Дать характеристику алюминия по периодической системе. А) используя в качестве восстановителя металлический натрий. Получение алюминия в промышленности


3 главная Дайте характеристику элементу, вставив пропущенные слова 1.Алюминий - элемент III группы, главной подгруппы. 2.Заряд ядра атома алюминия равен В ядре атома алюминия 13 протонов. 4.В ядре атома алюминия 14 нейтронов. 5.В атоме алюминия 13 электронов. 6.Атом алюминия имеет 3 энергетических уровня. 7.Электронная оболочка имеет строение 2е, 8е, 3е. 8.На внешнем уровне в атоме 3 электронов. 9.Степень окисления атома в соединениях равна Простое вещество алюминий является металлом. 11.Оксид и гидроксид алюминия имеют амфотерный характер. Далее


4 Электронное строение атома 27 АlАl e8e3e P + = 13 n 0 = 14 e - = 13 1s21s2 2s22s2 2p 6 3s 2 3p 1 Краткая электронная запись 1s21s2 2s22s2 2p 6 3s 2 3p 1 Порядок заполнения главная Далее








7 Из истории открытия Главная Далее В период открытия алюминия - металл был дороже золота. Англичане хотели почтить богатым подарком великого русского химика Д.И Менделеева, подарили ему химические весы, в которых одна чашка была изготовлена из золота, другая - из алюминия. Чашка из алюминия стала дороже золотой. Полученное «серебро из глины» заинтересовало не только учёных, но и промышленников и даже императора Франции. Далее














12 1.Серебристо-белый металл 2.Металлический блеск 3.Самый твёрдый металл 4.Tемпература плавления +660 о С 5.Пластичный 6.Легко режется ножом 7.Проводит электрический ток 8.Лёгкий 9.Проводит тепло 10.Легко намагничивается и размагничивается 11.Мягкий Выберите и запишите цифры тех свойств, которые относятся к физическим свойствам алюминия










Цели урока:

Обучающая – изучить физические и химические свойства алюминия и области его применения. Рассмотреть характеристику химического элемента алюминия и изучить строение атома.

Развивающая – развивать умения в проведении эксперимента, перенесении содержания научно-познавательного текста в форму схем; развитие коммуникативных способностей, умения слушать, умение правильно высказывать свои мысли.

Воспитательная – воспитывать культуру работы с химическими веществами, соблюдение правил техники безопасности, воспитывать сознательную дисциплинированность, четкость и организованность в работе.

Учащиеся должны знать:

строение атома алюминия, физические и химические свойства алюминия как простого вещества, области применения.

Учащиеся должны уметь:

давать характеристику алюминия, как химического элемента, так и простого вещества. Записывать уравнения реакций, доказывающие химические свойства алюминия в молекулярном и окислительно-восстановительном виде.

Тип урока:

изучение нового материала.

Форма организации учебной деятельности учащихся:

групповая работа, индивидуальная, химический эксперимент.

Методы и приемы обучения:

поисковый, частично-исследовательский, демонстрационный химический эксперимент, работа в группах, устные ответы у доски, самостоятельная работа с текстами, взаимоконтроль.

Оборудование урока:

научно-познавательные тексты по теме урока, карточки-задания по отдельному вопросы плана изучения материала для каждой группы, ПСХЭ,
Коллекция «Алюминий и его соединения», алюминиевая фольга, соляная кислота и гидроксид натрия, алюминий, лабораторное оборудование.

1. Организационный момент.

Учитель приветствует учащихся.

2. Актуализация опорных знаний, сообщение темы, задач и структуры проведения урока:

Вступительное слово учителя

Сами, трудясь, вы сделаете все
и для близких людей и для себя,
а если при труде успеха не будет,
неудача – не беда, попробуйте ещё.
Д. И. Менделеев.

Мы продолжаем изучение большой и важной темы «Металлы». Сегодня на уроке нам предстоит познакомиться с металлом хорошо известным вами с детства. Данный урок я хочу начать с легенды.
«Однажды к римскому императору Тиберию пришел незнакомец. В дар императору он принес изготовленную им чашу из блестящего, как серебро, но чрезвычайно легкого металла. Мастер поведал, что получил этот металл из «Глинистой земли». Но император, боясь, что обесценятся его золото и серебро, велел отрубить мастеру голову, а его мастерскую разрушить». О каком металле идет речь?

(Об алюминии)

Учитель:

Таким образом, тема нашего урока: «Алюминий – химический элемент и простое вещество».
Формулируются задачи урока.

План изучения темы в группах:

  1. Физические свойства алюминия.
  2. Химические свойства алюминия.
  3. Применение алюминия и нахождение его в природе.

План работы в группе:

Изучите текст и выделите сведения, относящиеся к своему вопросу;
- выполните предложенные задания;
- подготовьте выступление по своему вопросу, основываясь на краткости, ясности и четкости изложения

Групповая работа по изучению материала.

Подготовка выступления по своему вопросу.

Группа 1.

Характеристика химического элемента алюминия по положению его в ПСХЭ.

Задание:

  1. Ознакомьтесь с текстом.
  2. Дайте характеристику алюминию по положению в ПСХЭ по плану:

А) порядковый номер.
Б) атомная масса.
В) период (малый, большой).
Г) группа (подгруппа: главная или побочная).
Д) химический знак.
Е) Строение атома (заряд ядра, число протонов, электронов, нейтронов, электронная формула).
И) оксиды.
К) летучие водородные соединения.

2. Обсудите в группе полученные результаты и ответьте на вопросы:

  1. Сколько электронов находится на внешнем уровне атома алюминия?
  2. Алюминий будет отдавать или принимать данные электроны?
  3. Какую степень окисления будет приобретать при этом ион алюминия?
  4. Сделайте вывод: К какому классу соединений относится алюминий (металл или неметалл)
  5. Сравните активность химического элемента алюминия с элементами 1 и 2 групп этого же периода.
  6. Подготовьте выступление по данному вопросу, основываясь на краткости, ясности и четкости изложении.

Группа 2.

Физические свойства алюминия.

Задание:

  1. Ознакомьтесь с текстом.
  2. Выделите материал, относящийся к вашему вопросу.
  3. Рассмотрите коллекцию «Алюминий и его сплавы».
  4. Обсудите в группе вопросы:
  • а) Агрегатное состояние, цвет, блеск, плотность (легкий или тяжелый), плавкость (легко –или тугоплавкий), электро- и теплопроводность, пластичный.
  • б) Полученные данные изобразите в виде схемы.

5. Подготовьте выступление поданному вопросу, основываясь на краткости четкости изложении.

Группа 3.

Химические свойства алюминия.

Задание:

  1. Ознакомьтесь с текстом.
  2. Выделите материал, относящийся к вашему вопросу.
  3. Изучите, как ведет себя алюминий по отношению к сложным веществам?
  4. Выполните лабораторную работу, используя инструкцию

Задание:

А) Выполните опыты.
Б) Обговорите в группе наблюдаемые явления.
В) Запишите уравнение реакций.
Г) Сделайте выводы.

5. Подготовьте выступление по данному вопросу, основываясь на краткости, ясности и четкости изложении.

Группа 4.

Применение алюминия.

Задание:

  1. Ознакомьтесь с текстом.
  2. Выделите материал, относящийся к вашему вопросу.
  3. Обсудите в группе следующие вопросы:

а) Какова роль алюминия в жизни человека?
б) Применение алюминия, как простого вещества.

  1. Составьте схему, характеризующую области применения алюминия.
  2. Подготовьте выступление по данному вопросу, основываясь на краткости, ясности и четкости изложении
  3. Отчет групп по изученным вопросам.

Каждая группа, выполнив все задания, представляет схематизированное изложение своего вопроса с обсуждением и комментариями, учащиеся делают записи, переносят предложенные схемы в тетради, в результате всех групп поэтапно составляется опорный конспект по теме урока.

Выводы по теме урока:

Какое количество электронов находится на внешнем энергетическом уровне атома алюминия.
- Какую степень окисления имеет атом алюминия? Почему? А ион?
- При помощи каких опытов мы доказали, что алюминий – это активный металл?
- Какие вещества называются амфотерными?
- На каких свойствах основаны следующие области применения?
- Где в организме больше всего содержится алюминия?
- Можно ли длительное время хранить продукты питания в алюминиевой посуде?

  1. Домашнее задание: § 13 до стр. 60, ? 1, 4. Подготовить презентацию по применению алюминия.
  2. Заключительное слово учителя.

Учитель благодарит учащихся за сотрудничество, выставляет оценки выступающим у доски.

Справка.

Алюминий.
В главную подгруппу III группы входят элементы: бор, алюминий, галлий, индий, таллий. На внешнем электронном слое атомы этих элементов содержат три электрона (…ns2np1). Они являются р-элементами. В реакциях атомы этих элементов являются восстановителями, за исключением неметалла бора, он может быть окислителем. Все элементы этой подгруппы проявляют высшую степень окисления +3. Они образуют высшие оксиды Э2О3 и гидроксиды Э(ОН)3, которые проявляют амфотерные свойства. Наибольший интерес в этой подгруппе представляют алюминий.

Алюминий в свободном виде – серебристо-белый металл, обладает блеском, высокой тепло-электропроводностью (уступает в этом отношении меди), легкий (плотность 2,7 г/см3) и одновременно – это прочный металл. Является мягким, пластичным металлом, его можно прокатывать в фольгу, вытягивается в проволоку. Плавится при температуре 6600С. При 6000С алюминий становится хрупким и его можно истолочь в зерна или в порошок.
Алюминий – металл, поверхность которого обычно покрыта тонкой, прочной оксидной пленкой. Виде стружек и порошка он ярко горит на воздухе, выделяя большое количество теплоты.

При комнатной температуре активно реагирует с галогенами, при нагревании взаимодействует с серой (2000С), азотом (8000 С) и другими неметаллами.

Отношение алюминия к сложным веществам:

Алюминий растворяется в соляной кислоте любой концентрации:

Алюминий растворяется в растворах щелочей:

Алюминий играет важную биологическую роль в жизни человека. Он принимает участие в построении эпителиальной и соединительной тканях. Содержание алюминия в организме человека (на 70 кг массы тела) составляет 61 мг. Находится во всех органах и тканях: больше всего в печени, легких, костях головном мозге. Основным поступлением алюминия в организм является пища – это хлебопродукты, чай (от 20 – 200мг на 100г. продукта), картофель – 4 мг на 100г. продукта, желтая репа – 46 мг на 100 г. продукта.

При приготовлении и хранении пищи в алюминиевой посуде содержание алюминия в продуктах увеличивается вдвое. Повышение содержания алюминия в крови вызывает возбуждение центральной нервной системы. При избытке алюминия в организме нарушается двигательная активность, судороги, ослабление памяти, заболевание печени и почек. При понижении содержания алюминия происходит торможение центральной нервной системы.

Области применения алюминия весьма многочисленны. Благодаря легкости и прочности алюминий и его сплавы применяют в самолето- и ракетостроении (алюминий называют крылатым металлом), строительстве судов и автомобилей; в строительстве- для изготовления оконных рам и дверей, легкость и хорошая электрическая проводимость алюминия используется при изготовлении электрических проводов для линии электропередач. Теплопроводность и неядовитость важны при изготовлении алюминиевой посуды и фольги для хранения пищевых продуктов. Порошок алюминия является основой при изготовлении серебристой краски для защиты железных изделий от коррозии. Способность алюминия гореть в воздухе ярким пламенем, используется при приготовлении красочных фейерверков и изготовление бенгальских огней.

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ОБЩАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 81


Алюминий. Положение алюминия в периодической системе и строение его атома. Нахождение в природе. Физические и химические свойства алюминия.

учитель химии

МБОУ ООШ №81

2013г

Тема урока: Алюминий. Положение алюминия в периодической системе и строение его атома. Нахождение в природе. Физические и химические свойства алюминия.
Цели урока: рассмотреть распространение алюминия в природе, его физические и химические свойства, а также свойства образуемых им соединений.

Ход работы

1. Организационный момент урока. 2. Изучение нового материала. Алюминий Главную подгруппу III группы периодической системы составляют бор (В), (А l), галлий (Ga), индий (In) и таллий (Т l). Как видно из приведенных данных, все эти элементы были открыты в XIXстолетии.

Открытие металлов главной подгруппы III группы

В

Бор представляет собой неметалл. Алюминий - переходный металл, а галлий, индий и таллий - полноценные металлы. Таким образом, с ростом радиусов атомов элементов каждой группы периодической системы металлические свойства простых веществ усиливаются. В данной лекции мы подробнее рассмотрим свойства алюминия. 1. Положение алюминия в таблице Д. И. Менделеева. Строение атома, проявляемые степени окисления. Элемент алюминий расположен в III группе, главной «А» подгруппе, 3 периоде периодической системы, порядковый номер №13, относительная атомная масса Ar(Al) = 27. Его соседом слева в таблице является магний – типичный металл, а справа – кремний – уже неметалл. Следовательно, алюминий должен проявлять свойства некоторого промежуточного характера и его соединения являются амфотерными.

Al +13) 2 ) 8 ) 3 , p – элемент,


Основное состояние

1 s 2 2 s 2 2 p 6 3 s 2 3 p 1

Алюминий проявляет в соединениях степень окисления +3: Al 0 – 3 e - → Al +3 2. Физические свойства Алюминий в свободном виде - серебристо-белый металл, обладающий высокой тепло- и электропроводностью. Температура плавления 650 о С. Алюминий имеет невысокую плотность (2,7 г/см 3 ) - примерно втрое меньше, чем у железа или меди, и одновременно - это прочный металл. 3. Нахождение в природе По распространённости в природе занимает 1-е среди металлов и 3-е место среди элементов , уступая только кислороду и кремнию. Процент содержания алюминия в земной коре по данным различных исследователей составляет от 7,45 до 8,14 % от массы земной коры. В природе алюминий встречается только в соединениях (минералах). Некоторые из них:  Бокситы - Al 2 O 3 H 2 O (с примесями SiO 2 , Fe 2 O 3 , CaCO 3 )  Нефелины - KNa 3 4  Алуниты - KAl(SO 4 ) 2 2Al(OH) 3 Глинозёмы (смеси каолинов с песком SiO 2 , известняком CaCO 3 , магнезитом MgCO 3 )  Корунд - Al 2 O 3  Полевой шпат (ортоклаз) - K 2 O×Al 2 O 3 ×6SiO 2  Каолинит - Al 2 O 3 ×2SiO 2 × 2H 2 O Алунит - (Na,K) 2 SO 4 ×Al 2 (SO 4 ) 3 ×4Al(OH) 3 Берилл - 3ВеО Al 2 О 3 6SiO 2

Боксит

4. Химические свойства алюминия и его соединений Алюминий легко взаимодействует с кислородом при обычных условиях и покрыт оксидной пленкой (она придает матовый вид). Её толщина 0,00001 мм, но благодаря ней алюминий не коррозирует. Для изучения химических свойств алюминия оксидную пленку удаляют. (При помощи наждачной бумаги, или химически: сначала опуская в раствор щелочи для удаления оксидной пленки, а затем в раствор солей ртути для образования сплава алюминия с ртутью – амальгамы).
I . Взаимодействие с простыми веществами Алюминий уже при комнатной температуре активно реагирует со всеми галогенами, образуя галогениды. При нагревании он взаимодействует с серой (200 °С), азотом (800 °С), фосфором (500 °С) и углеродом (2000 °С), с йодом в присутствии катализатора - воды: 2А l + 3 S = А l 2 S 3 (сульфид алюминия), 2А l + N 2 = 2А lN (нитрид алюминия), А l + Р = А lР (фосфид алюминия), 4А l + 3С = А l 4 С 3 (карбид алюминия). 2 Аl + 3 I 2 = 2 A lI 3 (йодид алюминия) Все эти соединения полностью гидролизуются с образованием гидроксида алюминия и, соответственно, сероводорода, аммиака, фосфина и метана: Al 2 S 3 + 6H 2 O = 2Al(OH) 3 + 3H 2 S Al 4 C 3 + 12H 2 O = 4Al(OH) 3 + 3CH 4 В виде стружек или порошка он ярко горит на воздухе, выделяя большое количество теплоты: 4А l + 3 O 2 = 2А l 2 О 3 + 1676 кДж.
II . Взаимодействие со сложными веществами Взаимодействие с водой : 2 Al + 6 H 2 O = 2 Al (OH) 3 + 3 H 2 без оксидной пленки Взаимодействие с оксидами металлов: Алюминий – хороший восстановитель, так как является одним из активных металлов. Стоит в ряду активности сразу после щелочно-земельных металлов. Поэтому восстанавливает металлы из их оксидов . Такая реакция – алюмотермия – используется для получения чистых редких металлов, например таких, как вольфрам, ваннадий и др. 3 Fe 3 O 4 + 8 Al = 4 Al 2 O 3 + 9 Fe + QТермитная смесь Fe 3 O 4 и Al (порошок) –используется ещё и в термитной сварке. С r 2 О 3 + 2А l = 2С r + А l 2 О 3 Взаимодействие с кислотами : С раствором серной кислоты: 2 Al + 3 H 2 SO 4 = Al 2 (SO 4 ) 3 + 3 H 2 С холодными концентрированными серной и азотной не реагирует (пассивирует). Поэтому азотную кислоту перевозят в алюминиевых цистернах. При нагревании алюминий способен восстанавливать эти кислоты без выделения водорода: 2А l + 6Н 2 SО 4(конц) = А l 2 (SО 4 ) 3 + 3 SО 2 + 6Н 2 О, А l + 6Н NO 3(конц) = А l(NO 3 ) 3 + 3 NO 2 + 3Н 2 О. Взаимодействие со щелочами . 2 Al + 2 NaOH + 6 H 2 O = 2 Na Al(OH) 4  + 3 H 2 Na l (ОН) 4 ] тетрагидроксоалюминат натрия По предложению химика Горбова, в русско-японскую войну эту реакцию использовали для получения водорода для аэростатов. С растворами солей: 2 Al + 3 CuSO 4 = Al 2 (SO 4 ) 3 + 3 CuЕсли поверхность алюминия потереть солью ртути, то происходит реакция: 2 Al + 3 HgCl 2 = 2 AlCl 3 + 3 Hg Выделившаяся ртуть растворяет алюминий, образуя амальгаму. 5. Применение алюминия и его соединений
Физические и химические свойства алюминия обусловили его широкое применение в технике. Крупным потребителем алюминия является авиационная промышленность : самолет на 2/3 состоит из алюминия и его сплавов. Самолет из стали оказался бы слишком тяжелым и смог бы нести гораздо меньше пассажиров. Поэтому алюминий называют крылатым металлом. Из алюминия изготовляют кабели и провода : при одинаковой электрической проводимости их масса в 2 раза меньше, чем соответствующих изделий из меди. Учитывая коррозионную устойчивость алюминия, из него изготовляют детали аппаратов и тару для азотной кислоты . Порошок алюминия является основой при изготовлении серебристой краски для защиты железных изделий от коррозии, а также для отражения тепловых лучей такой краской покрывают нефтехранилища, костюмы пожарных. Оксид алюминия используется для получения алюминия, а также как огнеупорный материал. Гидроксид алюминия – основной компонент всем известных лекарств маалокса, альмагеля, которые понижают кислотность желудочного сок. Соли алюминия сильно гидролизуются. Данное свойство применяют в процессе очистки воды. В очищаемую воду вводят сульфат алюминия и небольшое количество гашеной извести для нейтрализации образующейся кислоты. В результате выделяется объемный осадок гидроксида алюминия, который, оседая, уносит с собой взвешенные частицы мути и бактерии. Таким образом, сульфат алюминия является коагулянтом. 6. Получение алюминия 1) Современный рентабельный способ получения алюминия был изобретен американцем Холлом и французом Эру в 1886 году. Он заключается в электролизе раствора оксида алюминия в расплавленном криолите. Расплавленный криолит Na 3 AlF 6 растворяет Al 2 O 3, как вода растворяет сахар. Электролиз “раствора” оксида алюминия в расплавленном криолите происходит так, как если бы криолит был только растворителем, а оксид алюминия - электролитом. 2Al 2 O 3 эл.ток → 4Al + 3O 2 В английской “Энциклопедии для мальчиков и девочек” статья об алюминии начинается следующими словами: “23 февраля 1886 года в истории цивилизации начался новый металлический век - век алюминия. В этот день Чарльз Холл, 22-летний химик, явился в лабораторию своего первого учителя с дюжиной маленьких шариков серебристо-белого алюминия в руке и с новостью, что он нашел способ изготовлять этот металл дешево и в больших количествах”. Так Холл сделался основоположником американской алюминиевой промышленности и англосаксонским национальным героем, как человек, сделавшим из науки великолепный бизнес. 2) 2Al 2 O 3 + 3 C = 4 Al + 3 CO 2 ЭТО ИНТЕРЕСНО:
    Металлический алюминий первым выделил в 1825 году датский физик Ханс Кристиан Эрстед. Пропустив газообразный хлор через слой раскаленного оксида алюминия, смешанного с углем, Эрстед выделил хлорид алюминия без малейших следов влаги. Чтобы восстановить металлический алюминий, Эрстеду понадобилось обработать хлорид алюминия амальгамой калия. Через 2 года немецкий химик Фридрих Вёллер. Усовершенствовал метод, заменив амальгаму калия чистым калием. В 18-19 веках алюминий был главным ювелирным металлом. В 1889 году Д.И.Менделеев в Лондоне за заслуги в развитии химии был награжден ценным подарком – весами, сделанными из золота и алюминия. К 1855 году французский ученый Сен- Клер Девиль разработал способ получения металлического алюминия в технических масштабах. Но способ был очень дорогостоящий. Девиль пользовался особым покровительством Наполеона III, императора Франции. В знак своей преданности и благодарности Девиль изготовил для сына Наполеона, новорожденного принца, изящно гравированную погремушку – первое «изделие ширпотреба» из алюминия. Наполеон намеревался даже снарядить своих гвардейцев алюминиевыми кирасами, но цена оказалась непомерно высокой. В то время 1 кг алюминия стоил 1000 марок, т.е. в 5 раз дороже серебра. Только после изобретения электролитического процесса алюминий по своей стоимости сравнялся с обычными металлами. А знаете ли вы, что алюминий, поступая в организм человека, вызывает расстройство нервной системы. При его избытке нарушается обмен веществ. А защитными средствами является витамин С, соединения кальция, цинка. При сгорании алюминия в кислороде и фторе выделяется много тепла. Поэтому его используют как присадку к ракетному топливу. Ракета "Сатурн" сжигает за время полёта 36 тонн алюминиевого порошка. Идея использования металлов в качестве компонента ракетного топлива впервые высказал Ф. А. Цандер.
3. Закрепление изученного материала 1. Для получения алюминия из хлорида алюминия в качестве восстановителя можно использовать металлический кальций. Составьте уравнение данной химической реакции, охарактеризуйте этот процесс при помощи электронного баланса.
Подумайте! Почему эту реакцию нельзя проводить в водном растворе? №2. Закончите уравнения химических реакций:
Al + H 2 SO 4 (раствор) ->
Al + CuCl 2 ->
Al + HNO 3 (конц) - t ->
Al + NaOH + H 2 O -> №3. Решите задачу:
На сплав алюминия и меди подействовали избытком концентрированного раствора гидроксида натрия при нагревании. Выделилось 2,24 л газа (н.у.). Вычислите процентный состав сплава, если его общая масса была 10 г?
4. Домашнее задание Примечание: на уроке может использоваться презентация « Алюминий. Положение алюминия в периодической системе и строение его атома. Нахождение в природе. Физические и химические свойства алюминия.»

2.1.1 Положение алюминия в периодической системе и строение его атома

Алюминий находится в главной подгруппе III группы. Схема расположения по энергетическим уровням следующая:

3 Al 2e - , 8e - ,3e -


Так как у атомов алюминия на внешнем уровне 3 электрона, то алюминий в соединениях проявляет степень окисления 4-3.

К такому же выводу приходим, руководствуясь представлениями о характере движения электронов в атомах и расположении их не только по энергетическим уровням, но и по подуровням. В атоме алюминия легко происходит распаривание 3s 2 -электронов и один электрон переходит 3p-орбиталь:

В результате получаются три неспаренных электрона. Ответьте на вопрос 1 (с. 138 ).

2.1.2 Нахождение алюминия в природе, его получение и свойства

Алюминий - третий по распространенности элемент в земной коре. Он встречается только в соединениях. Важнейшие из них указаны на схеме 19.

Окрашенные кристаллы Al 2 O 3 красного цвета - рубины, синего цвета – сапфиры.

Получение

Немецкий химик Ф. Вёлер в 1827 г. получил алюминий при нагревании хлорида-алюминия со щелочными металлами калием или натрием без доступа воздуха.

AlCl 3 +3K 3KCl + Al

Для промышленного получения алюминия эти методы экономически невыгодны, поэтому был разработан электрохимический метод получения алюминия из бокситов.

Физические свойства

Алюминий - серебристо-белый металл, легкий (r = 2,7 г/cм 3), плавится при 660 °С. Он очень пластичен, легко вытягивается в проволоку и прокаливается в листы и фольгу. По электрической проводимости алюминий уступает лишь серебру и меди (она составляет 2/3 от электрической проводимости меди).

Химические свойства

В электрохимическом ряду напряжения алюминий помещается за самыми активными металлами. Однако из повседневного опыта известно, что на алюминиевые изделия (посуду и т. д.) не действует ни кислород, ни вода даже при температуре ее кипения. На алюминий не действует также концентрированная холодная азотная кислота. Это объясняется наличием на поверхности алюминия тонкой оксидной пленки, которая предохраняет его от дальнейшего окисления. Если поверхность алюминия потереть солью ртути, то происходит реакция:

2А1 + 3HgCl 2 ® 2А1С1 3 + 3Hg

Выделившаяся ртуть растворяет алюминий, и образуется его сплав с ртутью - амальгама алюминия. На амальгамированной поверхности пленка не удерживается, поэтому алюминий реагирует с водой при обычных условиях (рис. 46):


2А1 + 6НОН ® 2А1(ОН) 3 ¯ + 3Н 2 ­

При повышенной температуре алюминий реагирует со многими неметаллами и сложными веществами без амальгамирования:

Применение

Алюминий применяют для производства различных сплавов. Наибольшее распространение имеют дюралюмины, содержащие медь и магний, и силумины - сплавы алюминия с кремнием. Основные преимущества этих сплавов-легкость и высокая прочность. Упомянутые сплавы широко используют в авиа-, авто-, судо- и приборостроении, в ракетной технике и в строительстве. В виде чистого металла алюминий идет на изготовление электрических проводов и различной химической аппаратуры.

Алюминий используют также для алитирования, т. е. насыщения поверхностей стальных и чугунных изделий алюминием с целью защиты их от коррозии.

На практике часто используют термит (смесь оксида Fе 3 O 4 с порошком алюминия). Если эту смесь поджечь (с помощью магниевой ленты), то происходит бурная реакция с выделением большого количества теплоты:

8Al + 3Fe 3 O 4 ® 4Al 2 O 3 + 9Fe


Этот процесс используют при так называемой термитной сварке, а также для получения некоторых металлов в свободном виде.

Ответьте на вопросы 2-6 (с. 138). Решите задачи 1 – 2 (с. 138).

2.1.3 Важнейшие соединения алюминия

Оксид алюминия

Аl 2 О 3 можно получить следующими способами:

1. Непосредственным сжиганием порошка металлического алюминия (вдуванием порошка алюминия в пламя горелки):

4Al + 3O 2 ® 2А1 2 O 3

2. Путем превращения по приведенной ниже схеме:

Оксид алюминия - твердое, тугоплавкое (темп. пл. 2050 °С) вещество белого цвета.

По химическим свойствам это амфотерный оксид (I, § 37). Реагирует с кислотами, проявляет свойства основных оксидов:

А1 2 O 3 + 6НС1 2А1С1 3 + 3Н 2 O

Al 2 O 3 + 6H + +6С1 - 2Al 3+ + 6С1 - + 3Н 2 O

А1 2 O 3 + 6Н + 2A1 3+ + 3Н 2 O

Оксид алюминия реагирует со щелочами и проявляет свойства кислотных оксидов. Причем при сплавлении образуются соли метаалюминиевой кислоты НА1O 2 , т. е. мета-алюминаты:


Al 2 O 3 + 2NaOH 2NaA10 2 + H 2 0

В присутствии воды реакция протекает иначе:

А1 2 О 3 + 2NаОН + Н 2 O ® 2

Это объясняется тем, что в водном растворе алюминат натрия NaA1O 2 присоединяет одну или две молекулы воды, что можно изобразить так:

а) NaA1O 2 -Н 2 О, или NaH 2 A1O 3 ; б) NaA1O 2 -2H 2 O, или NaAl(OH) 4 .

Гидроксид алюминия

Гидроксид алюминия А1(ОН) 3 получают при взаимодействии раствора щелочи с растворами солей алюминия (раствор щелочи нельзя брать в избытке):

АlCl 3 + NaOН ® Al(OH) 3 ¯ + 3NaCl

A1 3+ + 3Cl - + 3Na + + 3OH - ® Al(OH) 3 ¯ + 3Na + + 3С1 -

Аl 3+ + 3ОН - ® А1(ОН) 3 ¯

Если белую желеобразную массу гидроксида алюминия выделить из раствора и высушить, то получается белое кристаллическое вещество, практически не растворяющееся в воде.

Гидроксид алюминия (как и его оксид) обладает амфотерными свойствами. Подобно всем основаниям гидроксид алюминия реагирует с кислотами. При сплавлении гидроксида алюминия со щелочами образуются метаалюминаты, а в водных растворах - гидраты метаалюминатов:

А1(OH) 3 + NaOH NaА1O 2 + 2Н 2 O

А1(OH) 3 + NaOH ® NaH 2 А1O 3 + Н 2 O

Соли алюминия получают в основном при взаимодействии металлического алюминия с кислотами. По физическим свойствам это твердые кристаллические вещества, хорошо растворимые в воде. Химические свойства солей алюминия аналогичны свойствам других солей (, с. 98-99). Так как соли алюминия образованы слабым основанием и сильной кислотой, то они в водных растворах подвергаются гидролизу (с. 18).

Ответьте на вопросы 7-10 (с. 138). Решите задачу 3 (с. 138 ).

Генетическая связь между алюминием и его важнейшими соединениями (схема 20).

Таким образом, из вышеизложенного материала можно сделать вывод, что в школьной программе на изучение данной темы отводится очень мало часов, и, кроме этого, практически нет сведений об экологических аспектах этой темы.

Азот образует ряд оксидов, формально отвечающих всем возможным степеням окисления от +1 до +5: N 2 O, NО, N 2 O 3 , NO 2 , N 2 O 5 , однако всего два из них – оксид азота(II) и оксид азота(IV) – не только устойчивы при обычных условиях, но и активно задействованы в природном и промышленном круговоротах азота.


2.2.1 Некоторые соединения азота и их свойства 1.2.1.1. Оксиды азота

N 2 +1 O – оксид азота(I), закись азота, «веселящий» газ, несолеобразующий оксид. Получают N 2 O разложением аммиачной селитры:

N 2 O имеет слабый приятный запах и сладковатый вкус. С кислородом, водой, растворами кислот и щелочей не реагирует. Разлагается на элементы при температуре выше 500 °С, иными словами, достаточно устойчив.

Строение: у кислорода 2 неспаренных электрона, у азота 3 – образуется двойная связь и один неспаренный электрон в остатке. Можно предположить, что молекулы NO будут спариваться и образовывать димерную молекулу ONNO. Строение молекулы: линейная молекула О=N=N, в которой центральный атом N четырехвалентен. Он образует две двойные связи: одну – с кислородом по типичной схеме создания ковалентной связи (два электрона азота, два электрона кислорода), другую – с атомом азота (который два из своих трех неспаренных электронов спаривает и образует за счет этого пустую орбиталь), одна из связей ковалентная, вторая донорно-акцепторная (рис. 1).

Установка для получения оксида азота(I) состоит из штативов, пробирки, пробки с газоотводной трубкой, кристаллизатора, цилиндра и спиртовки (рис. 2). В пробирку помещают NH 4 NO 3 , закрывают пробкой с газоотводной трубкой и нагревают. Газ собирают в цилиндр, наполненный водой.


Рис. 1. Молекула оксида азота(I) – N 2 O

Оксид N 2 O разлагается при нагревании:

Оксид N 2 O реагирует с водородом:

N +2 O – оксид азота(II), несолеобразующий оксид. Получают NO реакцией меди с кислотой HNO 3 (разб.) (рис. 3).

Кристаллическая решетка молекулярная; молекула легкая, слабополярная (электроотрицательность кислорода немного выше, чем у азота). Можно предположить, что температуры плавления и кипения будут низкими, но выше, чем у азота, т. к. полярность молекулы дает возможность подключать электростатические силы притяжения к просто межмолекулярным силам. Образование димера тоже способствует повышению температуры кипения. Строение молекулы позволяет предположить и невысокую растворимость в воде. Оксид азота(II) не имеет ни цвета, ни запаха.

Для получения оксида азота(II) в пробирку помещают немного медных стружек и заливают разбавленную азотную кислоту. Пробирку закрывают пробкой с газоотводной трубкой и укрепляют в штативе. Конец газоотводной трубки опускают в кристаллизатор с водой и далее в цилиндр (рис. 3). При нагревании выделяется NO. NO легко окисляется кислородом воздуха, т. е. действует как восстановитель:

В реакции с сернистым газом оксид NO – окислитель:


N +2 2 O 3 – оксид азота(III), азотистый ангидрид (ему соответствуют азотистая кислота HNО 2 и соли нитриты); это кислотный оксид, для него характерны все свойства кислотных оксидов. Получают оксид N 2 O 3 по реакции:

NO 2 + NO N 2 O 3 .

N +4 O 2 – оксид азота(IV), диоксид азота, бурый газ (токсичен).

Рассмотрим электроны азота в молекуле NО. Это неспаренный электрон, свободная пара электронов и еще два электрона на связи с кислородом – всего пять. А у атома кислорода, «выходящего на связь», шесть электронов на четырех орбиталях. Если расположить их по два, то одна орбиталь останется свободной. Именно ее и занимает пара электронов атома азота (рис. 4, 5).

Рис. 4. Схема электронного строения молекулы NO 2 (первый вариант). (Точками обозначены электроны атомов О, крестиками – электроны атома N)

Рис. 5. Схема электронного строения молекулы NO 2 (второй вариант). (Звездочкой обозначен возбужденный атом O, стрелкой – донорно-акцепторная связь.

Раз пара электронов, находящаяся на s-орбитали, «пошла на связь», она просто обязана подвергнуться гибридизации. Возникает вопрос: какой тип гибридизации использует атом? Ответ: три электронные орбитали азота находятся в состоянии sp 2 -гибридизации. Молекула NO 2 угловая, угол 134° (угол больше 120° потому, что 1 электрон отталкивает от себя электроны связи слабее, чем пара электронов) (рис. 6, 7).

Кристаллическая решетка молекулярная, однако, поскольку сама молекула тяжелее NO и склонность к димеризации у нее заметно выше, то плавиться и кипеть это вещество должно при заметно более высоких температурах. Температура кипения составляет 21 °С, поэтому при обычных условиях – 20 °С и 760 мм рт. ст. – оксид азота(IV) жидкий.

Оксид азота (IV) в воде растворяется, одновременно с ней реагируя, и получается при этом сразу две кислоты.

Рис. 6. Молекула NO 2 - вид «сверху»

Рис. 7. Молекула NO 2 – вид «сбоку», со стороны донорно-акцепторной связи. (Второй атом кислорода не виден за орбиталями атома азота. Заштрихованные кружки – это гибридизованные орбитали атомов, направленные к читателю.)

Оксид азота(IV) имеет и характерный резкий запах, и рыжевато-бурый цвет, оттенки которого отличаются друг от друга в зависимости от концентрации. Именно за этот цвет выбросы оксидов азота в атмосферу называют «лисьими хвостами» .

Реакции оксида NO 2

1) С водой:

2NO 2 + Н 2 O = НNO 3 + НNO 2 .

2) С щелочами:

2NO 2 + 2NaOH = NаNО 3 + NаNО 2 + Н 2 O.

3) Димеризация при охлаждении:

При температуре –11 °С равновесие полностью смещено вправо, а при +140 °С – целиком влево.

N +5 2 O 5 – оксид азота(V), азотный ангидрид, кислотный оксид, сильный окислитель. Оксид N 2 O 5 легко разлагается:

2N 2 O 5 = 4NO 2 ­ + O 2 ­.

2.2.1.2 Азотная кислота

Из гидроксидов азота мы рассмотрим наиболее многотоннажный – азотную кислоту.

Молекула азотной кислоты полярна (из-за разной электроотрицательности кислорода и водорода, потому что азот как бы скрыт внутри молекулы) и асимметрична. Все три имеющихся в ней угла между связями азота с кислородом разные. Формальная степень окисления азота высшая (+5). Но при этом только 4 связи у атома азота с другими атомами – валентность азота равна 4.

Строение молекулы легче понять, если рассмотреть процесс ее получения. Азотная кислота получается при реакции оксида азота(IV) с водой (в присутствии кислорода): две молекулы NO 2 одновременно «атакуют» молекулу воды своими неспаренными электронами, в результате связь водорода с кислородом разрывается не как обычно (пара электронов у кислорода и «голый протон»), а одной молекуле NO 2 достается водород со своим электроном, другой – радикал ОН (рис. 8). Образуются две кислоты: обе кислоты сильные, обе быстро отдают свой протон ближайшим молекулам воды и остаются в итоге в виде ионов NO 2 - и NO 3 - . Ион NO 2 - нестоек, две молекулы НNО 2 разлагаются на воду, NО 2 и NО. Оксид NO реагирует с кислородом, превращаясь в NО 2 , и так до тех пор, пока не получится одна только азотная кислота.

Рис. 8. Схема образования молекул азотной и азотистой кислот. (Черный шар – атом N, большие белые шары – атомы O, маленькие белые шарики – атомы H.)

Формально выходит, что с одним атомом кислорода атом азота связан двойной связью, а с другим – обычной одинарной связью (этот атом кислорода связан еще и с атомом водорода). С третьим атомом кислорода азот в HNO 3 связан донорно-акцепторной связью, причем в качестве донора выступает атом азота. Гибридизация атома азота при этом должна быть sр 2 из-за наличия двойной связи, что определяет структуру – плоский треугольник. Реально получается, что действительно фрагмент из атома азота и трех атомов кислорода – плоский треугольник, только в молекуле азотной кислоты этот треугольник неправильный – все три угла ОNО разные, следовательно, и разные стороны треугольника. Когда же молекула диссоциирует, треугольник становится правильным, равносторонним. Значит, и атомы кислорода в нем становятся равноценными. Одинаковыми становятся и все связи.

Физические свойства азотной кислоты

Соединение ионизированное, пусть даже и частично, сложно перевести в газ. Таким образом, температура кипения должна бы быть достаточно высокой, однако при такой небольшой молекулярной массе температура плавления высокой быть не должна. Следовательно, агрегатное состояние при 20°С жидкое. Что касается растворимости, то, как и многие другие полярные жидкости, азотная кислота легко смешивается с водой в любых соотношениях. Чистая азотная кислота бесцветна и не имеет запаха. Однако из-за разложения на кислород и оксид азота(IV), который в ней же и растворяется, можно сказать, что обычная концентрированная азотная кислота имеет желто-бурый цвет и характерный для NO 2 резкий запах. Посмотрим, как влияет строение молекулы азотной кислоты на ее химические свойства.

НNО 3 – cильный окислитель

При взаимодействии НNО 3 с металлами (М) водород не выделяется:

М + НNО 3 ® соль + вода + газ.

Смесь HNO 3 (конц.) с HCl (конц.) в объемном соотношении 1:3 (1V HNO 3 + 3V HCl) называют «царской водкой».

Au + HNO 3 + 3HCl = AuCl 3 + NO + 2H 2 O.

Азотная кислота не реагирует с другими кислотами по типу реакций обмена или соединения. Однако вполне способна реагировать как сильный окислитель. В смеси концентрированных азотной и соляной кислот протекают обратимые реакции, суть которых можно обобщить уравнением:


Образующийся атомарный хлор очень активен и легко отбирает электроны у атомов металлов, а хлорид-ион образует устойчивые комплексные ионы с получающимися ионами металлов. Все это позволяет перевести в раствор даже золото. Концентрированная H 2 SO 4 как сильное водоотнимающее средство способствует реакции разложения азотной кислоты на оксид азота(IV) и кислород. Азотная кислота – одна из сильных неорганических кислот и, естественно, со щелочами реагирует. Реагирует она также и с нерастворимыми гидроксидами, и с основными оксидами .

При изучении темы «Азот. Соединения азота» пользуются учебником химии под редакцией Г.Е. Рудзитис, Ф.Г. Фельдман, также учебником за 9 класс под редакцией Н.С. Ахметова. Дидактическим материалом служит книга по химии для 8-9 классов под редакцией А. М. Радецкого, В. П. Горшкова; используются задания для самостоятельной роботы по химии за 9 класс под редакцией Р.П. Суровцева, С.В. Софронова; используется сборник задач по химии для средней школы и для поступающих в вузы под редакцией Г.П. Хомченко, И.Г. Хомченко. На изучение этой темы отводится 7 ч .


ГЛАВА 3. МЕЖПРЕДМЕТНЫЕ СВЯЗИ ПРИ ИЗУЧЕНИИ III И V ГРУППЫ ПЕРИОДИЧЕСКОЙ СИСТЕМЫ Д.И.МЕНДЕЛЕЕВА 3.1 III-А группа 3.1.1 Бор 3.1.1.1 Распространение в природе

Бор никогда не встречается в природе в свободном состоянии, он всегда оказывается связанным с кислородом. В этой форме он присутствует в борной кислоте Н 3 BO 3 , которая содержится в воде горячих источников вулканических местностей. Кроме того, в природе распространены многочисленные соли борной кислоты. Из этих солей наиболее известна бура или тинкал Na 2 B 4 О 7 . 10Н 2 О. Техническое значение имеют борацит 2Mg 3 B 8 O 15 . MgCl 2 , пандермит Са 2 B 6 О 11 . 3Н 2 О, колеманит Са 2 B 6 О 11 . 5Н 2 О, кернит Na 2 B 4 О 7 . 4Н 2 О.

Необходимо указать и следующие минералы, которые являются производными борной кислоты: борокальцит СаB 4 О 7 . 4Н 2 О, борнонатрокальцит NaСаB 5 О 9 . 6Н 2 О, гидроборацит MgCaB 6 О 11 . 6Н 2 О, боромагнезит 2Mg 5 B 4 О 11 . 5Н 2 О, сингалит MgAlBО 4 и др. .

3.1.1.2 Биохимическая роль

Бор и его соединения имеют большое значение в народном хозяйстве. Изотоп 5 10 B, поглощающий нейтроны, применяют в ядерной технике для замедления ядерных цепных реакций. Бура и борная кислота издавна применяется в медицине как антисептики.

Физиологическая и биологическая активность бора очень высока. Бор способен влиять на важнейшие процессы биохимии животных и растений. Вместе с Mn, Cu, Zn и Мо бор входит в число пяти жизненно важных микроэлементов. Бор концентрируется в костях и зубах, в мышцах, в костном мозгу, печени и щитовидной железе. Вероятно, что он ускоряет рост и развитие организмов. Это видно из влияния бора на растения. При борном голодании значительно уменьшается урожай и особенно количество семян. Для жизнедеятельности животных важно его нахождение в молоке (коровьем) и в желтке куриных яиц. Некоторые растения (кормовые травы и сахарная свекла) собирают по несколько граммов бора с гектара угодий. Бор содержится в значительных количествах в жировых тканях некоторых животных, пасущихся на пастбищах, обогащенных бором. Состав соединений бора в организме неизвестен. Установлено, что бор тормозит кишечную амилазу и кишечные протеиназы, усиливает действие инсулина и тормозит окисление адреналина, ослабляет витамины В 2 и В 12 . При избытке бора появляются борные энтериты. Избыточное содержание бора ведет к заболеванию растений. Пшеница и овес страдают при наличии 0,7 - 0,8 мгВ/кг почвы. Борьба с засолением почв бором ведется с помощью промывки борных почв .

И дидактические основы организации обучения позволяют более доступно объяснять изучаемый материал на уроках физики при изучении темы «Основы электродинамики». Анализ различных технологий позволил составить авторскую технологию развития у учащихся направленности на диалогическое общение при групповой форме обучения. От того, на сколько правильно будет построен процесс обучения при использовании...


С этим возникает необходимость рассмотрения вопроса взаимосвязи молекулярной физики и химии в курсе средней школы. При изучении молекулярной физики взаимосвязь ее с химией проявляется в двух главных направлениях. Первое из них заключаются в использовании знаний учащихся, полученных ими в процессе изучения химии в качестве материала для доказательства основных положений молекулярной физики. Второе...

Цели урока:

  • Дать характеристику алюминия по его положению в периодической системе химических элементов.

  • На основе строения атома рассмотреть его физические и химические свойства.

  • Познакомиться с промышленным способом получения алюминия и указать области его применения.



Из истории открытия алюминия… «Серебро из глины»

  • В период открытия алюминия этот металл был дороже золота. Англичане хотели почтить богатым подарком великого русского химика

  • Д.И Менделеева, подарили ему химические весы, в которых одна чашка была изготовлена из золота, другая - из алюминия. Чашка из алюминия стала дороже золотой. Полученное «серебро из глины» заинтересовало не только учёных, но и промышленников и даже императора Франции.





Применение алюминия













Военная промышленность



Строительство







Нахождение алюминия в природе



Природные соединения алюминия

  • Задание II. Рассмотрите образцы природных соединений, сравните их по твердости, прочности, цвету, рассчитайте содержание Al в некоторых из них.

  • Нефелины - KNa34

    • Глинозёмы (смеси каолинов с песком SiO2, известняком CaCO3, магнезитом MgCO3)
    • Корунд (сапфир, рубин, наждак) - Al2O3
    • Полевые шпаты - (K,Na)2O·Al2O3·6SiO2, Ca
    • Каолинит - Al2O3·2SiO2 · 2H2O
    • Берилл (изумруд, аквамарин) - 3ВеО · Al2О3 · 6SiO2


Физические свойства алюминия. Лабораторная работа.

  • Инструктивная карта.

  • 2. Определите агрегатное состояние вещества алюминия.

  • 3. Какого цвета пластинка?

  • 4. Определите, имеет ли блеск данная пластина?

  • 5. Опустите пластинку на ¼ её длины в стакан с горячей водой на 10-15 секунд.

  • Вытащите пластинку из воды, протрите салфеткой и определите, обладает ли алюминий теплопроводностью?

  • 6. Возьмите в руки алюминиевую фольгу. Определите, обладает ли алюминий пластичностью? Лёгкий ли это металл?

  • 7. Поместите в стакан с холодной водой алюминиевую пластинку, проверните несколько раз. Наблюдается растворение алюминия?

  • 8. Кратко запишите свои наблюдения согласно плану:

  • - агрегатное состояние,

  • - цвет,

  • - блеск,

  • - теплопроводность,

  • - пластичность,

  • - растворимость в воде.





Лабораторная работа: «Химические свойства алюминия».

  • Инструктивная карта.

  • 1. Возьмите две пробирки. В каждую положите по кусочку алюминия. Прилейте в одну из них 1-2 мл раствора соляной кислоты, а в другую столько же раствора серной кислоты. Что наблюдаете? Пробирки слегка нагрейте. Запишите уравнения соответствующих реакций.

  • 2. Кусочек алюминия положите в пробирку. Прилейте 1,5 мл концентрированной серной кислоты. Что наблюдаете? Запишите уравнение реакции.

  • 3. В пробирку поместите кусочек алюминия и прилейте раствор щёлочи. Содержимое пробирки нагрейте. Что происходит? Запишите уравнение реакции.

  • 4. Результаты проделанной работы оформите в таблицу:





Получение алюминия в промышленности



Тест

  • 1.Какова электронная конфигурация атома алюминия?

  • А) 1s22s22p1 Б)1s22s22p3

  • B) 1s22s22p63s23p1 Г) 1s22s22p63s23p63d14s2

  • 2. С какими из указанных веществ реагирует алюминий?

  • А) СаО Б) HCl

  • B) Cl2 Г) NaOH

  • 3. Какие из указанных металлов являются более активными,

  • чем алюминий?

  • А) Na Б) Cu

  • B) Ca Г) Fe

  • 4. Наиболее характерная степень окисления алюминия:

  • А) +1 Б) +2

  • В) +3 Г) +4

  • 5. Алюминий в химических реакциях проявляет свойства:

  • А) окислителя Б) инертного соединения

  • В) восстановителя Г) окислителя и восстановителя

  • 6. В промышленности алюминий получают:

  • А) используя в качестве восстановителя металлический натрий

  • Б) электролизом расплава оксида алюминия

  • В) используя в качестве восстановителя оксид углерода (П)

  • Г) электролизом раствора солей алюминия