строители используют полученные ей данные для разработки норм и правил строительства в районах распространения мерзлоты.

Для правильного ориентирования на местности необходимо знать отклонение стрелки компаса от северного направления, что происходит из-за несовпадения географического и магнитного полюсов. Такие особенности магнетизма выявлены при помощи магниторазведки. Этот раздел геологии изучает не только поиск полезных ископаемых по магнитным аномалиям, но и магнитное поле планеты в целом.

По карте литосферных плит каждый человек может определить в каких областях часты землетрясения и извержения вулканов (таким областям соответствуют границы литосферных плит) и, например, при переезде, выбрать наилучшее место жительства или заранее подготовится к тектонической активности.

Таким образом, геология очень важна для всего человечества. От ее достижений напрямую зависит и развитие человеческого общества в техническом отношении.

4. Будущее геологии

В заключение к данной работе я хочу написать о будущем геологии.

Представить будущее любой науки достаточно сложно. Ведь необходимо сохранить объективность и не углубляться в область фантастики.

В настоящее время некоторые люди выдвигают мнение о том, что геология в будущем не нужна, т.к. содержание полезных ископаемых в земной коре уменьшается и вскоре они могут закончиться. Для удовлетворения человечества в минеральном сырье, считают они, будет применяться метод извлечения из огромных объемов горных пород ничтожных долей искомого вещества.

Однако предлагаемый метод комплексного извлечения минералов из горных пород имеет многочисленные недостатки.

Во-первых, сейчас ученые не располагают необходимыми технологиями (кроме примера с золотом и др.). Во-вторых, если бы данный метод применялся, то он был бы дорог и технически сложен. В-третьих, пришлось бы перерабатывать огромное количество материала с больших площадей планеты, что может привести к экологическим проблемам. В-четвертых, возникла бы проблема утилизации переработанных пустых пород.

Итак, такой способ на данный момент не возможен и вряд ли будет возможен в будущем для добычи всех необходимых людям полезных ископаемых. Однако его применение для добычи отдельных минералов возможно. Также можно разработать способы извлечения таким способом новых минералов. Но применять метод необходимо с осторожностью, чтобы не нарушить экологию.

Существует и другой взгляд на будущее геологии: следует совершенствовать способы поиска месторождений, методы добычи полезных ископаемых, разумно (экономично) расходовать ресурсы планеты, тогда минерального сырья должно будет хватать для человеческих нужд.

На мой взгляд, в будущем должен применяться и способ комплексного извлечения минералов из горных пород, и должны быть усовершенствованы имеющиеся методы поиска и добычи полезных ископаемых.

Также я считаю важным сохранение экологически благоприятной обстановки на планете, поэтому методы ведения исследований и непосредственно добыча полезных ископаемых в будущем должны наносить меньше вреда окружающей среде.

По-прежнему стоит проблема рационального использования земных богатств. Это необходимо учитывать при разработке методов добычи полезных ископаемых, при которых у природы не будет браться ничего лишнего.

Больше внимания необходимо уделить совместной работе геологии с другими науками, ведь часто использование косвенных методов физики, химии, математики помогает решать геологические задачи. Важно и увеличение точности геофизических методов, т.к. многие из них пока молоды и дают лишь приблизительные результаты.

Также общество ставит перед геологией такие задачи, как предсказание и предотвращение стихийных бедствий. Этому надо уделить особое внимание, т.к. решение этих задач приведет к спасению множества человеческих жизней .

В геологии имеется еще много проблем. Их решением непосредственно занимаются геологи. Например, невыяснено происхождение магнитного поля Земли, не установлено происхождение жизни, расположение и свойства геосфер Земли. Решение этих вопросов поможет человечеству более успешно использовать богатства нашей планеты.

Заключение

Я бы хотел, чтобы моя работа помогла юным геологам и просто людям, интересующимся геологией, сформировать представление об этой науке. В кратком и простом изложении материала мной выделены особенности геологии, ее достижения.

Хотелось бы добавить, что геология очень интересна, а сведения о ней и предмете ее изучения - Земле полезны каждому человеку.

Таким образом, цели и задачи настоящей работы выполнены: геология описана как наука, выделены основные задачи, изучаемые ей, описана история, методы исследования, разъяснено практическое значение науки, показана важность связи геологии с другими науками, рассказано о будущих перспективах развития геологии.

Литература

1. Большая российская энциклопедия

2. Ваганов П.А. Физики дописывают историю. - Ленинград: Изд-во Ленинградского университета, 1984. - С. 28 -32.

3. История геологии. - Москва, 1973. - С. 12-27.

Курс общей геологии. - Ленинград «Недра» Ленинградское отделение, 1976.

5. Перельман Я.И. Занимательная физика, книга 1. - Москва «Наука» Главная редакция физико-математической литературы, 1986.

6. Энциклопедия для детей. Т. 4. Геология. - 2-е изд. перераб. и доп. / Глав. ред. М.Д. Аксенова. - М.: Аванта+, 2002.

Журнал «Техника-молодежи», 1954, №4, с. 28-27

Геологические науки

(a. geological sciences; н. geologische Wissenschaften; ф. sciences geologiques; и. ciencias geologicas ) - наук o земной коре и более глубоких сферах Земли.
Oбъект, цель и основные задачи. Cвязь co смежными науками. Г. н. изучают состав, строение, происхождение, развитие Земли и слагающих её геосфер, в первую очередь земную кору, процессы, происходящие в ней, закономерности образования и размещения м-ний п. и.
Hауч. и практич. цель Г. н.: познание геол.. строения и развития Земли в целом; истории разл. геол. процессов, раскрытие закономерностей геол. явлений и разработка теории эволюции планеты; перспективная и прогноз выявления рудных p-нов, нефтегазоносных и угольных басс., м-ний п. и., включая ; разработка науч. методов их поисков и разведки, обоснование комплексного использования природных минеральных ресурсов; участие в решении проблем охраны природной среды и её стабильности; предвидение катастрофич. явлений; содействие прогрессу материалистич. мировоззрения.
Hепосредств. объекты Г. н. - горн. породы и их совокупности (стратиграфич. подразделения, формации, тела п. и. и др.), минералы, их хим. состав и , вымершие организмы, газовые и жидкие среды, физ. поля.
B совр. Г. н. входят (в т.ч. палеонтология), (включая геологию глубинных зон Земли), Литология, Петрология, Геофизика (физика "твёрдой" Земли), Гидрогеология, и др. B изучении геол. формы движения материи наука имеет дело c материально-энергетич. саморазвивающейся системой - Землёй, развитие к-рой создаёт основу для появления более высокой формы существования материи, связанной c Биосферой. Палеонтология - соединит. звено в изучении двух форм движения материи - геологической и биологической.
Pазвитие Г. н., её теоретич. исследований и методов познания во многом обусловливалось потребностями обществ. произ-ва. Bажнейшие факторы, стимулирующие прогресс Г. н., - рост горнодоб. произ-ва, потребности др. отраслей нар. x-ва (пром-сть, энергетика, стр-во, транспорт, воен. дело, c. x-во и др.) и общего развития техники. Использование совр. техн. достижений, прежде всего геофиз. и буровой техники, обеспечивает включение в сферу Г. н. всё более глубоких горизонтов Земли, повышение скорости обработки геол. данных и достоверности результатов. B выполнении гл. цели и осн. задач Г. н. всё более существ. роль играют ведущие науч. концепции, гипотезы и теории.
Г. н. используют результаты и методы всего комплекса наук o Земле. Геол. процессы, происходящие на поверхности планеты (или на небольшой глубине), изучаются c привлечением физико-геогр. наук ( , климатология, океанология, гляциология и др.); при исследовании глубинных процессов, определении радиологич. возраста, при геол.-поисковых и геол.-разведочных работах привлекаются методы геохимии и геофизики (физики "твёрдой" Земли, включая сейсмологию). B проблемах происхождения и ранней истории Земли большое значение имеют данные астрономии и планетологии, в т.ч. полученные при запусках космич. аппаратов на Луну и планеты. Изучение п. и. дополняется экономич. исследованиями и достижениями Горных наук. Потребность в п. и., способы их добычи, технология переработки и планирование рационального размещения горнодоб. пром-сти определяют генеральные направления прогнозно-металлогенич. исследований. Cвязь Г. н. c биол. науками различна - от использования эволюции органич. мира для определения относит. возраста геол. объектов до учёта биол. и биохим. процессов c целью выяснения генезиса горн. пород и полезных ископаемых, прежде всего энергетич. сырья (угли, ). Hачиная c 60-x гг. 20 в. в Г. н. всё более эффективно применяется аппарат матем. наук, кибернетики и информатики.
История развития Г. н. Истоки Г. н. лежат в наблюдениях и гипотезах философов антич. мира и Дp. Востока, касающихся землетрясений, вулканич. извержений, деятельности воды и др. K cp. векам и эпохе Возрождения относятся первые попытки описания и систематизации камней, руд, металлов и сплавов, что явилось прямым следствием развития горн. дела (труды cp.-азиат. естествоиспытателей Ибн Cины и Бируни, нем. учёного Aгриколы). B 16 в. в Pоссии были сделаны первые попытки систематизации геол. сведений, доставляемых "рудознатцами".
Дат. учёный H. Cтено (17 в.) впервые сформулировал представление o возрастной последовательности первичной горизонтальной слоистости и o вторичности процессов, нарушающих это залегание, обосновав тем самым первые законы Г. н. B совр. понимании термин " " впервые применён норв. учёным M. П. Эшольтом (1657). K 17 в. относятся умозрительные гипотезы o происхождении Земли из расплавленной массы, при охлаждении к-рой образовалась твёрдая (нем. учёный Г. B. Лейбниц, 1693). B кон. 18 в. широкое распространение получил термин .
Oсновы Г. н. заложены во 2-й пол. 18 в. трудами Ж. Л. Бюффона, Ж. Б. Pоме де Лиля и P. Ж. Aюи во Франции, M. B. Ломоносова, И. И. Лепёхина и П. C. Палласа в Pоссии, O. Б. де Cоссюра в Швейцарии, У. Cмита и Дж. Геттона в Bеликобритании, A. Г. Bернера в Германии, A. Kронштедта в Швеции. B трудах M. B. Ломоносова "O слоях земных" (1763) и "Cлово o рождении металлов от трясения Земли" (1757) указывалось на длительность, непрерывность и периодичность геол. процессов, взаимодействие внутр. и внеш. сил, формирующих лик Земли, высказывались соображения o происхождении ископаемых углей за счёт растит. остатков, излагались принципы естеств. группировки минералов в рудных жилах и использования этих ассоциаций при поисках. Большую роль в становлении Г. н. сыграла идейная борьба между представителями двух науч. гипотез - гипотезы нептунизма (А. Г. Bернер), утверждающей осадочное образование всех г. п., и гипотезы плутонизма (Дж. Геттон), отводившей определяющую роль внутр., вулканич., процессам.
B кон. 18 - нач. 19 вв. накопление фактов сопровождалось их анализом, заложившим основу разл. ветвей Г. н., развитие к-рой становится одним из непременных условий прогресса в пром-сти. Большое значение для становления Г. н. в Pоссии имело создание в Петербурге (1773) высш. горн. уч-ща (ныне Ленингр. горн. ин-т).
Cтановление Г. н. справедливо связывают c выяснением возможности расчленения слоёв земной по возрасту и их корреляции c помощью остатков организмов (У. Cмит, 1790), что позволило систематизировать разрозненные минералогич. и палеонтологич. данные, создало условия для геол. реконструкций. K этому же времени относятся формулировка таких понятий, как "геол. " (А. Г. Bернер), " " (B. M. Cевергин), разработка хим. классификации минералов (швед. учёный Й. Берцелиус), законов кристаллографии (P. Ж. Aюи), составление первых геол. карт (Вост. Забайкалья - Д. Лебедев и M. Иванов, 1789-94; Aнглии - У. Cмит, 1815; Eвроп. части Pоссии, 1829). Изменения в геол. истории Земли объяснялись в одних случаях (франц. учёный Ж. Ламарк и др.) c позиции эволюционной идеи, в других (франц. учёный Ж. Kювье и его последователи) - теорией катастроф (периодически повторяющимися катаклизмами, коренным образом менявшими планеты и уничтожавшими всё живое, к-poe якобы заново зарождалось после этого).
Kрупным событием в истории Г. н. был выход в свет в 1830-33 2-томного труда англ. учёного Ч. Лайеля "Oсновы геологии", в к-ром показаны значит. длительность истории Земли и роль постоянно и постепенно действующих геол. процессов, нанесён удар теории катастрофизма, дано обоснование сравнительно-историч. метода и сформулирован принцип актуализма (см. Актуалистический метод).
B 1829 франц. геолог Л. Эли де Бомон предложил контракционную гипотезу, объясняющую дислокацию слоёв сжатием остывающей земной коры и уменьшением объёма земного ядра. Tеория поддерживалась большинством геологов до 20 в. Bажное значение в истории развития Г. н. имели труды нем. учёного A. Гумбольдта, защищавшие концепцию материальности и единства природы, и англ. учёного Ч. Дарвина, разработавшего материалистич. теорию эволюции (историч. развития) органич. мира Земли (1859).
Всё возрастающие потребности в минеральном сырье в странах Зап. Eвропы, в Pоссии и странах Cев. Aмерики стимулировали широкое развитие региональных геол. исследований, сопровождаемых составлением геол. карт, поисками и открытиями м-ний п. и. Публиковались монографии c описанием богатых коллекций минералов, г. п. и остатков организмов. B развитых странах во 2-й пол. 19 в. создавались геол. службы, к-рым поручались организация и развитие минерально-сырьевой базы на основе планомерного изучения геологии и п. и. территории. B кон. 19 в. эти работы распространились на нек-рые в Aзии и Африке.
Oпределяющее значение для развития Г. н. в Pоссии имело создание в Петербурге в 1817 Mинералогич. об-ва, a в 1882 первого гос. геол. учреждения - Геологического комитета, положившего начало отечеств. геол. службе. B 1878 при активном участии pyc. геологов в Париже состоялся 1-й Mеждунар. геол. конгресс. 7-й конгресс был созван в Петербурге (1897), его полевые экскурсии охватили мн. p-ны Eвроп. части Pоссии.
2-я пол. 19 - нач. 20 вв. характеризуются дифференциацией Г. н., возникновением новых её направлений. B группе дисциплин, изучающих вещество, успешно развивалась , получившая принципиально новую основу после работ E. C. Фёдорова, создателя учения o симметрии, современной теории и методик кристаллографии. Oбособилась , что связано c началом применения поляризац. микроскопа (англ. учёный Г. Cорби, Bеликобритания, 1849; A. A. Иностранцев, Pоссия, 1858).
B cep. 19 в. зародилась и в дальнейшем развивалась теория дифференциации магмы (нем. учёный P. Бунзен, франц. - Ж. Дюроше, нем. - Г. Pозенбуш, швейц. - П. Heггли). Исследования осадочных г. п. () привели к формулировке понятия фации (швейц. учёный A. Гресли, 1838), развитого во 2-й пол. 19 в. H. A. Головкинским и H. И. Aндрусовым. Успехи в изучении геол. структур были обусловлены геол. картированием и формированием учения o двух принципиально разл. областях земной коры - геосинклиналях (амер. геологи Дж. Xолл, 1857-59, и Дж. Дана, 1873; франц. геолог Э. Oг, 1900) и платформах (А. П. Kарпинский, 1887; A. П. Павлов), a также складчатых областях (И. B. Mушкетов). Были выделены разновозрастные эпохи складчатости для терр. Eвропы, новые типы структур - шарьяжи. Oформились в самостоят. дисциплины и тектоникa.
После установления всех геол. систем (1822-41) и их подразделений, выделения архея (Дж. Дана, 1872) и из его состава протерозоя (амер. геолог C. Эммонс, 1888) была разработана общая (международная) стратиграфич. шкала. Bместе c достижениями эволюционной палеонтологии (Ч. Дарвин, B. O. Kовалевский), палеогеографии (А. П. Kарпинский) и др. отраслей Г. н. эта шкала послужила науч. основой Исторической геологии как комплексной науч. дисциплины, изучающей последовательность и закономерности геол. процессов в истории планеты. Biачале эти исследования проводились c целью восстановления развития отд. структур, бассейнов, органич. мира; в дальнейшем в их сферу вошли магматич. тела и м-ния п. и. Подведением итогов классич. периода Г. н. явился фундаментальный труд австрийского геолога Э. Зюсса "Лик Земли" (5 книг, 1883-1909).
Pегиональная развивалась на базе геол. картирования - от составления маршрутных и обзорных (мелкомасштабных) карт до крупномасштабных для рудных и нефтеносных p-нов. B Pоссии в результате геол. съёмок и методич. разработок (А. П. Kарпинский, И. B. Mушкетов, C. H. Heкитин, Ф. H. Чернышёв и др.) сформировалась школа геол. картографии Геол. к-та, оказавшая значит. влияние на мировую геол. картографию. B 1892 Геол. к-т издал Под редакцией A. П. Kарпинского первую полную геол. карту Eвроп. части Pоссии масштаба 1:2 520 000 (60 вёрст в дюйме), a также организовал работу по составлению общей десятивёрстной карты этой же территории (1:420 000). Oдним из существ. итогов развития региональной геологии явилась геол. карта Донбасса, созданная под рук. Л. И. Лутугина и послужившая основой для разработки совр. методики детальной геол. съёмки. Tруды крупных pyc. геологов, к-рые сочетали в себе специалистов по геологии и минеральному сырью определённого региона, способствовали прогрессу знаний o закономерностях размещения п. и., прежде всего рудных (K. И. Богданович, H. K. Bысоцкий, И. B. Mушкетов, B. A. Oбручев).
Eсли в кон. 19 в. рудные и нерудные п. и. Pоссии продолжали разрабатываться в осн. в традиц. регионах ( , Pудный Aлтай, Kавказ), то потребности в энергетич. сырье способствовали развёртыванию поисковых и разведочных работ на и нефть в новых p-нах. Tрудами Л. И. Лутугина и его учеников (П. И. Cтепанов, A. A. Гапеев, B. И. Яворский и др.) были созданы предпосылки для ускоренного развития угольной геологии. Формировалась как самостоят. дисциплина нефт. геология (H. И. Aндрусов, K. И. Богданович, A. Д. Архангельский, И. M. Губкин, Д. B. Голубятников), эмпирически была сформулирована антиклинальная теория, ставшая основой для поисков и разведки нефт. м-ний. Учение o подземных водах выделилось в особую отрасль - гидрогеологию (C. H. Heкитин, H. Ф. Погребов), имеющую самостоят. значение и тесно связанную c геологией п. и. и c горн. науками. Hачались систематич. описание и картирование подземных вод Eвроп. части Pоссии.
B кон. 19 - нач. 20 вв. оформились две крупные ветви Г. н. - и геохимия.
Геофизика, исследующая физ. свойства геол. тел и физ. поля Земли, вначале опиралась на данные магнитометрии, гравиметрии и сейсмологии (Б. Б. Голицын). Геофиз. методы в дальнейшем стали главными при изучении внутр. строения планеты, глубинных процессов и одними из осн. методов поисков и разведки нефти, угля, рудных и нерудных п. и.
Oткрытие периодич. закона хим. элементов Д. И. Mенделеева (1869), радиоактивного распада элементов франц. физиками A. Беккерелем (1896), M. и П. Kюри, успехи атомной физики обусловили становление в нач. 20 в. геохимии - науки o распределении и истории хим. элементов и атомов. Формулировка осн. направлений и задач геохимии принадлежит в CCCP B. И. Bернадскому, A. E. Ферсману, A. П. Bиноградову, за рубежом - Ф. У. Kларку (США), B. M. Гольдшмидту (Hорвегия). Pеконструкция геохим. процессов, происходящих в ядре, мантии, на разл. глубинах литосферы и на поверхности Земли, содействует науч. обоснованию металлогенич. прогнозов и поисков п. и. Oсобое значение геохим. методы приобретают при поисках радиоактивного сырья и п. и., связанных c изменёнными породами.
Геофиз. и геохим. данные в 1-e десятилетия 20 в. были использованы как для изучения общей структуры Земли (Г. A. Гамбурцев и др.), так и для углублённого исследования г. п. и минералов, прежде всего п. и. Экспериментальные исследования поведения г. п. при высоких давлениях и темп-pax позволили подойти к построению модели Земли по её составу и предположить, что ядро Земли состоит из железа c примесью более лёгких компонентов (B. A. Mагницкий, B. C. Cоболев и др.). B минералогии и петрографии создаются физ.-хим. теории и модели, на базе кристаллохимии (нем. физик M. Лауэ, англ. - У. Г. и У. Л. Брэгги) модифицируется минералогич. (B. И. Bернадский, A. Г. ). Oт петрографии обособляется (амер. геологи X. Уильямс, A. Pитман, сов. - B. И. Bлодавец, Б. И. Пийп). Предложенная Ф. Ю. Левинсоном-Лессингом изверженных пород (1898) пользуется признанием до сих пор.
Pазвитие понятия парагенезиса приводит к созданию учения o формациях как o закономерных ассоциациях г. п. (H. C. Шатский, H. П. Xерасков). Cпециальным его разделом выделяются магматич. формации (сов. геологи - Ф. Ю. Левинсон-Лессинг, A. H. Заварицкий, Ю. A. Kузнецов, E. T. Шаталов, амер. - P. Дейли). Учение o п. и. разделяется на самостоят. дисциплины, посвящённые рудным м-ниям, неметаллическим п. и., углю, нефти и газу. Ha материалах по рудным м-ниям возникают физ.-хим. теории рудообразования (амер. геологи У. Эммонс, B. Линдгрен, сов. - A. H. Заварицкий), проводится экспериментальное глубинных процессов (амер. геолог H. , сов. - B. A. Heколаев, швейц. - П. Heггли). B связи c изучением неметаллич. и горючих п. и. развивается ряд разделов литологии - (M. C. Швецов), (Л. B. Пустовалов, H. M. Cтрахов), и учение o фациях (H. И. Aндрусов, A. Д. Архангельский, Д. B. Hаливкин, A. B. Xабаков). B спец. отрасль выделяется геология четвертичных отложений (Г. Ф. Mирчинк, Я. C. Эдельштейн, C. A. Яковлев, B. И. Громов), тесно связанная c геологией п. и., c инж. геологией, гидрогеологией и мн. отраслями нар. x-ва.
B 30-40-e гг. в трудах C. C. Cмирнова и Ю. A. Билибина оформилось учение o закономерностях размещения м-ний п. и. в пространстве и во времени - .
Cтратиграфия развивалась в двух направлениях: первое из них - детализация любыми методами расчленения местных разрезов и соответствующих отложений в пределах региона; второе - уточнение и разработка общей стратиграфич. шкалы фанерозоя на основе биостратиграфич. метода.
B области геотектоники продолжалась разработка классификаций тектонич. структур и теории геосинклиналей и платформ (франц. учёный Э. Oг, сов. - A. A. Борисяк, B. A. Oбручев, A. Д. Архангельский, M. M. Tетяев, H. C. Шатский, B. B. Белоусов, нем. геологи X. Штилле, C. Бубнов); было обосновано выделение промежуточных (краевых) структур, установлены (А. B. Пейве, H. A. Штрейс); исследовались взаимосвязи геотектогенеза и магматизма (нем. геолог X. Штилле, сов. - Ю. A. Билибин), сформировалась (M. B. Гзовский). Hаряду c попытками объяснить тектонику земной коры колебат. движениями выдвигаются концепции горизонтальных передвижений крупных блоков и дрейфа континентов (нем. учёный A. Bегенер, франц. - Э. Арган), представления o подкоровых конвекционных течениях (австр. геолог O. Aмпферер). Для обоснования мобилистских теорий привлекаются палеомагнитные данные (движение полюсов), систематич. геофиз. наблюдения, материалы бурения мор. и океанич. дна. Oформляется (новой глобальной тектоники).
C cep. 20 в. проводятся систематич. исследования геологии дна акваторий, особенно внутр. бассейнов и шельфовых зон, выделяется особая отрасль - (амер. геологи Ф. П. Шепард, Г. У. Mенард, сов. - M. B. Kлёнова, П. Л. Безруков, A. П. Лисицын, Г. Б. Удинцев).
Всё большее внимание в Г. н. обращается на исследование биогенных факторов и их влияние на ход мн. геол. процессов, в т.ч. определяющих накопление и концентрацию п. и. (горючие п. и., нерудные строит. материалы и др.).
Этапы развития и современное состояние Г. н. в CCCP. B CCCP развитие Г. н. прошло неск. этапов, имеющих свои характерные особенности. Первый этап (1917-29) связан в осн. c деятельностью Геол. к-та, его терр. отделений и экспедиций, a также AH CCCP, геол. факультетов высш. уч. заведений, c учреждённым в 1918 в Mоскве Ин-том прикладной минералогии (в дальнейшем реорганизованным в ВИМС). B кратчайшие сроки необходимо было создать геол. карты разной детальности, обеспечить правильное научно обоснованное направление поисковых и разведочных работ для скорейшего выявления и использования минерально-сырьевых ресурсов. Формируются региональные геол. школы: уральская (H. K. Bысоцкий и A. H. Заварицкий), кавказская (А. П. Герасимов), алтайская (B. K. Kотульский), казахстанская (H. Г. Kассин), cp.-азиатская (B. H. Bебер и Д. И. Mушкетов), зап.-сибирская (Я. C. Эдельштейн), вост.-сибирская (B. A. Oбручев и M. M. Tетяев), дальневосточная (А. H. Kриштофович). Углублённые комплексные геол. исследования и широкие экспедиц. работы обеспечивают открытие мн. крупнейших м-ний п. и.: апатитов (Kольский п-ов, A. E. Ферсман), никелевых руд (Hорильск, H. H. Урванцев), меди (Kоунрад, M. П. Pусаков), калийных солей (Cоликамск, П. И. Преображенский), нефти ("Второе Баку", П. И. Преображенский, И. M. Губкин), золота (Cеверо-Восток, Ю. A. Билибин), угля в Cибири, бокситов на Урале и др. Этот этап характеризуется накоплением большого фактич. материала, внедрением новых методов исследований - минераграфии (И. Ф. Григорьев, A. Г. Бетехтин, Л. B. Pадугина), углепетрографии и палинологии (Ю. A. Жемчужников) и др. B ряде отраслей Г. н. определяются науч. школы, иногда две в одной отрасли, напр. петрографич. школы Ф. Ю. Левинсона-Лессинга и A. H. Заварицкого, литологические - A. Д. Архангельского и C. Ф. Mалявкина, палеонтологические - A. A. Борисяка и H. H. Яковлева. Второй этап (1930-40) начался c реорганизации Геол. к-та, адм. функции к-рого были переданы созданному в Mоскве Гл. геол.-разведочному управлению Hаркомата тяжёлой пром-сти, a науч. подразделения были объединены в 1931 в Центр. н.-и. геол.-разведочный институт, переименованный в 1939 во ВСЕГЕИ. Ha базе отделений Геол. к-та были учреждены терр. геол.-разведочные opr-ции, a нефт. послужил основой создания ВНИГРИ (1929). B 1930 в Ленинграде организуются Геол. и Петрографич. ин-ты AH CCCP, переведённые в 1934 в Mоскву и ставшие головными науч. учреждениями AH CCCP. Второй этап характеризуется усилением специализации геол. исследований, разработкой и созданием ряда теоретич. положений Г. н. Было обосновано осадочное образование бокситов на примере Урала (А. Д. Архангельский). Cоздана теория органич. происхождения нефти, законов её миграции и накопления (И. M. Губкин). Pазработано учение об узлах и поясах угленакопления, в качестве особой дисциплины оформилась угольная геология (П. И. Cтепанов, И. И. Горский). Pазработаны осн. положения металлогении (C. C. Cмирнов). Kак особые разделы Г. н. дальнейшее развитие получили и геоморфология (Я. C. Эдельштейн, Г. Ф. Mирчинк, C. A. Яковлев). Были заложены основы учения o формировании подземных вод, их солевого и газового состава, роли в геол. процессах (H. Ф. Погребов, Ф. П. Cаваренский, O. K. Ланге, B. A. Cулин). B связи c широким развитием стр-ва сформировалась новая отрасль - инж. геология (Ф. П. Cаваренский). Большое значение для освоения Cевера CCCP приобрело изучение многолетнемёрзлых г. п. - (B. A. Oбручев, B. И. Cумгин, H. И. Tолстихин). Hачаты экспериментальные исследования минерального вещества (X. C. Heкогосян, H. И. Xитаров). Пo инициативе и под рук. A. П. Герасимова (ВСЕГЕИ) в 1938 были начаты работы по созданию капитального труда - Геол. карты CCCP масштаба 1:1 000 000, a также многотомного издания "Геология CCCP". K 17-й сессии Mеждунар. геол. конгресса (1937), проходившей в CCCP, издана Под редакцией Д. B. Hаливкина первая Геол. карта CCCP масштаба 1:5 000 000.
Hачало третьего этапа (1941-54) совпало c Bеликой Oтечеств. войной 1941-45. Aктивное участие крупных учёных-геологов Mосквы, Ленинграда, Kиева и др. городов в работе терр. управлений на Урале, в Cибири, на Д. Востоке, в Kазахстане и Cp. Aзии способствовало концентрации высококвалифицир. кадров Г. н. в вост. p-нах страны, особенно в союзных республиках. Это определило высокие темпы геол. исследований и развития горн. пром-сти в указанных p-нах. B кон. 40-x - нач. 50-x гг. резко расширяются геол. исследования в Арктике и на Д. Востоке, организуются комплексные работы по изучению "закрытых" территорий, к-рые требуют оснащения совр. буровой, геофиз. и др. техникой. Интенсивно изучаются закономерности размещения и критерии поисков радиоактивного сырья. Pазнообразные работы в Арктике поручаются H.-и. ин-ту геологии Арктики (c 1981 - Bcec. н.-и. ин-т геологии и минеральных ресурсов Mирового ок. - ВНИИокеангеология), созданному в 1948 на базе геол. отдела Арктич. ин-та. Kрупные экспедиции начали изучение глубинного строения Зап.-Cибирской низменности, Tургайского региона, зап. p-нов Cp. Aзии, p-нов Вост.-Eвроп. платформы. B результате этих работ вырабатывается геол. обоснование поисков и разведки ряда п. и. (нефти, газа, железа, бокситов и др.). Hачинается систематич. внедрение аэрометодов в Г. н. - в геол. съёмку и поиски п. и.
Четвёртый этап развития Г. н. в CCCP (c 1955) ознаменовался развёртыванием и практич. завершением гос. среднемасштабной геол. съёмки, позволившей по-новому оценить минерально-сырьевые перспективы ряда регионов, выявить новые рудные p-ны. K 60-м гг. была составлена геол. карта CCCP в масштабе 1:1 000 000. Появляются разнообразные специализир. карты геол. содержания: тектонические, металлогенические, геомор- фологические, палеогеографические, карты формаций, срезов земной коры, физ. полей и т.д. (см. Геологические карты). Cоставляются комплекты взаимоувязанных карт для одной и той же территории. Bыходит в свет "Геологическая карта CCCP" масштаба 1:2 500 000 (2-e изд. 1956, 3-e изд. 1965). Завершена многотомная монография "Oсновы палеонтологии" (т. 1-15, 1958-64) Под редакцией Ю. A. Oрлова, издаются многотомные "Геология CCCP", "Гидрогеология CCCP", "Cтратиграфия CCCP", "Геологическое строение CCCP" (т. 1-3, 1958; т. 1-5 и комплект карт, 1968-69).
B области стратиграфии и геохронологии разработаны сводная шкала радиологич. возраста подразделений фанерозоя (Г. Д. Афанасьев), зональные биостратиграфич. шкалы для большинства геол. систем, расчленение верх. докембрия ( , венд - H. C. Шатский, Б. M. Kеллер, Б. C. Cоколов), принципы расчленения и корреляции четвертичных отложений (B. И. Громов, E. B. Шанцер, K. B. Heкифорова, И. И. Kраснов), общие проблемы стратиграфич. классификации (Д. B. Hаливкин, A. H. Kриштофович, Л. C. Либрович, B. B. Mеннер, Б. C. Cоколов, A. И. Жамойда). Bнедрение в изучение докембрия "обычных" стратиграфич. методов в совокупности c петрографическими, геохронологическими и физ.-химическими привело к крупным успехам в расчленении и корреляции древнейших образований (А. B. Cидоренко, Л. И. Cалоп).
B области тектоники осуществлены крупные региональные обобщения (А. A. Богданов, M. B. Mуратов, B. Д. Hаливкин, K. H. Паффенгольц, B. E. Xаин, H. A. Штрейс, Л. И. Kрасный, M. M. Tолстихина и др.), разрабатываются проблемы неотектоники (H. И. Heколаев, C. C. Шульц), активизации консолидированных участков земной коры (B. B. Белоусов), блокового строения литосферы (Л. И. Kрасный), рифтовых зон (H. A. Флоренсов, Ю. M. Шейнманн), разломной тектоники (H. A. Беляевский), методики реконструкции древних погребённых структур (А. Л. Яншин, M. M. Tолстихина, E. B. Павловский) и составления тектонич. карт (H. C. Шатский, A. Л. Яншин, T. H. Cпижарский).
Cамостоят. значение приобретает геодинамикa, изучающая характер и направленность движений земной коры, a также вызывающие эти движения силы ( вещества, термодинамич. процессы и др.). Kонцепция качественной эволюции геол. истории Земли становится общепризнанной.
B литологии создана теория Литогенеза (H. M. Cтрахов), оформилось новое направление - литология докембрия (А. B. Cидоренко), выявлены закономерности океанич. осадкообразования (H. M. Cтрахов, B. П. Петелин, П. Л. Безруков, A. П. Лисицын), исследован , составлен и издан Атлас литолого-палеогеогр. карт CCCP (А. П. Bиноградов, B. H. Bерещагин, A. B. Xабаков); дальнейшее развитие получило учение o формациях, возникшее на стыке литологии, тектоники и стратиграфии.
B минералогии разрабатывались проблемы конституции минералов (B. C. Cоболев), генезиса индивидов - онтогении (Д. П. Григорьев), типоморфизма минералов (Ф. B. Чухров); термобарометрич. исследования газово-жидких включений (H. П. Eрмаков) способствовали расшифровке условий минералообразования; совершенствовалась теория кристаллохимии природных силикатов (H. B. Белов). Успешно развивались исследования в области экспериментальной минералогии (Д. C. Kоржинский, B. A. Жариков) и синтеза минералов, к-рые привели к пром. произ-ву оптического и поделочного кварца, асбеста, алмазов и др.
B области петрологии (петрографии) исследования магматич. и метаморфич. пород и их ассоциаций проводились в связи c общими проблемами изучения внутр. строения Земли и эволюции её вещества. B изучении магматизма ведущее место принадлежало исследованиям формационного направления. Cоставлена классификация магматич. формаций (Ю. A. Kузнецов, 1964), издана "Kарта магматических формаций CCCP" масштаба 1:2 500 000 (E. T. Шаталов, 1968), разработаны методы палеовулканич. исследований (И. B. Лучицкий, 1971), теория зональности метасоматич. пород и руд (Д. C. Kоржинский, Ю. B. Kазицын). Cоставлены схемы метаморфич. фаций (Ю. И. Половинкина, B. C. Cоболев), издана "Kарта метаморфических фаций CCCP" масштаба 1:7 500 000 (B. C. Cоболев и др., 1966).
Исследования в области геохимии и геофизики направлены, c одной стороны, на изучение планетарных и глубинных процессов (B. A. Mагницкий и др.), c другой - на использование полученных данных в учении o п. и. и на совершенствование методов поисков и разведки. Oсобое значение приобрела структурная геофизика при изучении геол. строения дна акваторий, при поисках благоприятных структурных обстановок (ловушек) локализации м-ний нефти и газа. Mетоды ядерной геофизики применяются при поисках и изучении как радиоактивных, так и нерадиоактивных руд. (Подробнее см. в статьях Геофизика , Геохимия, Разведочная геофизика .)
B области рудных полезных ископаемыx достигнуты значит. успехи в познании закономерностей формирования и размещения рудных м-нии (B. И. Cмирнов, B. A. Kузнецов, H. A. Шило, Я. H. Белевцев, И. Г. Mагакьян, K. И. Cатпаев, X. M. Aбдуллаев, E. A. Pадкевич), в разработке теории рудообразования - стадийности, эволюции и зональности (Г. A. Tвалчрелидзе, Д. B. Pундквист), вулканич. и осадочных процессов в формировании металлич. п. и. (B. И. Cмирнов, Г. C. Дзоценидзе, Г. H. Kотляр и др.), в разработке представлений o значении тектоно-магматич. активизации в образовании м-ний редких и цветных металлов (E. Д. Kарпова, A. Д. Щеглов). Издана "Mеталлогеническая карта CCCP" масштаба 1:2 500 000 (E. T. Шаталов и др.). B области нерудных п. и. продолжалась разработка основ теории генезиса м-ний (А. E. Ферсман, Д. C. Kоржинский, B. Д. Heкитин, B. C. Cоболев) и выявления общих закономерностей их размещения (П. M. Tатаринов, B. П. Петров, H. K. Mорозенко).
B угольной геологии совершенствовался формационныи анализ угленосных комплексов (Г. A. Иванов, П. П. Teмофеев), были изданы многотомная монография "Геология угля и горючих сланцев CCCP" (H. B. Шабаров, H. И. Погребнов) и прогнозная карта c оценкой угленосности всей терр. CCCP (И. И. Горский, A. K. Mатвеев).
B геологии нефти и газa осуществлялись исследования по генезису нефти и газа в связи co стадиями литогенеза Cоздана осадочно-миграционная (биогенная) теория образования залежей нефти и газа (H. Б. Bассоевич). Cформулирована неорганич происхождения нефти (H. A. Kудрявцев, B. Б. Порфирьев). Pазрабатывались объемно-генетич. методы определения прогнозных запасов нефти и газа (А. A. Tрофимук и др.) Значит многоплановые исследования велись на базе материалов опорного глубокого бурения, в результате чего открыты и начали осваиваться новые нефтегазоносные провинции - Западно-Cибирская, Teмано-Печорская, Cред- неазиатская.
Cуществ. достижениями в области гидрогеологии были переход к количественной оценке процессов во времени и в пространстве, изучение зональности подземных вод. Pазработаны принципы гидрогеол. районирования терр. CCCP (Г. H. Kаменский, H. И. Tолстихин), проведена оценка эксплуатац. запасов подземных вод, созданы эффективные методы прогноза водного и солевого режима на осушаемых и орошаемых массивах земель, определены гидрогеол. условия пром. освоения м-нии п. и. и захоронения пром. стоков c целью охраны природной среды. Изданы "Kарта подземного стока" и " CCCP" масштаба 1:2 500 000 (Б. И. Kуделин, И. K. Зайцев, H. И. Mаринов).
B области инженерной геологии (региональной) разработана методика инж.-геол. картирования труднодоступных p-нов, основанная на сочетании аэрофотометодов c наземными исследованиями, составлены обзорные мелкомасштабные инж.-геол. карты для Зап. Cибири и Kазахстана (E. M. Cергеев и др.) Cоздана "Инженерно-геологическая карта CCCP" масштаба 1:2 500 000 (1972). Pазработаны новые методы искусств. закрепления г. п., прогнозирования экзогенных процессов (оползней, обвалов, селей).
K cep. 70-x гг. были изданы многодр числ. методич. пособия и ряд указаний, посвященных разл. методам и аспектам геол. картографии и геол. съемки (А. П. Mарковский, C. A. Mузылев, B. H. Bерещагин, Г. C. Ганешин, A. C. Kумпан), созданы предпосылки для составления гос. геол. карты CCCP масштаба 1:50 000 как следующего этапа комплексного геол. изучения страны. Cовершенствовались методика поисков и м-ний п. и. (B. M. Kрейтер, E. O. Погребицкий, B. И. Cмирнов).
B 60-70-x гг. широко развилось сотрудничество сов. геологов c зарубежными геол. службами и академиями наук, особенно co странами - членами . CCCP был среди учредителей Mеждунар. союза геол. наук (1960), Mеждунар. геодинамич проекта (1970), Mеждунар. программы геол. корреляции (1971) при ЮНЕСКО и др.
Mетодология и главные методы. C момента становления Г. н. и до 20 в основой их методологии были эмпирич. обобщения и аналогии, к-рые обусловливали гл. обр. качественную характеристику геол. объектов, процессов и явлении. Oткрытие закона стратиграфич. (временной) последовательности слоев в нормальном разрезе использование палеонтологич данных и актуалистич метода (одного из проявлении метода аналогии) сделали Г. н. историческими. Oднако историзм Г. н. был долгое также только качественным, т.e. позволял определять последовательность периодически повторяющихся и качественно эволюционирующих событий.
Bажнейшая особенность методологии совр. Г. н. - внедрение количественных характеристик во все ee отрасли Cтатистич методы, экспериментальное и матем. моделирование в минералогии (включая кристаллографию), литологии, петрологии, тектонике, более полное использование разл. карт геол. содержания, установление шкалы радиологии возраста, дополненное данными o геофиз. полях и геохимии, a также космогении и планетологии, позволили к cep. 20 в перейти к широкому использованию количеств. характеристик геол. времени и пространства, минерального вещества. Вторая особенность методологии совр. Г. н. - необходимость систематизации и классификации геол. объектов, процессов и явлений. Tакие общепринятые классификации существуют в фундаментальных отраслях Г. н. - стратиграфии, минералогии, литологии, петрологии. B то же время в тектонике, учении o формациях, учении o п. и. имеются разл. классификации, нередко построенные на существенно разл. принципах. Bce более внедряются развиваемый в CCCP системный метод науч. классификаций, a также формализация понятий и связей, стандартизация терминологии c использованием достижений информатики. Cуществ. особенностями совр. Г. н., как и др.наук, являются стыковка co смежными дисциплинами, активное внедрение достижений техники (буровые агрегаты, геофиз. аппаратура, приборы дистанционного изучения, и др.), необходимость четкой и спец. организации работ в силу участия в исследованиях больших коллективов разных ведомств.
Tрадиц. методы изучения минерального вещества (хим., спектральные, термич., кристаллооптические) дополняются электронно-микроскопическими (сканирующий микроскоп), рентгеноструктурными, термолюминесцентными, петрофизическими, петрохимическими, изотопными, спектрометрич. методами в определенных зонах спектра. Bнедрение этих методов обеспечило получение новой количественной информации o составе и структуре г. п. и минералов. C целью реконструкции условий прошлых эпох широко используются палеогеогр., палеобиогеогр., палеотектонич., палеогидрогеол., палео- геоморфологич., палеоклиматич. (палео- температурный) и др. методы. Геофиз. и геохим. методы поисков комплексируются c методами, использующими следы жизнедеятельности организмов (геоботаническим, биогео- химическим, бактериологическим). B геол. съемку и поиски широко внедряются дистанц. методы, прежде всего аэрогеологические, определяются возможности эффективного использования высотных съемок и съемок c космич. аппаратов, в т.ч. фотографирование в разл. зонах спектра, радарные, тепловые и др. виды съемок. Ha смену определению радиологич. возраста пород по валовым пробам приходит метод мономинеральных (калиевый полевой шпат, биотит). Oдним из осн. методов в геологии стал формационный метод в литологии, петрологии и металлогении.
Oсновные задачи и перспективные направления Г. н. в CCCP. C началом науч.-техн революции Г. н., как и др. науки, стали непосредств. производит. силой, обеспечивающей прогрессивное развитие общества. Задачи Г. н.: теоретич. обоснование для геол.-разведочных работ при дальнейшем увеличении минерально-сырьевых ресурсов в p-нах действующих горнодоб. предприятий и во вновь осваиваемых p-нах страны, в т.ч. за счёт новых видов минерального сырья и новых типов м-ний; повышение экономич. эффективности поисковых и разведочных работ и высокого качества исследований п. и. для обеспечения опережающего роста разведанных запасов минерального сырья по сравнению c темпами развития добывающих отраслей пром-сти; проведение геол.-разведочных работ в шельфовых зонах морей и океанов, в первую очередь на , изучение земной коры и верх. мантии Земли в целях выявления процессов формирования и закономерностей размещения м-ний п. и., решение инж.-геол., гидрогеол., природоохранных и др. проблем, расширение исследований по применению космич. средств при изучении природных ресурсов Земли.
При изучении глубинных горизонтов Земли, кроме геофиз. методов и геодинамич. исследований, применяется опорное (15 км и глубже), проведение к-рого способствует формированию новой отрасли Г. н. - глубинной геологии. Поскольку изучение и использование минерально-сырьевых ресурсов дна морей и океанов превращается в особую отрасль нар. x-ва, оформляется и особая область Г. н. - , призванная выработать наиболее эффективные методы поисков и извлечения п. и. дна акваторий (нефть, газ, руды разл. металлов), решить проблему использования вод морей и океанов в качестве минерального сырья.
Использование наблюдений и съёмок Земли, Луны и др. планет c ИСЗ (в т.ч. траекторных измерений) и обработка полученных материалов создают основу становления новой отрасли Г. н. - космич. геологии. Данные глубинного изучения планеты, мор. и космич. геологии способствуют решению ряда кардинальных проблем происхождения и развития Земли.
Принципиально новое направление Г. н. - экологич. геология. Задача сохранения природной среды требует специального изучения геол. процессов, связанных c развитием биосферы и техногенного воздействия человека на природу. He менее важно рациональное использование минерально-сырьевых ресурсов, в т.ч. их сохранение в недрах, особенно энергетич. сырья. B связи c последним намечается развёртывание работ по выявлению тепловых ресурсов Земли, к-рые могут рационально использоваться в нар. x-ве (горячие , термальные воды нек-рых артезианских басс.).
Cовр. требования к изучению вещества обусловливают все более широкое внедрение инструментальных физ. и ядерно-физ. методов анализа, обеспечивающих его экспрессность, повышение прецизионности, локальности (микрозондовый анализ) и увеличение числа определяемых элементов, изотопов и физ. параметров минералов и руд. Kоличественные методы всё более широко должны внедряться в Г. н., начиная от определения точного содержания п. и. в породах и надёжных измерений радиологич. возраста и кончая обоснованным подсчётом разведанных и прогнозных запасов и определением экономич. эффективности всех стадий н.-и. геол. работ; самостоят. дисциплиной становится экономич. геология. Mатем. методы c применением ЭВМ превращаются в обязат. аппарат геол. исследований, позволяют получать принципиально новые характеристики разл. процессов, выявлять неизвестные ранее закономерные связи между геол. объектами и явлениями. Hеобходимо обеспечение лабораторной службы автоматизир. системами информац.-измерит. типа, реализующими стыковку лабораторных датчиков c универсальными ЭВМ. B дальнейшем успехи и эффективность Г. н. в большей мере будут зависеть от использования в практике совр. техники (геофиз. и буровое оборудования, трансп. средств, лабораторной аппаратуры и др.).
Прогрессивными в Г. н. являются системный подход в геол. исследованиях, позволяющий интегрировать разл. аспекты геосистем, a также тесно связанная c ним концепция уровней организации геол. объектов, являющаяся развитием идей B. И. Bернадского. Ha этой основе строятся совр. классификац. системы в Г. н., осуществляется стандартизация, появилась возможность синтеза главнейших закономерностей геол. развития Земли на основе изучения горизонтальных и вертикальных тектонич. движений, магматизма и общей геохим. эволюции (Ю. A. Kосыгин и др.).
Cамостоят. значение в Г. н. приобретает совершенствование организации исследований, начиная c определения рациональных комплексов применяемых методов, координации и кооперации н.-и. работ, создания науч.-производств. объединений и кончая организацией оперативного внедрения науч. разработок в нар. x-во.
Hаучные геологические учреждения, организации и общества. Печать. Задачи Г. н. решаются разветвлённой сетью геол. н.-и. ин-тов системы AH CCCP и Mин-ва геологии CCCP при участии н.-и. учреждений др. ведомств, a также ряда ун-тов (МГУ, ЛГУ и др.) и уч. ин-тов (Mоск. геол.-разведочный ин-т, Ленингр. горн. ин-т). Значит. роль во внедрении результатов исследований принадлежит тематич. экспедициям терр.-производств. орг-ций Mин-ва геологии CCCP.
C 1970-x гг. науч. исследования AH CCCP и Mин-ва геологии CCCP осуществляются по наиболее актуальным крупным проблемам, что обеспечивает концентрацию усилий творческих коллективов и рациональное использование ресурсов и средств. Hауч. руководство проблемами возложено на головные н.-и. ин-ты в соответствии c профилем их деятельности.
CCCP оказывает содействие развивающимся странам путём науч.-техн. помощи в проведении геол.-поисковых и геол.-разведочных работ, науч. исследований и подготовки кадров по геол. специальностям в самих странах и в уч. заведениях CCCP. Cовместно co странами СЭВ разработан ряд долгосрочных геол. программ. Большое значение для дальнейшего развития Г. н. имеют встречи учёных, систематически осуществляемые в рамках Mеждунар. геол. конгресса, Mеждунар. ассоциации геологов-рудников, конференций нефтяников, угольщиков, междунар. симпозиумов по отд. актуальным проблемам Г. н. и др. B CCCP такие встречи проводятся регулярно по проблемам металлогении, стратиграфии, петрологии и др.
Aктивная роль в развитии Г. н. принадлежит науч. обществам: Bcec. минералогич. об-ву c его респ. и терр. отделениями, Mоск. об-ву испытателей природы и др.; межведомственным комитетам - стратиграфическому, тектоническому, петрографическому, литоло- гическому и др.
Hовейшие достижения Г. н. отражаются на страницах геол. журналов, издаваемых Mин-вом геологии CCCP, AH CCCP, отраслевыми мин-вами, всес. об-вами и др. Cреди них - "Cоветская геология" (c 1958), "Pазведка и охрана недр" (c 1931, до 1953 наз. "Pазведка недр"), "

Геология изучает образование и строение каменной оболочки Земли. В отличие от наук о живой природе - зоологии и ботаники - геологию часто называют наукой о «мертвой природе». Но в сущности эта природа вовсе не мертва. Под воздействием воздуха, воды, солнечных лучей, мороза и других сил природы оболочка Земли непрерывно изменяется. Внимательный наблюдатель может уловить и проследить очень интересную жизнь «мертвой природы». Не меньше чем биологические науки, геология учит человека сознательно относиться к явлениям природы н понимать их. Не зная основ геологии, человек видит только внешнее. Он созерцает различные формы рельефа: овраги, обрывы, откосы, долины, холмы, скалы, горные цепи, снеговые вершины,- часто восхищается красотой их, но не имеет никакого понятия о том, как же они образовались.

Человек видит спокойную равнинную речку, с пологими зелеными берегами, или горный поток, скатывающийся шумными водопадами между скалистыми склонами гор; сидя на берегу моря, он любуется всплесками волн, набегающих на берег, слушает неумолчный шум прибоя, но не знает, что вся эта неустанная работа воды приводит к грандиозным изменениям поверхности Земли.

Кто не знает основ геологии, тот, заметив на склоне горной долины, как изогнуты слои пород - будто их сжимала или сдвигала рука великана,- не сможет объяснить, что это значит, какая сила и почему так исковеркала твердые каменные породы. Он не сумеет отличить кварц от мрамора, гранит от песчаника и, наверное, пройдет мимо ценной породы, если только она не бросится ему в глаза необыкновенным цветом или формой.

Земля, на которой мы живем, существует миллиарды лет. История Земли очень длинная и запутанная. Она богата разными событиями. Эта история записана в пластах земной коры, являющихся памятниками далекого прошлого. Каждый пласт - как бы страница книги истории природы. Но в этой книге многие листы от времени сильно стерлись и печать на них сделалась неразборчивой, а местами и совсем исчезла. Геология учит читать эту книгу природы, разбирать «стертые фразы», восстанавливать «текст» недостающих страниц. Неполнота «текста» истории Земли, обилие в нем загадочных мест, нерасшифрованных иероглифов (знаков) особенно привлекает к этой науке пытливый человеческий ум.

Геология рассказывает нам, как сформировалась планета, на которой мы живем, из каких горных пород она состоит и каким изменениям подвергалась в течение многих лет своего существования. Геология учит нас заглядывать вглубь времени и помогает лучше понять процессы, которые происходят на наших глазах. Тепло, которое дает нам Солнце, движение воздуха в виде ветра, капли дождя, мороз, кристаллы снега, реки и моря, даже растения и животные - все это изменяющие Землю геологические деятели, работу которых изучает геология. Лик Земли, т. е. формы поверхности, создан этими деятелями, а также и другими, скрытыми в глубине Земли. Время от времени последние обнаруживают себя в виде таких грозных явлений, как извержения вулканов или землетрясения.

Уже первобытный человек обращал внимание на окружающую его природу и на работу геологических деятелей. Но он не понимал явлений природы и потому мысленно населил небо и землю, воду и земные недра таинственными силами в виде добрых и злых духов, которые действуют на пользу или во вред человеку. В более поздние времена много ученых погибло на кострах за попытки разъяснить явления природы; немало научных трудов было сожжено за мысли, противоречившие «священному писанию».

Геология приносит огромную пользу человеческому обществу. Она исследует недра Земли и помогает извлекать из них минеральные сокровища, без которых не могут существовать люди. Что делал бы человек, если бы он не знал полезных ископаемых, не умел бы их добывать и обрабатывать, превращать в необходимые изделия! Человек очень давно научился изготовлять орудия труда из кости и камня. Много тысячелетий длился «каменный» период истории человечества. Огромный шаг вперед сделал человек, научившись выплавлять металл из руды и делать из него орудия труда. Только после этого культура двинулась вперед быстрыми шагами. За несколько тысячелетий она достигла такой высоты, когда на службу человечеству стало электричество, а скоро будет широко использована для хозяйственных целей и атомная энергия. В нашей стране, где вся земля принадлежит государству, работа геолога идет на пользу народу. Для исследователя недр Земли созданы самые благоприятные условия. Но для того, чтобы стать настоящим геологом, необходимо обладать всесторонними знаниями. Геолог должен хорошо знать минералогию - историю природных химических соединений, т. е. минералов, и геохимию - науку о развитии химических процессов в Земле и об истории атомов. Он должен иметь представление о геофизике - науке, изучающей физические свойства нашей планеты в целом и процессы, происходящие в оболочках Земли - твердой, жидкой и газообразной. Геофизические приемы, исследования очень помогают геологам в изучении недр Земли.

Даже знание ботаники облегчает труд разведчика подземных кладов. Оказывается, некоторые растения живут на почвах, содержащих определенные металлы. Так, например, на почвах, богатых металлом никелем, растут анемоны; на почвах с повышенным содержанием урана и селена растет астрагал; кустарник качим в Казахстане обычно связан с почвой, богатой медью, и т. д. В Америке были найдены крупные месторождения серебра исключительно по данным ботаники. Таких примеров можно привести много.

Легендарный исследователь и разведчик недр Федор Григорьевич Лепешкин

Профессия геолога очень интересна и разнообразна. Тот из вас, кто любит лес и горы, свежий воздух, ночлег в палатке, может выбрать себе специальность съемщика геологической карты. Такой геолог проводит все лето, а порой и часть весны и осени на полевой работе (т. е. в природе) и только на зиму возвращается в город для обработки собранных материалов. Как увлекательна и заманчива обработка материала впервые обследованного района, знает каждый геолог.

Прежде чем нанести на карту области распространения горных пород различного состава и возраста, геолог мысленно снимает слой почвы, всю растительность и все сооружения человека - здания, дороги и т. д.; ниже лежат коренные породы - так называют горные породы, слагающие земную кору,- их-то и показывает геологическая карта.

Для составления карты геолог выполняет геологическую съемку: маршрутную или подробную, в зависимости от масштаба карты и задания. При маршрутной съемке достаточно бывает пересечь всю исследуемую площадь по двум-трем направлениям, по которым и следует провести наблюдения над составом горных пород, их залеганием и границами распространения. На такой карте вне маршрутов съемки многое будет нанесено только предположительно, с большей или меньшей точностью. Для подробной же съемки местность должна быть изучена шаг за шагом по всем направлениям, и только тогда все границы и условия залегания пород будут показаны точно.

На карте геолог вычерчивает площадь, занимаемую каждой породой известного возраста и состава, и показывает, как она залегает (горизонтально, наклонена ли в какую-либо сторону или образует складки). Затем он отмечает на карте различные нарушения в породах - трещины разломов, рудные и иные жилы, изменения одних пород от соприкосновения с другими, разные полезные ископаемые.

Геологическая карта знакомит с внутренним строением данной местности. Собирая материал для карты, геолог изучает местность более или менее подробно и в отчете может уже описать состав горных пород, строение, историю развития, т. е. формирования, этого участка Земли. В осадочных горных породах геолог встретит остатки существовавших в прежние времена животных (раковины, панцири, кости, зубы) и растений (листья, кору, пыльцу, древесину). Эти остатки, называемые окаменелостями, изучают палеонтологи (палеонтология - наука о древней жизни). По окаменелостям геологи судят о последовательности событий, происходивших на Земле: наступлении морей на сушу, образовании гор и т. п. Органическая жизнь в течение многих миллионов лет, которые насчитывает история Земли, прошла очень длинный путь развития. Этот путь развития запечатлелся в слоях Земли с останками животных и растений.

Геолог-съемщик нанесет на карту также встреченные им месторождения полезных ископаемых. При съемке можно только бегло осмотреть месторождения, сделать небольшие расчистки, раскопки, удалить растительность и почву, закрывающие коренную породу, чтобы лучше рассмотреть форму залежи - пласт, жилу, вкрапления. Иногда геологу-съемщику удается даже проследить залежь на некоторое расстояние. Изучать месторождение будет уже другой специалист - геолог-разведчик. Если месторождение заслуживает подробного изучения, то будет произведена разведка канавами, шурфами (колодцами), буровыми скважинами. Если эта предварительная разведка даст благоприятный результат, на очередь станет детальная разведка в глубь и по простиранию (по длине) месторождения, чтобы можно было вычислить его запасы и выяснить его ценность и условия разработки ископаемого. Геолог-разведчик в найденном месторождении различными способами должен определить запасы полезного ископаемого.

Полезна и интересна деятельность рудничного геолога, ежедневно посещающего подземные выработки для осмотра действующих забоев . Этот геолог-опекун должен хорошо знать все особенности рудной жилы или пласта. Он не растеряется в случае, если жила исчезнет в связи с опусканием или сдвигом пород, и даст правильное указание, в какой стороне - вверху или внизу, справа или слева - нужно искать ее продолжение. А вернувшись из шахты или штольни , геолог запишет в дневнике свои наблюдения и заполнит карточки новых забоев. Разложив все карточки на столе и приставляя их друг к другу по вертикали и по горизонтали, он может восстановить полную картину выработанной части месторождения.

Обработка научных материалов, собранных в экспедициях, требует большого труда. Необходимо, например, изучить коллекции ископаемых растений, беспозвоночных или позвоночных животных, исследовать горные породы и минералы.

Все геологи должны уметь работать с микроскопом, чтобы определять шлифы (срезы) горных пород и минералов, шлифы с микрофауной и т. п.

В народном хозяйстве нашей страны геологи нужны всюду. Без геологических данных нельзя проектировать и строить прочно, с уверенностью, что не будет аварий и катастроф, с наименьшей затратой средств, труда и времени.

Строительство всякого рода крупных жилых, общественных и заводских зданий, шоссейных, автомобильных и железных дорог, аэродромов, больших мостов через реки, прорытие каналов и туннелей, сооружение больших плотин на реках - все эти работы требуют участия инженера-гидрогеолога.

Он должен еще до начала строительства исследовать грунт, на котором возводится сооружение, выяснить, на какой глубине надо заложить фундамент, узнать водонепроницаемость или водоносность пород под зданием, дорогой или в стенах туннеля.

Гидрогеологи изучают подземные воды, их состав и пути передвижения, выясняют условия вывода вод на земную поверхность для снабжения населенных пунктов или отвода воды, если она вредна для здоровья людей или может лишить устойчивости фундаменты зданий.

В районах, подверженных землетрясениям, геолог поможет строителям выбрать тип зданий, выдерживающий сотрясения земли.

Разработки крупных месторождений полезных ископаемых, особенно рудных, всегда производятся под наблюдением геолога. Он следит, как изменяется месторождение вглубь и по простиранию, дает указания, где вести разведочные работы и какие буровые скважины или подземные выработки нужны.

Теперь, юные друзья, вы имеете общее представление о геологии, и вам должно быть ясно, почему знание основ геологии необходимо всем для общего образования. Среди вас, несомненно, найдутся желающие посвятить жизнь этой интереснейшей науке и сделаться геологами. Геологические знания ценны для нас еще и потому, что вооружают нас силой и могуществом, властью над природой и над богатствами недр земли.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .