Органическое земледелие. Земледелие как одна из главных отраслей сельскохозяйственного производства

Рассмотренные особенности земледелия как отрасли сельскохозяйственного производства определяют во многом специфику земледелия и как науки. По мере развития земледелия и накопления научных знаний происходила дифференциация агрономии («Агрономия » - в буквальном смысле наука о законах земледелия, о законах полеводства).

Выделились и развились как самостоятельные многие научные дисциплины - общее земледелие, растениеводство, физиология растений, почвоведение, агрохимия, мелиорация, метеорология, селекция и семеноводство, сельскохозяйственные машины и орудия, микробиология, энтомология, фитопатология и др.

Дифференциация агрономических дисциплин является закономерным процессом развития науки в целом, поскольку вычленение более конкретных объектов познания и соответствующих методов исследования способствует ускорению научно-технического прогресса. Вместе с тем диалектика развития науки не противопоставляет процесс ее дифференциации процессу интеграции. Наоборот, интеграция научных достижений различных дисциплин есть объективная необходимость как развития самой науки, так и ее приложения к конкретным отраслям производства.

Земледелие как наука занимает особое место в системе агрономических знаний. Она связывает естественнонаучные дисциплины с прикладными и, таким образом, служит общетеоретической базой растениеводческих отраслей сельскохозяйственного производства, основанных на возделывании земли.

Главной задачей научного земледелия, как считал К. А. Тимирязев, является изучение требований культурных растений и разработка способов их удовлетворения В. Р. Вильямс основную задачу земледелия видел в обеспечении культурных растений в течение всего периода их жизни водой и питательными элементами, путем повышения потенциального плодородия почв. Развивая положение К. А. Тимирязева о связи физиологии растений с земледелием, Д. Н Прянишников считал объектами изучения физиологии растений свойства растений, почвоведения и метеорологии - свойства окружающей среды, а земледелия - способы согласования этих свойств путем воздействия преимущественно на почву и растение. В настоящее время эти положения дополняются задачей рационального использования всех сельскохозяйственных угодий в неразрывной связи с проблемами охраны биосферы.

Земледелие - наука об эффективном управлении экологическими условиями жизни культурных растений в целях получения наибольшего урожая растительной продукции желаемого качества. В земледелии значительное внимание уделяется более рациональному использованию почвенных ресурсов и повышению плодородия почв как непременному условию достижения высоких урожаев возделываемых растений.

Способы повышения плодородия почвы могут быть физическими (приемы, системы обработки почв и др.), биологическими (воздействие культурных растений, севооборотов), химическими В земледелии изучаются и разрабатываются преимущественно физические и биологические способы, а способы повышения плодородия почв с помощью удобрений изучаются агрохимией.

Земледелие как наука тесно связана с другими науками. Теоретической и методологической базой земледелия являются фундаментальные естественнонаучные дисциплины - биология, физика, химия и др. Особенно тесная связь земледелия с почвоведением, агрохимией, мелиорацией, механизацией, которые рассматривают важные вопросы землепользования и возделывания сельскохозяйственных культур. Главной задачей земледелия как науки является неуклонное повышение плодородия почв и на его основе достижение дальнейшего роста урожайности и валовых сборов всех сельскохозяйственных культур. Эффективное использование техники, удобрений, капитальных вложений, других средств в земледелии в первую очередь связано с успешным решением задачи по коренному улучшению почв во всех регионах страны. В этом плане намного возрастает роль почвоведения и земледелия как наук, непосредственно связанных с изучением естественного и культурного почвообразовательного процессов и разрабатывающих методы, пути и технологии оптимизации почвенных условий для растений и получения максимально возможных урожаев сельскохозяйственных культур необходимого качества. В этом отношении перед почвоведением и земледелием стоят задачи: выяснения закономерностей и разработки способов ускоренного преобразования низко-плодородных почв в высокоплодородные; эффективного использования богарных и мелиорированных почв; выработки комплексных показателей уровня плодородия различных типов почв, проведения их бонитировки; изучения миграционных процессов в почвах; мобилизации труднодоступных форм питательных элементов в почве; повышения коэффициента использования растениями элементов минерального питания из удобрений; разработки бездефицитных по гумусу технологий производства сельскохозяйственных культур (по снижению, а затем полному прекращению потерь гумуса и постепенному повышению оптимального его содержания в почвах для определенных природно-климатических зон).

Перед земледелием поставлена задача обеспечить в ближайшее время разработку и совершенствование применяемых систем земледелия. В этой работе самое непосредственное участие должны принимать и ученые-почвоведы.

Научно-технический прогресс в области механизации, мелиорации и химизации способствует интенсификации земледелия и ставит вопрос контроля за почвообразовательными процессами на этих почвах, поскольку интенсификация в этих условиях достигает своего высшего значения на данном этапе развития производительных сил. Важны исследования по динамике всех составляющих почвообразовательного процесса, учитывая, что при этом происходит ускорение темпов изменения структурного состояния почвы, разрушения и передвижения веществ в почве, включая ее органическую часть. Поэтому одно из важнейших направлений научного поиска в почвоведении и в земледелии заключается в разработке мер по воспроизводству почвенного плодородия.

Земледелие в настоящее время и в будущем должно быть почвозащитным, обеспечивать сохранность и прогрессивное наращивание плодородия почв. Научные разработки в области земледелия и почвоведения должны предшествовать внедрению новых приемов обработки почв, почвозащитных систем земледелия в различных регионах страны, чтобы практика земледелия базировалась на научно обоснованных рекомендациях ученых.

Задачей земледелия и почвоведения является придание современным системам земледелия строго сбалансированного нормативно-программного характера управления имеющимися ресурсами, в первую очередь почвенными, с учетом экологических аспектов разрабатываемых в земледелии технологий производства. Рекультивация земель, частичное или полное восстановление их плодородия, приобретает все большее значение и становится в ряд важнейших проблем. Здесь особенно возрастает роль ученых в области земледелия и почвоведения в быстрейшем вовлечении таких земель в сельскохозяйственное производство.

В связи с интенсификацией земледелия в почву вместе с удобрениями, мелиорантами, химическими средствами защиты растений вносится большое количество балластных веществ. Изучение их влияния, а также различных других веществ (токсикантов, тяжелых металлов и др.) на процессы, происходящие в почве и влияющие на их плодородие, качество и урожайность возделываемых культур, также представляет важное направление исследований в области земледеления и почвоведения.

Основными объектами изучения в земледелии являются пахотные почвы и возделываемые на них растения. Важнейшим методом исследования служит полевой опыт, позволяющий изучать реакцию растений на изменения экологической среды в конкретных условиях. Для изучения процессов и закономерностей взаимодействия растений с окружающей средой проводятся вегетационные, лизиметрические, лабораторно-полевые и лабораторные опыты. При этом в зависимости от поставленных задач используются визуальные наблюдения, физические, химические, физиологические, микробиологические, математические и другие методы исследования.

нии численности вредных организмов до экономически целесообразного и экологически безвредного уровня.

Рассмотрению методологических подходов к решению выше перечисленных задач и проблем, исходя из принципов системности, альтернативности, энергосбережения, нормативности, соответствия современного земледелия новым производственным отношениям в оптимальной системе природопользования, посвящена эта книга. .

Введение, главы 1-3 в разделе 1,4 в разделе II, 1-3 в разделе V написаны проф.Г. И. Баздыревым; глава 4 в разделе I и раздел VI - проф.А. Ф. Сафоновым; главы 1-3 в разделе II - проф.А. М. Туликовым; раздел III - проф.В. Г. Лошаковым; раздел IV - доц.А. Я. Рассадиным; предметный указатель - проф.А. И. Пупониным.

НАУЧНЫЕ ОСНОВЫ ЗЕМЛЕДЕЛИЯ

Г л а в а 1 ИСТОРИЯ РАЗВИТИЯ ЗЕМЛЕДЕЛИЯ

Проблемы происхождения мирового земледелия актуальны для современного земледелия. Где зародилась впервые земледельческая культура на Земле? Какие орудия применял первобытный земледелец? Какие растения первоначально были взяты в культуру? Эти и другие вопросы ныне жизненны и полны значения для настоящего земледельца. Зная прошлое, можно без ошибок научиться управлять современными технологиями.

С момента своего зарождения в эпоху первобытно-общинного строя и кочевого образа жизни земледелие развивалось лишь на примитивной практике и по народным приметам, постепенно накапливая и передавая наиболее ценные наблюдения и практический опыт от одного поколения к другому. До возникновения письменности опыт передавался только устно.

Появление земледелия повлекло за собой новую форму хозяйствования с глубоким изменением первичных ландшафтов. В широком масштабе начался процесс вырубки леса, а следовательно, и первичная стадия деградации почвы. Накопление эмпирических знаний о почве началось с того времени, когда человек перешел от сбора дикорастущих растений к выращиванию их на полях, к возделыванию почвы.

Многие ученые считают, что земледелие началось с обработки почвы. Н. И. Вавилов разработал полицентрическую концепцию зарождения мирового земледелия. Он в 1926-1935 гг. выделил восемь основных географических областей истории развития земледелия: западноазиатская, индийская, среднеазиатская, китайская, среднеземноморская, африканская, мексиканская, южноамериканская. Исследования показали, что первичные очаги земледелия зародились независимо в разных регионах и насчитывают от 5- 3 тыс. до 8-6 тыс. лет до н. э.

Земледельческие орудия были крайне примитивными. На протяжении столетий основными почвообрабатывающими орудиями служили соха, мотыга, деревянная борона, а уборочными - серп и цеп.

Вышеперечисленные регионы дали начало не только земледелию, но и большинству современных культурных растений.

Развитие древних очагов земледелия не было идентичным и сопровождалось созданием различных методов, орудий и способов выращивания растений.

Большинство исследований связывают возникновение земледелия с развитым собирательством продуктов природы. От собирательства до приемов сознательного выращивания культурных растений лежал долгий и неизведанный путь, который методом проб и ошибок привел человечество к земледелию.

С появлением письменности наиболее ценные наблюдения по земледелию стали отражаться в наскальных и других писаниях, а затем в летописях. Одной из древнейших стран с высокоразвитым земледелием была Месопотамия. Уже в начале четвертого тысячелетия до нашей эры здесь образовалось государство шумеров, в котором земледелие достигло высокого для того времени уровня развития. Результаты своей деятельности, накопленный опыт, различные советы по выполнению полевых работ они записывали на глиняных дощечках-табличках. Эти таблички называли «календарем земледельца». В нем давали советы по обработке почвы, борьбе с сорными растениями, подготовке к посеву и выращиванию культур. Археологи обнаружили содержание диспута о переходе от мотыжного земледелия к плужному.

В Древней Греции также много внимания уделяли роли агрономических знаний и советов по земледелию. Известный древнегреческий философ Аристотель (384-322 г. до н. э.) написал несколь-. ко трактатов по сельскому хозяйству - «Естественная история», «О возникновении животных» и др., в которых сделана первая попытка классификации растений и животных, приведены способы их возделывания и содержания.

В Древнем Риме (IV-II в. до н. э.) литература по земледелию представлена трудами выдающихся натуралистов того времени - Магона, Катона, Варрона, Вергилия, Колумеллы. Катон в своем трактате «О земледелии» дал классификацию почв по пригодности их для возделывания культурных растений, изложил советы по развитию виноградарства, садоводства и животноводства.

Особое место занимает выдающийся теоретик и практик земледелия Древнего Рима Колумелла, написавший работу по сельскому хозяйству в двенадцати книгах п.од общим названием «О сельском хозяйстве». Колумелла систематизировал и обобщил теоретический и практический опыт ведения."сельского хозяйства. Он первый предложил систему мероприятий, направленных на повышение плодородия почвы и урожаев.

Колумелла настойчиво и убедительно говорил о необходимости научных агрономических знаний и опыта. Он писал: «Тот, кто посвятит себя занятиям сельским хозяйством, должен прежде всего обладать следующими качествами: знанием дела, возможностью расходовать средства и желанием действовать».

Хотя агрономия древних времен была еще далека от настоящей

агрономической науки, носила эмпирический знахарский характер, но и она была забыта на долгие годы вместе с гибелью античной культуры.

Второй период в развитии земледелия связан с эпохой феодализма, для которого характерен застой естественных наук. Этот период продолжался вплоть до XVIII в., когда начали осуществлять экономические преобразования, давшие толчок дальнейшему развитию производительных сил.

В становлении земледелия как науки в России и других странах существенную роль играло развитие естественных и точных наук.

Научные исследования были востребованы и устремлены на развитие промышленности, сельского хозяйства, военного дела и т. д.

Осуществляемые в XVIII в. Петром I и Екатериной II реформы опирались на то, что «земледелие есть первый и главный труд».

В становлении агрономии и других наук в России исключительно большую роль сыграл М. В. Ломоносов (1711-1765). Отличаясь необычайной широтой познаний, М. В. Ломоносов успешно проводил географические, экономические, физические, химические и другие исследования. Им сформулированы задачи развития России на многие годы вперед. Он распределил их в следующие темы: 1 - о размножении и сохранении российского народа; 2 - об истреблении праздности; 3 - об исправлении нравов и о большом народном просвещении; 4 - об исправлении земледелия; 5 - о сохранении военного искусства.

Задачи исправления земледелия, по М. В. Ломоносову, сводились к всестороннему изучению сельского хозяйства во всех областях России и нахождению средств для его улучшения. Подъем сельского хозяйства он считал возможным только с помощью науки.

По инициативе М. В. Ломоносова в 1765 г. было основано Вольное экономическое общество (ВЭО), сыгравшее важную роль в развитии отечественной агрономии. Труды этого общества издавались в течение 105 лет; в них опубликовывали результаты первых научных исследовании и накопленный опыт по сельскому хозяйству.

Вместе с М. В. Ломоносовым важная роль в становлении и развитии научного земледелия в России принадлежит таким известным ученым, как А. Т. Болотов, И. М. Комов, М. Г. Павлов, В. А. Левшин, И. И. Самарин, и многим другим.

Одним из основоположников отечественной агрономической науки считается А. Т. Болотов (1738-1833). Болотов был подлинным новатором, он выступил с программой первоочередных исследований в области земледелия по проблемам: изучение свойств и качеств земель, исправление и удобрение земель, обработка и подготовка земель к посеву, подготовка семян, посев, уход за посевами, уборка. Он указал на два главных препятствия, мешающих успешному земледелию: «крайнее невежество наших земледельцев и неимение собственности у крестьянина». Научные труды А. Т. Болотова по земледелию «Об удобрении полей» (1770) и «О разделении

полей» (1771), в которых высказывались идеи повышения плодородия почвы, пути лучшего сочетания полеводства и скотоводства, о воздушном и почвенном питании растений, не потеряли своего значения и в наше время. А. Т. Болотов первым высказал догадку о значении минеральных веществ в питании растений, задолго опередив основоположников минерального питания растений Тэера, Либиха и др.

Дальнейшее развитие научных основ земледелия было успешно продолжено выдающимся русским агрономом И. М. Комовым (1750-1792). Он считал, что земледелие является той благодатной почвой, на которой расцветают все науки и искусства. В своем труде «О земледелии» он одним из первых ученых-земледелов обосновал научные основы чередования культур, предложил применять плодосменную систему земледелия, считал главным путем повышения плодородия почвы развитие скотоводства. Поэтому обилие навоза (органического удобрения) и изменения в структуре посевных площадей считал главными условиями получения высокого урожая.

Задача восстановления плодородия почвы, по И. М. Комову, решается посредством вспашки и навоза. Пахота - это главное в земледелии. От нее земля мягче и сочнее становится, от сорняков и вредителей избавляется. Вместе с тем он резко выступал против того, что многократная пахота земли заменит удобрение.

И. М. Комов был против упрощенчества и шаблона в агрономии, предлагал ставить опыты для проверки эффективности тех или иных приемов возделывания сельскохозяйственных культур.

Определенный вклад в развитие научного земледелия внес М. Г. Павлов (1793-1840). Им впервые было раскрыто значение почвенных процессов в питании растений, разработана теория применения удобрений, замены господствующего тогда зернового трехполья интенсивной плодосменной системой земледелия. Он придавал большое значение практике, считая, что она является воплощением теории в действии. Практика немыслима без теории, а теория без практики бесплодна. Пятитомный труд М. Г. Павлова «Курс сельского хозяйства» долгое время служил капитальным руководством, по которому обучались многие поколения русских агрономов.

Во второй половине XVIII в. в Западной Европе для развития научного земледелия многое сделали такие ученые, как А. Д. Тэер, Ю. Либих, Т. Юнг и др. А. Д. Тэер (1752-1828) является автором теории гумусового питания растений, а Ю. Либих (1803-1873) - теории минерального питания растений, он также сформулировал один из основополагающих законов земледелия - закон возврата.

В этот период наряду с развитием агрономических наук заметно совершенствовались орудия обработки почвы, посева и уборки культур. Изменялось прежде всего основное орудие обработки почвы - плуг, который претерпевал усовершенствования: от плугов, изготовленных из дерева, до плугов, изготовленных из чугуна и ста-

ли. Наиболее совершенной конструкцией плуга стал плуг Рудольфа Сака, который первым начал заводское производство плугов с предплужниками (1870). Плуг такого типа быстро распространился во многих странах и практически конструктивно не изменился до настоящего времени.

В 1830 г. в Англии была сконструирована сеялка, принцип работы которой сохранился до наших дней. Жатвенная машина была сконструирована в 1781 г. в Туле. Для обмолота хлебов в Америке были разработаны молотилки, совершенствование которых позволило изобрести комбайн. Со второй половины XIX в. вместо живой тягловой силы стали использовать паровой двигатель, а затем дизельный и электрический.

В XIX в. агрономическая наука получила дальнейшее развитие в трудах целой плеяды выдающихся русских ученых: А. В. Советова, Д. И. Менделеева, П. А. Костычева, В. В. Докучаева, А. Н. Энгельгардта, И. А. Стебута, К. А. Тимирязева и многих других.

А. В. Советов (1826-1901) определял уровень культуры земледелия и развития сельского хозяйства расширением полевого травосеяния, которое побуждает вести хозяйство на научной основе. Ученый убедительно показал, что посевы многолетних трав на полях не только способствуют развитию животноводства, но и восстанавливают и повышают плодородие почвы. В России многолетние травы (клевер, кострец, тимофеевку) и их смеси стали высевать на полях намного раньше, чем в Западной Европе.

Ярчайшей фигурой в агроэкономической науке пореформенного периода является А. Н. Энгельгардт (1832-1893) -основопо- ложник агрохимии. Он связывал будущее российского сельского хозяйства с культурным крестьянином, считал, что деревне нужны интеллигентные мужики. Понимая необходимость перестройки в деревне, он ратовал за артель, артельное хозяйство и ставил на первое место человека, хозяина. Он считал, что от хозяина зависит вся система хозяйства, и если система дурна, то никакие машины не помогут.

А. Н. Энгельгардт в своих классических письмах «Из деревни» (1882) подчеркивал, что «нет химии русской, английской или немецкой, есть только общая всему свету химия, но агрономия может быть русская, или английская, или немецкая...». Он считал, что мы должны создать свою, русскую агрономическую науку совместными усилиями ученых и практиков.

Многие идеи А. Н. Энгельгардта получили развитие в современных условиях, когда все изменения должны включать культурного, образованного человека как центральный фактор, тесный союз науки и практики, артельный принцип организации труда, соединение сельского хозяйства с перерабатывающей промышленностью.

Большое значение для развития научного земледелия принадлежит В.В.Докучаеву (1846-1903), создателю науки о почве. Он впервые установил, что почва - самостоятельное природное тело и

ее формированию способствуют процессы взаимодействия климата, рельефа, растительного и животного мира, почвообразующих пород и возраста страны. В. В. Докучаев дал первую в мире научную классификацию почв по их происхождению. Он много внимания уделял вопросам восстановления и повышения плодородия почв при помощи организации полезащитного лесонасаждения, регулирования водного режима и других приемов.

Однако взгляды В. В. Докучаева критиковали некоторые ученые, в том числе П. А. Костычев, К. А. Тимирязев и др. Основным недостатком учения В. В. Докучаева была слабая связь генетического почвоведения с изучением почвы как средства производства, то есть агрономическим почвоведением.

Это направление почвоведения успешно развивал П. А. Костычев (1845-1895). Он вскрыл сущность взаимосвязи между почвой и растениями, показал огромную роль деятельности человека в изменении этих связей. П. А. Костычев придавал большое значение агрофизическим свойствам почвы, ее структуре и строению. Он разработал ряд мер по улучшению этих свойств, установил роль растений и обработки почвы в улучшении физических свойств. П. А. Костычеву принадлежит заслуга в создании наиболее совершенной системы обработки почвы, направленной на борьбу с сорняками и регулирование водного режима.

В развитие земледельческой теории и практики крупный вклад внес И. А. Стебут (1833-1923). Он оказал заметное влияние на развитие науки, опытного дела, обучение кадров. Капитальным трудом И. А. Стебута является монография «Основы полевой культуры и меры к ее улучшению в России» (1873-1879). По результатам мирового и отечественного опыта, многочисленных исследований и обобщений автор обосновал экономику, организацию, технологию производства растениеводческих продуктов с учетом биологических требований культур и условий внешней среды.

И. А. Стебут был широко известен и как талантливый педагог. При жизни его называли патриархом агрономии. Обращаясь к слушателям, он говорил: «Изучайте природу, вас окружающую, изучайте почву, от которой вы ожидаете урожаи...». И далее: «Не просите у меня рецептов. Не рецепты даю я вам, а также не копиистов хотел бы я видеть в вас, но прежде всего сознательно мцслящих людей, мастеров своего дела, горячо любящих свою профессию».

Великий русский химик Д. И. Менделеев (1834-1907) в научных изысканиях не ограничивался лишь химией, он занимался исследованиями по земледелию и животноводству, мелиорации и лесоводству, вопросами переработки продукции. Он считал, что современное сельское хозяйство начинается там, где создаются следующие условия: 1) имеются выгодные человеку породы животных и сорта растений; 2) осуществляется сбыт продукции на сторону в качестве товара; 3) развивается специализация; 4) неуклонно сокращается доля затрат физического труда за счет применения машин. Особое

внимание Д. И. Менделеев уделял интенсификации земледелия, применению удобрений, использованию питательных веществ подпахотных слоев почвы при помощи глубокой пахоты. Высокоэффективное земледелие возможно лишь на основе развитой промышленности, снабжающей сельское хозяйство машинами, орудиями, минеральными удобрениями. Д. И. Менделеев обосновал то, что сельское хозяйство нуждается в гораздо больших капиталах, чем любая другая отрасль народного хозяйства.

Важным этапом отечественной агрономии была организация сети опытных учреждений по сельскому хозяйству. Исключительно важную роль в этом деле сыграли выдающиеся ученые: Н. И. Вавилов, Д. И. Менделеев, К. А. Тимирязев, В. Р. Вильяме, Д. И. Прянишников, А. Г. Дояренко, Н. М. Тулайков и многие другие.

Всемирно известные работы К.А.Тимирязева (1843-1920) по фотосинтезу и физиологии растений позволили показать потенциальные возможности повышения продуктивности сельскохозяйственных культур в земледелии. К. А. Тимирязев считал, что основной задачей земледелия является изучение требований растений и их удовлетворение при помощи различных приемов, которые должны быть направлены прежде всего на развитие растения в нужном для земледельца направлении. Он считал, что при объединении науки и практики возможно «вырастить два колоса, там где прежде рос один».

Одновременно К. А. Тимирязев предупреждал о том, что нигде, может быть, ни в какой другой деятельности не требуется взвешивать столько разнообразных сведений, нигде увлечение односторонней точкой зрения не может привести к такой крупной неудаче, как в земледелии.

Многое сделал для развития научной агрономии опытного дела в России А. Г. Дояренко (1874-1958). Его исследования о факторах жизни растений и их взаимосвязях, влиянии на них различных агроприемов, использовании растениями солнечной энергии сохранили свою актуальность и в наши дни. Изучение водно-воздушного

и пищевого режимов почвы привело А. Г. Дояренко к выводу о решающей роли их в регулировании строения пахотного слоя почвы,

и в первую очередь соотношения капиллярной и некапиллярной скважности. А. Г. Дояренко по-новому подошел к решению проблемы опытного дела в земледелии, он изучил характер пестроты полей, был зачинателем курса по опытному делу. А. Г. Дояренко определил содержание курса земледелия, организационные формы

и методы учебного процесса, разработанные им программы были направлены на пробуждение у студентов интереса к изучаемой дисциплине. Содержание и структура курса земледелия до настоящего времени мало изменились.

Выдающийся вклад в развитие отечественного земледелия и агрохимии внес Д. Н. Прянишников (1865-1948), разработавший теорию питания растений и методы повышения плодородия почвы,

особенно при помощи широкого применения минеральных удобрений. Он многое сделал для разработки физиологических основ современного научного земледелия и растениеводства. Основным вопросом исследований Д. Н. Прянишникова был азотный обмен у растений, в который он внес ясность и сделал важные обобщения. На основе этих обобщений в нашей стране стала развиваться азотная промышленность и применяться азотные и другие удобрения. Д. Н. Прянишников был активным пропагандистом интенсификации земледелия.

Существенным вкладом в теорию и практику отечественного земледелия являются труды В. Р. Вильямса (1863-1939). Большое внимание он уделял теории почвообразовательных процессов, сущности почвенного плодородия как фактора жизни растений. В. Р. Вильяме отмечал необходимость при возделывании сельскохозяйственных культур одновременного присутствия всех факторов их жизни и роста в целях максимального удовлетворения потребностей растений. Большой заслугой В. Р. Вильямса является то, что он первым сформулировал закон незаменимости и равнозначимости факторов жизни растений, имеющий определяющие значения в земледелии. Он разработал теоретические и практические основы травопольной системы земледелия. Однако ее использование повсеместно, во всех почвенно-климатических зонах, как универсального средства повышения плодородия почвы и урожаев сельскохозяйственных культур было большой ошибкой.

В истории развития научного земледелия следует отметить важность работ Н. М. Тулайкова (1875-1938) по сухому земледелию (в засушливых районах страны). С именем Н. М. Тулайкова связывают разработку теории мелкой обработки почвы, способствующей лучшему накоплению и сохранению влаги. Он первым заговорил о применении в засушливых районах севооборотов с короткой ротацией, заложил основы почвозащитного земледелия.

Теоретическими и практическими основами почвозащитного земледелия является глубина обработки почвы. Мелкие бесплужные обработки почвы в почвозащитном земледелии служили альтернативой глубокой вспашке, существовавшей долгое время основным видом обработки.

Активным пропагандистом мелких бесплужных обработок почвы в России был И. Е. Овсинский. Он отвергал глубокую обработку почвы плугом и признавал необходимость рыхления на 5-7,5 см для уничтожения сорных трав и заделки навоза. Для таких обработок впервые были сконструированы культиваторы с плоскорежущими рабочими органами. Экспериментальная проверка системы мелкой пахоты в начале века выявила ее неэффективность, и поэтому она была отвергнута на долгие годы. Тем не менее агрономическая наука ищет пути замены плужной обработки почвы, уменьшения ее глубины и числа.

Идеи и направления большинства последователей Н. М. Тулай-

кова, например французаЖана, американца Фолкнера, немца Краузе и других, не смогли внедрить в производство неглубокие обработки из-за неизбежного нарастания засоренности полей, что снижало производительность труда. На относительно чистых от сорных растений полях мелкие поверхностные обработки способствуют возникновению лучших условий для роста культурных растений. Однако через несколько лет засоренность поля возрастает, и земледелец вынужден возвращаться к глубокой плужной вспашке.

Мощным импульсом для дальнейшего развития теории и практики почвозащитного земледелия послужили разработки Т. С. Мальцева, А. И. Бараева и современных ученых-аграрников - И. С. Шатилова, А. Н. Каштанова, М. И. Сидорова, В. Д. Панникова, И.П.Макарова, А. И. Пупонина, А. М.Лыкова, В. И. Кирюшина,

С. А. Воробьева, С. С. Сдобникова, Д. И. Бурова, М. Н. Заславского

и др.

Т. С. Мальцев (1895-1994) выдвинул идею о замене вспашки безотвальной обработкой почвы в районах Зауралья и Западной Сибири. Сущность принципиально новой системы обработки почвы заключается в чередовании по годам и полям глубокой безотвальной пахоты (25-27 см) с поверхностными обработками (10-12 см) в зернопаровых и зернопаропропашных севооборотах. Глубокую безотвальную вспашку проводят один раз в 3-5 лет.

А. И Бараев (1908-1985) в начале 60-х годов сформулировал концепцию новой почвозащитной системы земледелия для зон ветровой эрозии почв и применил ее на практике. Суть ее заключалась в замене вспашки плоскорезной обработкой с сохранением на поверхности почвы стерни и освоении зернопаровых севооборотов с короткой (3-5 лет) ротацией вместо зернотравянопропашных с длинной ротацией (8-10 лет). Для этих целей были разработаны специальный комплекс противоэрозионной техники и новая технология возделывания сельскохозяйственных культур.

В 70-80-е годы были выработаны стратегические и практические основы интенсификации земледелия. В этот период был взят курс на интенсификацию земледелия на основе химизации, мелиорации, комплексной механизации, освоение методов программирования урожаев, внедрение интенсивных технологий возделывания сельскохозяйственных культур.

Почвозащитная система находит свое практическое выражение в зональных системах земледелия и в ландшафтно-экологическом земледелии. Последнее служило альтернативой техногенному земледелию, где особое внимание обращали на технологию, технику и химию при минимальном учете природных факторов. Ландшафт- но-экологическое земледелие предполагает биологизацию всех процессов, что фактически означает коренное изменение современного земледелия.

Современное земледелие - это наука о наиболее рациональном, экологически, экономически и технологически обоснованном ис-

пользовании земли, формировании высокоплодородных, с оптимальными показателями для возделывания культурных растений почв. Учение о плодородии почвы, его расширенном воспроизводстве и сохранении - основа получения высоких, устойчивых, хорошего качества урожаев.

Земледелие как наука основывается на новейших теоретических достижениях важнейших фундаментальных научных дисциплин, таких, как почвоведение, физиология растений, землеустройство и землепользование, агрохимия, микробиология, растениеводство, биотехнология, агрометеорология, мелиорация, экология, экономика и др.

Г л а в а 2 ФАКТОРЫ ЖИЗНИ РАСТЕНИЙ И ЗАКОНЫ ЗЕМЛЕДЕЛИЯ

2.1. ТРЕБОВАНИЯ КУЛЬТУРНЫХ РАСТЕНИЙ К УСЛОВИЯМ ЖИЗНИ

Все живое на Земле своим существованием обязано растениям, этим удивительным творениям природы. Растения в результате своей жизнедеятельности создают органическое вещество, требуемое человеку в виде необходимых продуктов.

Органическое вещество растений и их урожай создаются из углерода, воды и минеральных солей почвы. Этот процесс осуществляется с помощью растений при участии энергии Солнца. Механизм образования простейших органических веществ (углеводов) можно представить следующей схемой:

Для нормальной жизнедеятельности и получения необходимой продукции требуется постоянный приток в оптимальных количествах тепла, света, воды, питательных веществ. В земледелии они получили название земных и космических факторов жизни растений. К космическим факторам относятся свет и тепло, кземным - вода, диоксид углерода, кислород, азот, фосфор, калий, кальций и многие другие элементы. В связи с этим основной задачей земледелия являются изучение требований растений и разработка практических приемов удовлетворения этих требований (К. А. Тимирязев). Требования к факторам жизни, т. е. количеству каждого из них, определяются многими условиями.

Космические факторы жизни растений в земледелии, по существу, не регулируются или регулируются незначительно. Земные факторы жизни растений, наоборот, удается регулировать и создавать оптимальные условия для роста и развития культурных растений.

Космические факторы жизни растений зависят от использова-

ния световой и тепловой энергии солнца. Солнечная радиация в решающей степени определяет климат Земли и зональные особенности. Климатические условия обусловливают возможность произрастания тех или иных растений. Кроме того, климат - один из факторов почвообразования, воздействующих и через почву, то есть косвенно на произрастающие растения. Почвенно-климатические условия в решающей степени определяют специализацию земледелия, местный характер производства, такой набор сельскохозяйственных культур, биологические особенности которых наиболее отвечают этим условиям и обеспечивают получение высоких стабильных урожаев хорошего качества.

Требования растений к свету. Рост и развитие растений зависят от интенсивности и спектрального состава света. Недостаток света приводит к голоданию и гибели растений, а избыточная освещенность - к угнетению и ожогам. Физиологическое воздействие света на растение происходит через фотосинтез, определяя его скорость. Поток солнечных лучей, богатых ультрафиолетом, оказывает бактерицидное действие на микрофлору.

Среди сельскохозяйственных растений широко распространен фотопериодизм, связанный с условиями освещения. К фотопериодическим реакциям относят наступление фаз роста и развития. По продолжительности освещения выделяют растения длинного дня (не менее 12ч), короткого (менее 12 ч) и нейтрального дня. В задачу земледельца входит повышение коэффициента использования физиологически активной радиации (ФАР).

Обычно в посевах коэффициенты использования ФАР являются сравнительно низкими и составляют 0,5-3 %. Используя различные приемы в технологиях возделывания сельскохозяйственных растений, коэффициент использования ФАР можно повысить в 2 и более раз.

Требования растений к теплообеспеченности и температурному режиму. В развитии растений, как отмечал К. А. Тимирязев, ведущую роль играет температурный фактор. В настоящее время имеются данные о потребности сельскохозяйственных растений в тепле за вегетационный период.

Культура

Суммаактивныхтемператур,°С

Яровая пшеница

Кукуруза на зерно

Картофель

Сахарная свекла

Многолетние травы

Оценку потребности растений в тепле дают по сумме активных

температур (выше 10 °С) за период вегетации. Колебания потребности в тепле одних и тех же культур зависят от сорта. Каждое растение предъявляет определенные требования к теплу, меняющиеся на протяжении вегетации. Знание этих требований позволяет дать агроэкологическую оценку условиям выращивания и размещения культур с учетом агроландшафтов.

Особое значение имеет теплообеспеченность растений в начальные периоды жизни растений, т. е. при прорастании семян и появлении всходов. Знание требований растений к теплу позволяет правильно установить сроки посева, разработать приемы обработки почвы и меры борьбы с сорными растениями.

Требования растений к теплу определяют их холодо-, морозо- и жароустойчивость.

Требования растений к влагообеспеченности. Вода - важнейшее условие жизни растений. Она необходима для прорастания семян, служит составной частью синтезируемого органического вещества, средой для питательных веществ и биохимических процессов. Оптимальная влажность корнеобитаемого слоя почвы, при которой достигается максимальная интенсивность роста растений, изменяется в пределах 65-90 % наименьшей влагоемкости (НВ). Одним из показателей потребности растений в воде служит транспирационный коэффициент, т. е. количество воды, необходимое для создания единицы сухого вещества в растении.

Потребность растений в воде изменяется по фазам роста и развития сельскохозяйственных культур. Фазы, в которые растения требуют наибольшего количества воды, называются критическими.

Общий расход воды с 1 га (в м3 или в мм) называетсясуммарным водопотреблением возделываемой в данном поле сельскохозяйственной культуры, а расход на 1 т урожая -коэффициентом водопотребления (табл. 1). Коэффициент водопотребления имеет важное значение при расчете уровня возможной урожайности.

1. Коэффициенты водопотребления сельскохозяйственных культур для Нечерноземной зоны, м3 /т сухой биомассы

Культура

засушливые

Озимая пшеница

Озимая рожь

Яровая пшеница

Кукуруза

Картофель

Многолетние травы

Требования растений к элементам питания. В растениях из простых органических соединений и минеральных веществ образуются

сложные органические продукты. Они состоят из углерода, кислорода, водорода, азота и многих минеральных элементов. На долю первых трех элементов приходится 94 % сухого вещества растений, причем углерод по массе составляет в сухом веществе в среднем 45 %, кислород - 42 и водород - 7 %. Оставшиеся 6 % сухой массы урожая приходятся на долю азота и зольных элементов. Все наземные растения ежегодно извлекают из атмосферы около 20 млрд т углерода в форме СО2 (1300 кг/га).

О потреблении минеральных веществ накоплен большой фактический материал. В растениях обнаружены практически все известные химические элементы, доказано участие 27 из них в процессах обмена, 15 признаны необходимыми для нормального роста и развития растений.

Земледелец активно вмешивается в круговорот веществ в почве, используя такие факторы и приемы, как удобрения, современные технологии, мелиорацию земель, различные виды и сорта сельскохозяйственных растений, оказывая существенное влияние на почвенные процессы.

Почва может лучше или хуже передавать растениям имеющиеся в ней питательные вещества. В экстенсивном земледелии, как известно, почва была единственным источником воды и питательных веществ. Длительность и эффективность использования почвы определялись ее естественным плодородием. Как только почва переставала обеспечивать растения в достаточной степени земными факторами жизни, ее исключали из обработки и предоставляли действию природных процессов (залежная и переложная системы земледелия).

В интенсивном земледелии все большее значение приобретает трансформационная функция почвы, т. е. ее способность передавать растениям внесенные извне элементы питания и воду. Кроме того, к фитосанитарному состоянию и технологическим свойствам почвы предъявляют повышенные требования. По мере интенсификации земледелия трансформационная функция той или иной почвы, обусловленная природными факторами почвообразования, в ряде случаев оказывается недостаточной. Возникает необходимость улучшения всего комплекса почвенных свойств, расширенного воспроизводства ее плодородия. Возможность такого преобразования почвы заложена в ее природе как возобновляемого природного ресурса. Однако при неправильном использовании почва может утратить плодородие.

2.2. ЗАКОНЫ ЗЕМЛЕДЕЛИЯ И ИХ ИСПОЛЬЗОВАНИЕ

Действие и взаимодействие факторов жизни растений в процессе их роста и развития необычайно сложны и многообразны. В течение длительного времени это является предметом изучения биологических и агрономических наук. Результаты большого количества

опытов, их обработка и тщательный логический анализ позволили сформулировать ряд законов. В агрономической науке они известны как законы земледелия. Эти законы являются теоретической и практической основой растениеводства.

Закон равнозначимости и незаменимости факторов жизни растений. Он гласит, что все факторы жизни растений абсолютно равнозначимы и незаменимы. Согласно этому закону для роста и развития растений должен быть обеспечен приток всех факторов жизни растений - космических и земных. Растение может нуждаться как в больших, так и в ничтожно малых количествах факторов, однако отсутствие любого из них ведет к резкому снижению урожая и даже гибели растений. В этом проявляется абсолютный характер закона.

Ни один фактор нельзя заменить другим. Например, недостаток фосфора нельзя заменить избытком азота, а ограниченное поступление света восполнить лучшим обеспечением растений водой и т.д.

На практике получить максимально высокий урожай можно только при бесперебойном снабжении растений всеми факторами в оптимальном количестве. Однако в конкретных условиях производства закон равнозначимости и незаменимости факторов жизни растений приобретает относительное значение вследствие неодинаковых затрат на обеспечение растений разными факторами. Это связано как с абсолютной потребностью растений в факторе, так и с его наличием в данной почве, в данном регионе, с материально-тех- ническими возможностями производства и т. д.

Закон равнозначимости и незаменимости факторов жизни растений подчеркивает материальность земледельческого производства, не позволяет надеяться на «чудодейственные» рецепты получения урожая без материальных затрат или затрат в «гомеопатическихдозах».

Закон минимума. Он утверждает, что величина урожая определяется фактором, находящимся в минимуме.

Впервые этот закон сформулировал Ю. Либих. Он считал, что рост урожая прямо пропорционален увеличению количества фактора, находящегося в минимуме, то есть

где У- урожай; X- напряжение фактора;А - - коэффициент пропорциональности для данного фактора.

Для наглядной демонстрации закона минимума использовали так называемую «бочкуДобенека», клепки которой условно обозначают отдельные факторы жизни растений. Они неодинаковы по высоте, каждая соответствует наличию определенного фактора (рис. 1).

Пунктиром показан максимально возможный урожай растений при оптимальном наличии всех факторов (бочка заполнена довер-

Рис. 1. Графическое изображение закона минимума:

/ - максимально возможный урожай; 2- фактическийурожай

ху). Однако фактический урожай определяется высотой самой низкой клепки, т. е. количеством фактора, находящегося в минимуме. Если заменить данную клепку, то уровень воды в бочке (урожай растений) будет определять другая клепка, которая при изменившихся условиях окажется минимальной по высоте.

Кажущаяся простота и очевидность действия закона минимума,

однако, требуют уточнения. Некоторые исследователи выявили относительный характер этого закона. А. Майер показал, что закон минимума необходимо принимать с учетом действия не только питательных веществ растений, но и всей совокупности факторов жизни. Э. Вольни распространил закон минимума и на качество урожая, установив зависимость действия отдельного фактора от всей совокупности других факторов. Ю. Либих был вынужден признать понижающийся эффект каждого увеличения отдельно взятого фактора.

Закон минимума, оптимума, максимума. Для демонстрации закона минимума, оптимума и максимума широко используют данные

опыта, проведенного Гельриге-

лем и неоднократно подтверж-

денного другими исследователя-

ми (рис. 2).

В этом опыте растения ячме-

ня выращивали в стеклянных со-

судах, заполненных одной и той

же плодородной почвой. Все ус-

ловия выращивания растений,

кроме влажности почвы в сосу-

дах, были одинаковыми. Влаж-

ность почвы определяли по пол-

ной влагоемкости, которая соот-

ветствовала уровню влажности

100 %. В каждом из 8 сосудов

влажность была различной и со-

ставляла 5, 10, 20, 30, 40, 60, 80 и

Рис. 2. Изменение урожайности рас-

После окончания опыта уро-

тений в зависимости от содержания

жайность в зависимости от влаж-

влаги в почве

ности почвы распределялась следующим образом:

Влажность почвы, % ПВ

Урожайность, дг сухого

вещества на сосуд

Как следует из данных, полученных в опыте Гельригеля, максимальный урожай ячменя соответствует оптимальной влажности почвы в сосуде (60 % ПВ). Минимум и максимум фактора (количества влаги) не обеспечили получение урожая. Если рассчитать разницу в увеличении урожая на каждую последующую градацию влажности и отнести ее к единице влажности, то в опыте получаем прогрессивное уменьшение прибавки урожая от каждой последовательной прибавки влажности при соблюдении в неизменности всех других условий опыта. Указанное относительное снижение эффекта было принято за закон (закон Тюнена), которомуякобы подчиняются все мероприятия в сельскохозяйственном производстве.

Анализ данных опыта Гельригеля, проведенный В. Р. Вильямсом, показал, что приведенная закономерность отражает лишь частный случай. В опыте Гельригеля не соблюдено условие единственного логического различия - важнейшего требования агрономического эксперимента. При разной влажности почвы условия питания растений, накопление и потребление из почвы минеральных веществ были неодинаковыми. Условия влажности неразрывно связаны с состоянием окислительно-восстановительных условий в почве, а следовательно, существенно влияют на биохимические процессы в почве.

Опыт Гельригеля не достоверен по существу, а выводы из него ошибочны. Это подтверждают данные и другого известного опыта Э. Вольни. В нем условия такие же, как и в опыте Гельригеля, с той лишь разницей, что почва получала удобрение, не поддающееся восстановлению в условиях анаэробиозиса. Результаты опыта представлены следующими показателями:

Влажность почвы, % ПВ

Урожайность, дг/сосуд

Разница между последующим и

предыдущим показателями, дг/сосуд

Разница на градацию влажности (%), дг/сосуд

Полученные экспериментальные данные отражают совершенно иное направление кривой урожаев в опыте по сравнению с кривой Гельригеля. Увеличение влажности почвы в опыте вызывает не прогрессивное уменьшение прибавки урожая, а, наоборот, прогрессивное увеличение на единицу увеличивающейся влажности.

Опыт Э. Вольни, по мнению В. Р. Вильямса, также имел методические упущения. Вдальнейшем Э. Вольни предпринял новую попытку разобраться в сложном взаимодействии факторов жизни растений.

В новом, многофакторном опыте яровую рожь выращивали в трех рядах стеклянных сосудов. В ряду было четыре сосуда, в трех сосудах каждого ряда находилась неудобренная почва с изменяющейся влажностью - 20, 40 и 60 % ПВ. В четвертом сосуде в почву (влажность 60 % ПВ) добавляли полное удобрение, по количеству и формам достаточное для получения очень высокого урожая. Освещение каждого из трех рядов сосудов было различным. Урожайность надземной массы представлена в таблице 2.

2. Урожайность надземной массы яровой ржи в зависимости от условий выращивания

Показатель

Урожайность, дг/сосуд

без удобрений

с удобрениями

Влажность почвы, % ПВ

Освещение

На рисунке 3 графически показаны результаты опыта. Кривая урожайности ржи имеет двоякое направление. В сосудах с неудобренной почвой по мере увеличения влажности от 20 до 60 % ПВ рост урожайности примерно такой же, как в опыте Гельригеля. Удобре-

ние обусловило резкое повы-

шение урожайности в сосудах

с 60%-ной влажностью по-

По мере введения в опыт

фактора - освеще-

ния - эффективность

рения прогрессивно возрас-

тает. Если соединить на гра-

фике урожайность всех вари-

удобрениями

разном освещении, то общая

при взаимодействии

трех факторов

(влажности,

удобрения и освещенности)

отражает

значительное

урожайности

мере включения в систему но-

вых факторов. Закон Тюнена

в данном опыте не получил

ноешь, % 20

никакого подтверждения.

Освещение Слабое Среднее

т. е. взаимодействуют в процессе роста и развития растений. Либшер и Люндегорд показали, что в связи с законом совокупного действия факторов действие отдельного фактора, находящегося в минимуме, тем интенсивнее, чем больше других факторов находится в оптимуме (см. рис. 3).

Люндегорд установил также «интерференцию» факторов, находящихся в минимуме, совмещение их отрицательного действия на росг и развитие растений. Ряд исследователей, руководствуясь заг коном совокупного действия факторов, пытались в математической форме установить зависимость урожая от факторов жизни растений. Наибольших успехов в этом направлении достиг Э. Митчерлих.

Закон действия факторов жизни растений, по Э. Митчерлиху, гласит, что прибавка урожая зависит от каждого фактора роста и его интенсивности, она пропорциональна разнице между возможным максимальным и действительно полученным урожаем. Он попытался математически выразить зависимость прибавки урожая от удобрения почвы.

Э. Митчерлих экспериментально вывел следующие коэффициенты использования отдельных факторов жизни: N - 0,2, Р2 О5 - 0,6, К2 О - 0,4, Mg - 2,0 на 1 мм осадков.

На рисунке 4 графически показаны кривые эффективности NPK. На графике видно, что с увеличением другого фактора (Z) кривые идут выше.

Последующими исследованиями было установлено, что формула Э. Митчерлиха неуниверсальна, так как сложные биологические процессы создания урожая не описываются математическими формулами. Тренель вскоре показал, что она, кроме того, неверна и математически.

Несмотря на трудности математического выражения закона

совокупного действия факторов,

закон этот имеет огромное зна-

-~^у -" 95,75

\z=3 75,0 87,5

чение для практики земледелия.

В этой связи В. Р. Вильяме ука-

зывал, что прогресс возможен

лишь, когда наше воздействие на

условия, в которых*протекает это

сложное производство, направ-

лено одновременно на весь их

комплекс. Этот комплекс усло-

вий представляет одно органи-

ческое целое, все элементы кото-

Удобрения- X (усл.ед.)

рого неразрывно связаны. Воз-

Рис. 4. Изменение урожайности сельско-

действие На ОДИН ИЗ ЭТИХ ЭЛемен-

Закон возврата. Вещество и энергия, отчужденные из почвы с урожаем, должны быть компенсированы (возвращены в почву) с определенной степенью превышения. Этот закон был открыт

Ю. Либихом.

К А. Тимирязев и Д. Н. Прянишников считали этот закон одним из величайших приобретений науки.

Земледелие как отрасль производства материально по своей природе. Урожай как материальная субстанция создается из материальных составных частей, определенная часть его - за счет веществ и энергии, получаемых растениями из почвы. Кроме того, почва - посредник растений в обеспечении их факторами жизни, среда их произрастания.

При систематическом отчуждении урожая с полей без компенсации использованных им составных частей почвы и энергии почва разрушается, теряет плодородие.

При компенсации выноса веществ и энергии из почвы последняя сохраняет свое плодородие; при компенсации веществ и энергии с определенной степенью превышения происходит улучшение почвы, расширенное воспроизводство ее плодородия.

Закон возврата - научная основа воспроизводства почвенного плодородия, частный случай проявления всеобщего закона сохранения веществ и энергии.

Действие законов проявляется и учитывается в научно обоснованных системах земледелия. В настоящее время разрабатывают и осваивают адаптивно-ландшафтные системы земледелия. Адап- тивно-ландшафтной системой земледелия считается система использования земли определенной агроэкологической группы, ориентированная на производство продукции экономически и экологически обусловленных количества и качества в соответствии с общественными (рыночными) потребностями, природными и производственными ресурсами, обеспечивающая устойчивость агроландшафта и воспроизводство почвенного плодородия. Освоение систем земледелия будет сопровождаться освоением технологий возделывания сельскохозяйственных культур. Технологии должны быть адаптированы к природным условиям, различным уровням интенсификации производства, формам хозяйствования и т. д.

Методология формирования технологий должна базироваться на законах земледелия. В различных почвенно-климатических условиях при разных специализации и уровне интенсификации производства, руководствуясь законом минимума, находят и устраняют факторы, лимитирующие урожайность культуры и качество продукции. Значимость тех или иных факторов проявляется по мере интенсификации производства; с устранением одних повышается роль других. При постоянном отчуждении урожая с поля возникает необходимость возврата питательных веществ. При компенсации выноса веществ по закону возврата можно создавать условия для

ОСНОВНЫЕ ЗАКОНЫ ЗЕМЛЕДЕЛИЯ.

2.1.1. Земледелие как наука

Земледелие – наука, изучающая общие приемы выращивания сельскохозяйственных культур. Другими словами земледелие есть способ культивирования растений. Земледелие также является отраслью сельского хозяйства, причем наиболее древней.

Известно, что первые земледельческие культуры на планете Земля появились примерно 12 тыс. лет назад. На территории Красноярского края человек стал возделывать растения в II тыс. до нашей эры (Андроновская культура).

Земледелие изучает физические, химические и биологические способы повышения плодородия почвы, для создания условий, обеспечивающих рост продуктивности и качества сельскохозяйственных культур.

А.Т. Болотов (1738-1833)

Главная задача земледелия – эффективное использование солнечной энергии для создания органического вещества. Уникальным аппаратом для этого служит растение, содержащее хлорофилл. Наземные растения ежегодно извлекают из атмосферы ориентировочно 20млрд. тонн углерода в форме СО 2 (1300кг на га).

Первым российским ученым в области земледелия признан Болотов Андрей Тимофеевич (1738-1833). Он первым в России стал пропагандировать севообороты и удобрения. Им написаны научные работы «О разделении полей» (1771) и «Об удобрении полей» (1770).

2.1.2. Факторы жизни растений

Для растений необходимы свет, тепло, воздух, вода и питательные вещества.Свет и тепло растения получают от солнца, воду, питательные вещества и воздух из атмосферы и почвы.

Используя знания земледельческой науки человек, в той или иной мере, способен регулировать эти факторы применительно к требованиям сельскохозяйственных культур.

Свет. Из всех организмов, только зеленые растения способны создавать из неорганических веществ органические (исключая хемосинтез). В процессе фотосинтеза из воздуха поглощается СО 2 и образуются сахара.

6СО 2 +6Н 2 О+2822кДж(674ккал) свет + хлорофилл С 6 Н 12 О 6 +6О 2


Растения способны усваивать от 2 до 5% падающей на лист солнечной энергии. Подсчеты показывают, что в 1кг сухого органического вещества аккумулируется 16752кДж (4 тыс. ккал). Сахара затем могут превращаться в крахмал и другие органические вещества.

При недостатке света растения вытягиваются, ослабевают, не зацветают и не плодоносят. Свет существенно влияет на качество продукции, содержание крахмала, жира, белка, сахара и др.

Существенную роль свет играет при образовании узла кущения злаков, а глубина залегания узла кущения играет важную роль во всей последующей жизни растений.

Не менее важную роль играет свет в процессе кущения, обуславливая длину междоузлий, особенно первых, от крепости которых зависит устойчивость посевов к полеганию. При хорошем освещении растений при кущении образуются короткие прочные первые междоузлия, хорошо противостоящие внешним влияниям (ветру, дождю и пр.). Затенение всходов способствует разрастанию и удлинению первых междоузлий, которые склонны к полеганию.

Свет оказывает влияние на прорастание картофеля. При прорастании клубней в темноте получаются длинные плети, затрудняющие использование такого картофеля для посадки. При прорастании на свету ростки получаются толстыми, короткими. Проращенный на свету картофель быстрее развивается и созревает (Дояренко, 1966).

В земледельческой зоне Красноярского края света достаточно много и свет здесь не лимитирует урожай. Тем не менее, имеются сведения, что целесообразно ориентировать посевы сельскохозяйственных культур относительно сторон света. В лесостепи наилучшим считается направление посевов с севера-запада на юго-восток.

Тепло. Для нормального роста и развития большинства сельскохозяйственных культур сумма среднесуточных активных температур воздуха свыше 10 о С должна составлять не менее 1660 о С в год. Чем выше температура, тем быстрее развиваются растения и наоборот. В данном случае работает правило Вант Гоффа. При увеличении температуры на каждые 10 о, скорость химических реакций возрастает в 2-4 раза. Таким образом, поступление тепла определяет, как быстро сформируется урожай сельскохозяйственных культур.

В условиях земледельческой части Красноярского края тепла часто бывает недостаточно, поэтому весной и осенью многие растения страдают от заморозков. Короткое лето приводит к тому, что растения созревают поздно осенью, что ухудшает качество урожая.

Тепло необходимо также и микроорганизмам. Наиболее благоприятная для них температура лежит в пределах 20-25 о С.

Регулировать теплообеспеченность растений в определенной мере можно путем орошения и осушения, устройством гряд и гребней, снегозадержанием, созданием лесных полос, обработкой и мульчированием почвы, устройством прудов и лиманов.

Воздух. Как всякий живой организм растение дышит, потребляя кислород и выделяя углекислый газ. Семена растений также нуждаются в кислороде. В кислороде воздуха нуждаются и микроорганизмы, кроме этого некоторым микроорганизмам нужен азот (азотфиксация). Оптимальные условия для растений создаются при содержании О 2 в почвенном воздухе около 20%. Высокая концентрация СО 2 в почвенном воздухе (более 2-3%) угнетает развитие растений.

Регулировать газообмен в почве можно созданием ценной зернисто-комковатой структуры почвы и всевозможными обработками.

Вода. Растения в большей мере состоят из воды. В семенах ее содержится 10-20%, в одревесневших частях растений до 50%, в листьях, зеленых частях и клубнях до 90-95%.

Вода определяет продуктивность растений, и урожайность сельскохозяйственных культур в первую очередь зависит от влагообеспеченности. Дело в том, что растения могут использовать питательные вещества только в растворенном виде, причем раствор минеральных веществ должен быть очень малой концентрации (0,02-0,2%). Для получения таких растворов требуется очень много воды.

Установлено, что на образование одной части сухого вещества требуется частей воды: у проса – 250; у пшеницы, ячменя, овса – 500-600; у многолетних трав –700-800.

На отдельных этапах развития растениям требуется особенно много воды (критические фазы развития растений). Для зерновых культур критической фазой считается выход в трубку – колошение, для кукурузы – цветение – молочная спелость, для бобовых – цветение, для подсолнечника – образование корзинки – цветение.

В воде нуждаются и микроорганизмы. Оптимальная влажность для растений и микроорганизмов одинакова и составляет 60-80% от НВ для суглинистых и глинистых почв.

В земледельческой зоне Красноярского края очень часто влаги бывает недостаточно. В лесостепных районах Красноярского края ГТК меньше 1,0 отмечается в 20-30% лет. Часто влага лимитирует урожайность сельскохозяйственных культур, особенно зерновых. По приблизительным подсчетам в условиях края 10мм влаги обеспечивают 1ц зерна яровой пшеницы.

Регулировать водный режим почв можно путем орошения, осушения, снегозадержанием, устройством лесных полос, посевом высокостебельных кулисных растений, сохранением стерни и мульчированием почвы, обработкой почвы и формированием лунок и гряд. В зонах с недостаточным увлажнением рекомендуется шире использовать новые засухоустойчивые сорта растений с низким транспирационным коэффициентом.

Питательные вещества. В состав растительного организма входит свыше 74 химических элемента, из которых 16, а по некоторым данным 20, абсолютно необходимы для роста и развития растений. Остальные элементы очень часто присутствуют в растениях, но их необходимость не установлена или не строго обязательна.

Большая часть химических элементов входит в состав различных соединений, в основном органических и до их разложения недоступна для растений. Лишь незначительная часть элементов находится в почве в поглощенном состоянии и в виде растворов солей. Растворенные соли наиболее подвижны и в первую очередь используются для питания растений, однако они легко вымываются из почвы и становятся недоступными. Микроорганизмы потребляют те же элементы, что и растения.

Регулировать питательный режим можно путем внесением органических и минеральных удобрений, введением рациональных севооборотов и чистых паров, обработкой почв, проведением известкования и гипсования и регулированием влажности почвы.


Введение

Характеристика хозяйства

1 Общие сведения о хозяйстве

2 Природные условия

2.1 Климатические условия

2.2 Почвенные условия

Проектирование системы севооборотов

1. Определение годовой потребности в продукции растениеводства

1.1 Потребность в кормах

1.2 Потребность в семенах

3 Расчёт продуктивности разработанных севооборотов

4 Составление плана освоения и ротационная таблица

Разработка комплексной системы мер борьбы с сорняками

1 Составление карты засорённости полей

2 Биологические особенности сорняков

3 Система мероприятий по борьбе с сорняками

Система обработки почвы

1 Обработка почвы в период освоения севооборота

2 Система обработки почвы в освоенном севообороте

Расчёт потребности в гербицидах

Разработка системы противоэрозионных мероприятий в севообороте

Оценка качества полевых работ

Заключение

Список литературы


Введение

севооборот растениеводство гербицид сорняк

Производство продуктов питания - с давних пор основная задача земледельца, так же как производство кормов для животноводства и сырья промышленности. Земледелие является одной из главных отраслей сельскохозяйственного производства.

Главное средство производства в земледелии - почва и зеленые растения. Человек через систему земледелия (обработка почвы, выбор предшественников и технологии возделывания, защита от вредных организмов) создает оптимальные условия для жизни растении. Зеленые растения преобразуют кинетическую энергию солнечного света в потенциальную энергию органического вещества. Человечество всегда стремилось к максимальному накоплению и разумному расходования энергии органических соединений в виде различных продуктов земледелия. Растениеводческая продукция не может долго храниться и поэтому создаваться заново. Этим определяется непрерывность сельскохозяйственного производства.

Земледелие - отрасли сельскохозяйственного производства, основанные на рациональном использовании земли с целью выращивания сельскохозяйственных культур. Полеводство, овощеводства, луговодство, лесоводство, виноградарство и т.д. являются отраслями частного земледелия. Земледелие - древнейшая отрасль человеческой деятельности, возникшая и формировавшаяся тысячелетиями. Появление его стало крупнейшим событием в развитии цивилизаций. Оно позволило перейти от кочевого и создать основу совершено нового оседлого образа жизни и труда человека. В истории человечества неоднократно подтверждалось, что рассвет и крупнейшей цивилизации проходили и через подъем, и через спад в развитие земледелия. В перспективе развития земледелие будет определятся двумя глобальными направлениями, от которых зависит переход к устойчивому росту сельскохозяйственного производства. Первое предполагает развитие сельского хозяйства всех стран планеты при использование экологических безопасных альтернативных земледельческих технологий, рациональном размещении производственных сил, обеспечивающих, расширенное воспроизводство биоресурсов и их экономию.

Земледелие как наука развивается на основе новейших теоретических достижений таких важнейших фундаментально научных дисциплин как почвоведение, землеустройство, физиология растений, агрохимия, растениеводство, биотехнология, микробиология, агрометеорология, экология, экономика и др.

Вместе с тем значительно возрастает роль земледелия как строго зональной науки, с широким использованием местного практического опыта.

В результате перевода земледелия на научную основу, его интенсификации повысились устойчивость и продуктивность растениеводства, обеспечиваются расширенное воспроизводство плодородия почвы и рост урожайности сельскохозяйственных культур.

Недостаточно изучены экологическая, экономическая и технологическая сущность и причины отрицательных явлений в сельскохозяйственном производстве. Поэтому в основе современного научного подхода должен быть системный метод как непременное условие успешного развития земледелия.

При решении проблем экологизации земледелия, адаптивной его интенсификации и в особенности биологизации технологических процессов необходимо пересмотреть роль и содержание элементов системы земледелия. На первый план оптимизации агропромышленного производства выходят задачи адаптации земледелия, т.е. разработка и освоение адаптивно-ландшафтных систем земледелия и их элементов.

Основа любой системы земледелия - севооборот. Оценку и роль его в современном земледелии проводят по таким критериям: биологизация земледелия, регулирование режима органического вещества почвы и элементов питания, поддержание удовлетворительного структурного состояния почвы, регулирование водного баланса агроценозов, предотвращение эрозии и дефляции, регулирование фитосанитарного состояния посевов и почвы.

Разработка и освоение почвозащитного земледелия должны включать все разнообразие организации ландшафтов, специальных севооборотов, выбора оптимальной системы обработки почвы в широком диапазоне - от вспашки до нулевой обработки через множество вариантов безотвальных, плоскорезных, минимальных, отвальных обработок и их комбинаций.


1. Характеристика хозяйства


1 Общие сведения о хозяйстве


Область, район: Челябинская область.

Название хозяйства: Вариант 8

Общее направление развития хозяйства: зернопроизводство, картофелеводство и мясо-молочное направление развития

План продажи продукции растениеводства: Зерно 3500 т.

Картофель 3000 т.


Таблица 1 - Земельные угодья хозяйства

№Земельные угодьяПлощадь, гаВ настоящее времяПредлагаемые изменения 1Пашня423142312Залежи5185183Сенокосы4684684Пастбища2912915Всего сельхозугодий49905508

ВЫВОД: Из-за нехватки пашни мы снижаем план продажи по зерну с 5 тыс. тонн до 3.5 тыс. тонн


Таблица 2 - Поголовье скота

Виды скотаКоличество головЛошади рабочие125КРС - коровы1654КРС - молодняк1569Свиньи1260Овцы240

ВЫВОД: Данное поголовье обеспечивает хозяйство мясом и молоком. Оно определяет мясо-молочное направление развития хозяйства.

Таблица 3 - Урожайность сельскохозяйственных культур

Культура (вид продукции)Средняя за 3 года урожайность, т/гаРасчетная урожайность, т/гаяровая пшеница2,02,3озимая рожь1,82,0ячмень2,22,5овес2,32,6горох1,01,1вика1,41,6свекла кормовая20,223,2кукуруза11,012,6подсолнечник16,318,7картофель12,013,8многолетние травы на з/к16,418,7многолетние травы на сенаж12,714,6многолетние травы на сено3,03,4однолетние травы на сено2,52,8однолетние травы на сенаж9,911,3однолетние травы на зел.корм12,113,9естественные сенокосы1,01,1естественные пастбища5,15,8

ВЫВОД: Урожайность культур повышена на 15%. Увеличение урожайности достигнуто за счет внесения удобрений, соблюдения агротехнических приемов возделывания культур, а также установлением новой системы севооборотов


2 Природные условия


2.1 Климатические условия

Степная зона находится в умеренном климатическом поясе. Тип климата - континентальный ввиду значительного удаления от океанов. Важнейшим климатообразующим фактором является солнечная радиация Суммарная солнечная радиация (прямая + рассеянная) зависит от высоты солнца над горизонтом, продолжительность дня, облачность. Минимум приходится на декабрь, а максимум - на июнь. В среднем за год в районе бывает 129 пасмурных дней, ясных-41. Остальные 195 дней стоит погода с переменной облачностью. Наибольшая пасмурность наблюдается в октябре. Максимум ясных дней отмечается в марте.

Господствующей воздушной массой является континентальный умеренный воздух..

дней погода район формируется под влиянием циклонов и 155- под действием антициклонов.130 дней циклонической деятельности приходится на теплый период. А действие антициклонов в это время составляет лишь 84 дня.

дней в году бывает со средней суточной температурой ниже 0". Переход через это рубеж в сторону потепления происходит 6апреля, а в сторону похолодания - 23 октября. Средняя температура января-16,5C, минимальная достигает - 49"C.В среднем снежный покров появляется 26 октября. Устойчивый снежный покров образуется в середине 16 ноября. А всего снежный покров, в том числе и временный лежит 146 дней. Его высота 18-20 см. в среднем ввиду с малоснежности и суровости зим почва промерзает до 135 см. При таких условиях озимые культуры, как правило - погибают. Сходит устойчивый снежный покров 15 апреля. 6 мая средняя суточная температура воздуха проходит через 10"C в сторону повышения, и начинается период активной вегетации растении. Такие температуры наблюдаются 137 дней. Сумма положительных температур выше 10"C составляет 2211"C. Это позволяет выращивать подсолнечник и кукурузу на зерно, а также арбузы и дыни. Средняя температура июня 19" С, максимальная 41"C.

мая средняя дата последнего заморозка. Но иногда они регистрируются 4 мая. Зарегистрированы заморозки и 10 июня. Раз в три года заморозок приходится на период цветения яблонь, а дважды в пять лет на цветение вишни. Заканчивается безморозный период в среднем 17 сентября.

Годовая сумма осадков составляет 369 см. В теплый период года их выпадает 76%.Максимум приходится на июль, минимум на февраль. Ливневые дожди 23 дня сопровождаются грозами. Средняя продолжительность периода без дождей в теплое время 17 дней. В отдельные годы - более месяца.

Таким образом, в степной зоне равнинной части первостепенное значение в земледелии имеют мероприятия по накоплению и сохранению влаги в почве.


2.2 Почвенные условия.

Солонцы - типы почв лесостепных, степных и полупустынных зон. Часто содержат натрий, легкорастворимые соли; гумуса 0,5-8%. Автоморфные, полугидроморфные и гидроморфные; после окультуривания - посевы трав, кукурузы, сахарной свеклы, сои, пшеницы и др. Солонцы встречаются пятнами. В Российской Федерации - в Нижнем Поволжье, на Северном Кавказе. Почвы этого типа являются интразональными.


Таблица 4. Характеристика исходного плодородия почв в хозяйстве.

Название почвыПлощадь, гаГумусовый горизонт, смГранулом. составПахотный слой, смрН солевой вытяжки, %Чернозем выщелоченный тяжелосуглинястый550813см гумус 6%мелкопылевато-иловатый глинистый состав13-233,8

Почва имеет неудовлетворительные показатели.


2. Проектирование системы севооборотов


Большинство хозяйств агропромышленного комплекса России имеет многоотраслевое сельскохозяйственное производство. Обычно оно состоит из хорошо развитых отраслей животноводства и растениеводства. В зависимости от специализации, масштабов производства, почвенно-климатических и других условий в каждом хозяйстве складывается своя структура посевных площадей.

Структура посевных площадей - это соотношение площади посевов сельскохозяйственных культур и чистого пара, выраженное в % к общей площади пашни. Структура посевных площадей - основа севооборота.

Севооборотом называют научно обоснованное чередование сельскохозяйственных культур и чистого пара во времени и пространстве или только во времени.

Чистый пар - поле, свободное от возделывания сельскохозяйственных культур в течение всего летнего периода. На этом поле проводят систематическую обработку почвы, вносят удобрения, осуществляют другие мероприятия по подготовке поля под посев последующей культуры.

Период, в течение которого сельскохозяйственные культуры и пары проходят через каждое поле в последовательности, предусмотренной схемой севооборота, называется ротацией.


1 Определение годовой потребности в продукции растениеводства


1.1 Потребность в кормах

На основе справочных данных по нормам кормления рассчитывается годовая потребность в кормовых единицах и центнерах кормов. При этом учитывается также страховой запас кормов в размере 10 - 15% от их потребности.

Таблица 5 - Потребность в кормах на год освоения севооборотов, т

Поголовье скотаКоличество видов кормовВиды животных, количествоСеноСилосСенажЗеленая траваКонцентратыв т.ч. горохКорнеплодыСоломакартофельЛошади рабочие 1251,03,02,51,4125375312175КРС - коровы 16540,52,51,52,20,3827413524813638496КРС - молодняк 15690,31,80,81,50,20,10,2470282412552353313156313Овцы 2400,50,30,20,20,112072484824Свиньи 12600,10,40,10,81265041261008Итого на все поголовье1542703141112839104030636388091008С учетом страхового фонда1773808547273264119635241839301160


Таблица 6 - Производство кормов на лугах и пастбищах, т

Сельскохозяйственные угодьяВид продукцииПлощадь, гаПланируемая урожайность, т/гаБудет получено продукции, тСенокосыСено4681.1515ПастбищеЗеленый корм2915,81687

Следовательно, на пашне нужно произвести:


Сена 1258Сенажа 4727 Зеленой травы 1577

На пашни нужно произвести: сена 1258 тонн, 4727 тонн сенажа и 1577 тонн зелёной травы.


1.2 Потребность в семенах

Семена всех культур хозяйство должно производить самостоятельно в объеме полной потребности со страховым запасом. Можно планировать покупку семян только тех культур, которые в условиях хозяйства не дают полноценные семена (овощные, кукурузы, многолетних трав). Завоз семян для сортосмены и сортообновления планировать только в обмене на собственные семена. Дополнительно необходимо заплатить страховой фонд в объеме 15% от потребности семян.

Зерна на семена нужно:1 - для посева зерновых на зерно, 2 - для посева однолетних трав на сено, 3 - для посева однолетних трав на зеленый корм,4 - для посева зерновых на сенаж, 5 - для посева зерновых, на семена (семенные участки), 6 - страховой фонд

) (3500 тонн + 1196 тонн) / 2,0 т/га * 0,22 т/га = 516 тонн

) Сено. 1258 тонн / 2,8 т/га * 0,18 т/га = 80 тонн

) Сенаж. 4727 тонн / 11,3 т/га * 0,18 т/га = 75 тонн

) Зел. тр. 1577 тонн/13,9*0,18=20 тонн

) 516+80+75+20/2,0*0,22=76 тонны

) 516+80+75+20+76/100*15=115 тонны

Всего потребность в зерне: 516+80+75+20+76+115=882 тонны

Потребность в семенном материале картофеля

1)3000 тонн+1160 тонн/13,8*2,5=753 тонн

2)753/100*15=112 тонн

Всего потребность 865 тонн


Таблица 7 - Годовая потребность в продуктах растениеводства, производимых на пашне, т

Название продуктовПотребностьпродажа семенакормапрочие потребностивсегоЗерно в т.ч. зернобобовые350088211965578Сено12581258Силос80858085Сенаж47274727Картофель300086511605025Зел. тр15771577Корнеплоды41834183Солома930930

Из таблицы 7 видно, что нам нужно получить большое количество сельскохозяйственной продукции, а площади пашни будет недостаточно, по этой причине пришлось снизить план продажи зерна с 5 тыс. тонн до 3.5 тыс. тонн.

Расчетную площадь посева под культуры получила делением потребности на урожайность. Затем сопоставила сумму площадей всех культур с площадью пашни и сбалансировала их. Также запланировала площадь чистого пара.


Таблица 8 - Структура посевных площадей

ПотребностьПроектируетсяКультурыБудет получено, тУрожайность, т/гаПлощадьга% от пашниЗерноОзимая рожь664,42,0332,47,0Яровая пшеница2184,52,3949,820,0Ячмень 1187,32,5474,910,0Овес1234,72,6474,910,0Вика379,91,6237,85,0СилосКукуруза3291,112,6261,25,5Подсолнечник4884,118,7261,25.5СеноМн.тр1291,73,4379,98.0СенажМн.тр4853,514.6332,47,0Зелёный кормОднол. тр1980,313,9142,53.0Картофель5242,913,8379,98,0КорнеплодыСвекла кормовая4407,123,2190,04,0Может использоваться под пар332,47,0Пашни всего4749100

После расчета площади посева каждой сельскохозяйственной культуры выбрали число севооборотов 4, их площади и распределила посевные площади каждой культуры по севооборотам, стремясь к тому, чтобы свойства почвы внутри каждого севооборота резко не различались.


2 Расчет структуры посевных площадей


После расчета площади посева каждой сельскохозяйственной культуры необходимо выбрать число севооборотов, их площадь и распределить посевные площади каждой культуры по севооборотом. Необходимо стремиться к тому, чтобы свойство почвы внутри каждого севооборота резко не различались. На эрозионно-опасных склонах пойменных землях и труднодоступных участках необходимо выделить самостоятельные севообороты. В этих севооборотах большой удельный вес должны занимать многолетние травы. На пойменных землях размещают овощи и другие влаголюбивые культуры. Вблизи крупной животноводческой фермы целесообразно выделить кормовой севооборот, в которой запланировать получение большей части малотранспортабельных сочных кормов. Нужно, однако, помнить, что увеличение числа севооборотов приводит, как правило, к уменьшению среднего размера поля. С учетом этих особенностей установить типы севооборотов, количество и площадь полей в каждом севообороте с таким расчетом, чтобы вместе взятые намеченные севообороты осуществляли запланированную структуру посевов.

Таблица 9 - Распределение посевных площадей по севооборотам

схема чередования культурплощадь полейга% от площади севооборота1 Полевой, зернопаропропашнойПар 332,416,6Озимая рожь332,416,6Яровая пшеница332,416,6Картофель332,416,6Яровая пшеница332,416,6Овёс332,416,6Площадь севооборота1994,4Средний размер поля332,42 Полевой, зернопропашнойОднолетние142,516,6Яровая пшеница142,516,6Ячмень142,516,6Свёкла142,516,6Ячмень142,516,6Овёс142,516,6Площадь севооборота855Средний размер поля142,53 Кормовой, травопольныйМн. Тр 142,416,6Мн. Тр142,416,6Мн. Тр142,416,6Мн. Тр142,416,6Мн. Тр142,416,6Яровая пшеница + Мн. Тр142,516,6Площадь севооборота854,5Средний размер поля142,44 Кормовой, зернопропашнойКукуруза (261,2) + Подсолнечник (261,2)522,450,1Ячмень (189,9) + Вика (237,2) + Картофель (47,5) + Свёкла (47,5) 522,149,9Площадь севооборота1044,5Средний размер поля522,2

ВЫВОД: севообороты полевые и кормовые, что обуславливается специализацией хозяйства.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Значение плодовых и ягодных культур в жизни человека

1. Плодоводство как отрасль растениеводства и как наука

Плодоводство — отрасль растениеводства, в которой объектами культуры являются плодовые деревья и ягодные растения, обеспечивающие человека продуктами питания и плодоперерабатывающую промышленность — сырьем…

Инновационная привлекательность сельскохозяйственного производства Калужской области

2.2 Растениеводство

Производство продукции растениеводства увеличивается, в основном за счет увеличения частных предприятий. Частным предприятиям выгодно вкладывать в новации, чтобы уменьшить себестоимость продукции, с целью получения большей прибыли…

Организационно-производственная структура колхоза имени Калинина

5. Растениеводство

Особенности растениеводства. Первичная обработка и транспортировка молока

1. РАСТЕНИЕВОДСТВО, КАК НАУКА И ОТРАСЛЬ СЕЛЬСКОГО ХОЗЯЙСТВА. ОСОБЕННОСТИ И ЗНАЧЕНИЕ РАСТЕНИЕВОДСТВА

Растениеводство — наука о культурных растениях и методах их выращивания с целью получения высоких урожаев наилучшего качества с наименьшими затратами труда и средств…

Племенная и зоотехническая рабата в КСУП «Ганута-Агро»

2. Растениеводство и кормовая база

Растениеводство в хозяйстве является вспомогательной отраслью производящей корма для животноводства. Данные о посевных площадях и их структуре, а также данные по урожайности зерновых и кормовых культур представлены в таблице 4. Таблица 4…

Плодоводство как наука. Покой у плодовых культур

1 (1). Плодоводство как наука и отрасль сельскохозяйственного производства

Плодоводство — это наука, изучающая основные закономерности строения, роста, развития, размножения, плодоношения и агротехнику плодовых и ягодных культур. Задачей науки плодоводства представляется создание теоретической основы…

Происхождение и современная география производства картофеля

ГЛАВА 1. РАСТЕНИЕВОДСТВО КАК ОТРАСЛЬ

Растениеводство как отрасль сельскохозяйственного производства

1 (1). Растениеводство как отрасль сельскохозяйственного производства

Растениеводство — это отрасль сельского хозяйства, основная задача которого — выращивание растений для получения продукции, удовлетворяющей потребность человека в пище, кормов для животных, сырья для перерабатывающей промышленности…

Трансформация земельных угодий

1.5 Растениеводство

Растениеводство- базовая отрасль сельскохозяйственного производства. Среди отраслей растениеводства самой важной является зерновое хозяйство. Оно формирует продовольственный фонд и поставляет кормовое зерно животноводству…

Глава 1. ВВЕДЕНИЕ В РАСТЕНИЕВОДСТВО

§1. Растениеводство как наука , объект изучения, связь с другими науками

Растениеводство – отрасль сельского хозяйства, занимающаяся возделыванием сельскохозяйственных культур для получения продукции, удовлетворяющей потребности человека в пище, кормах для животных, сырье для перерабатывающей промышленности.

Растениеводство включает полеводство, овощеводство, садоводство, виноградарство, производство кормов, лесоводство. Как научная и учебная дисциплина растениеводство изучает только группу культур, входящую в подотрасль полеводство: зерновые семейства Мятликовые, бобовые, клубнеплоды, кормовые корнеплоды, прядильные, масличные, эфирномасличные, многолетние и однолетние травы и некоторые другие культуры, выращиваемые на пашне.

Число возделываемых на Земном шаре видов растений превышает 20 тыс.

Наибольшее значение имеют 640 видов, из которых около 90 относится к полевой культуре. Они и входят в сферу изучения растениеводства как науки.

Объектами растениеводства как науки и сельскохозяйственной отрасли являются растения и предъявляемые ими требования к основным факторам среды, а также методы, приемы удовлетворения этих требований для получения высокого урожая хорошего качества.

Цель возделывания – получение качественного урожая.

На рост и развитие растений в той или иной степени влияют практически все экологические факторы – физический и химический состав почвы, ее влагообеспеченность и аэрация, скорость ветра, динамика температурного режима и инсоляции, влажность воздуха и др.

Поэтому для оптимизации условий выращивания конкретной культуры и сорта в конкретных экологических условиях растениевод должен учитывать состояние всех этих факторов. Влияние факторов внешней среды на уровень и качество урожая проявляется в основном через почву и технологию возделывания.

Для достижения качественного урожая растениеводство интегрирует знания фундаментальных и прикладных наук.

Для того чтобы знать биологию растения, необходимо изучить систематику, экологию, физиологию, биохимию и генетику растений, селекцию и семеноводство. Для удовлетворения требований биоэкологии культуры, оптимизации условий ее выращивания необходимо иметь полные сведения о почве, изучить геологию, минералогию, почвоведение, микробиологию, агрохимию, гидрологию, мелиорацию.

Кроме того, необходимо владеть знаниями по метеорологии, геодезии, землеустройству, земледелию. Для защиты культурных растений от вредных организмов необходимо знать энтомологию, фитопатологию, химические методы защиты от сорняков, вредителей и болезней.

Условия выращивания растений регулируют с помощью технологических приемов. При этом необходимо учитывать экономические стороны производства продукции растениеводства – экономику, организацию, управление. Наконец, урожай должен быть переработан и доведен до потребителя. Все эти науки трудно освоить без знания математики, физики, неорганической, органической, аналитической, физической и коллоидной химии.

Следовательно, чтобы владеть наукой управления ростом и развитием растений, величиной и качеством урожая, необходимо интегрировать знания многих фундаментальных и прикладных наук.

Классификация и происхождение культурных растений

В эволюции растений решающее влияние на формирование генотипа оказывают экологические условия района их происхождения.

Все культурные растения по типу фотопериодизма разделяют на две группы: культуры короткодневного фотопериодизма, которые сформировались как виды в тропическом и субтропическом поясе, где летом продолжительность дня близка к продолжительности ночи (короткий день), и культуры длиннодневного фотопериодизма, сформировавшиеся в зоне средних широт (умеренного пояса), зоне длинного летнего дня.

В тропической и субтропической зонах напряженность инсоляции и температурного режима выше, чем в северных широтах, температура здесь никогда не лимитирует рост и развитие растений.

При высокой напряженности температуры верхний слой почвы быстро пересыхает, но растения адаптировались к этому: в первый период вегетации они большую часть ассимилянтов направляют в корневую систему, чтобы корни могли достичь влажного слоя почвы. Это имеет важное агротехническое значение. Длиннодневные сорняки, интенсивно растущие с первых фаз развития, заглушают короткодневные культуры, и получить хороший урожай без прополки и гербицидов невозможно.

В северных широтах, где сформировались виды длиннодневного фотопериодизма, напряженность температурного режима ниже, продолжительность вегетации нередко ограничивается продолжительностью безморозного периода.

Этот же фактор лимитирует сумму активных температур, и тем больше, чем выше северная параллель. Вегетационный период короткодневных культур здесь также ограничивается последним сроком возврата весенних холодов и сроком наступления осенних заморозков. В северных широтах в связи с меньшей напряженностью температурного режима верхний горизонт почвы медленнее пересыхает, и длиннодневные виды, в том числе и сорняки, с первых фаз развития быстро наращивают надземную вегетативную массу.

Длинно-дневные культуры оказываются по отношению к сорнякам более конкурентоспособными, чем короткодневные.

Почвы зоны формирования короткодневных культур, как правило, средние и тяжелые по гранулометрическому составу, имеют нейтральную или щелочную реакцию среды, богаты одновалентными и двухвалентными катионами, поэтому культуры короткого дня требуют нейтральныхили слабокислых почв с высокой емкостью почвенного поглощающего комплекса (ППК).

В северных широтах почвы чаще легкого гранулометрического состава, слабокислые и кислые, с низким содержанием основных элементов минерального питания. Поэтому культуры длинного дня лучше выдерживают кислые почвы, небогатые питательными веществами (хотя потенциальную продуктивность они реализуют на слабокислых и нейтральных, богатых элементами питания почвах).

Установлено, что с продвижением короткодневных культур на север увеличиваются продолжительность их вегетационного периода и накопление вегетативной массы, а с продвижением на север длиннодневных культур, наоборот, сокращается период вегетации и снижается фитомасса.

Для прохождения каждого межфазного периода онтогенеза растению необходима определенная сумма активных температур.

Активной температурой принято считать нижний порог температуры, при которой все физиологические процессы в растении проходят нормально. Условно за такой порог принята температура +10 °С. Для прохождения онтогенеза каждому виду и сорту требуется своя сумма активных температур, обусловленная генотипом.

Зная сумму активных температур сорта, можно безошибочно определить ареал устойчивого вызревания его семян, зная сумму температур за каждый межфазный период, можно с большой степенью надежности прогнозировать наступление каждой фазы развития.

Например, для сои южных сортов от всходов до бутонизации необходима сумма активных температур 1500 °С. Пока растения не наберут эту сумму температур, они не перейдут в генеративный период, и продукты фотосинтеза будут направляться на рост вегетативной массы. С фазы бутонизации до образования плодов (бобов) необходима сумма активных температур еще 400 °С, а всего для прохождения онтогенеза этим сортам требуется 3500 °С.

Там, где сумма активных температур меньше этого значения, соя будет формировать вегетативную массу.

Для длиннодневных культур имеет значение не только сумма активных температур, но и продолжительность светового дня.

С увеличением длины дня сокращаются межфазные периоды, следовательно, и время на накопление массы вегетативных органов; сокращается период вегетации, но при этом снижается масса растений.

Таким образом, вид растения, его генотип являются отражением экологических условий зоны его формирования.

Чем в более экстремальных условиях сформировался вид, тем меньшие требования он предъявляет к условиям выращивания. Чем дальше возделывают вид от ареала его происхождения, тем большее число основных факторов среды приходится человеку корректировать агротехническими приемами, тем больше затрачивать средств на единицу продукции этого вида.

Альтернативой этому положению может быть создание сорта, биология которого изменена по сравнению с исходной формой и соответствует параметрам основных факторов среды зоны, для которой создан сорт.

Следовательно, для того чтобы узнать, какие требования культуры к условиям выращивания, необходимо знать экологические условия зоны формирования вида.

Н.И.Вавилов в 1935 г. определил восемь основных центров происхождения и введения в культуру видов: 1 – Китайский (Восточноазиатский); 2 – Индийский (Юго-Западноазиатский), в том числе Индо-Малайский; 3 – Среднеазиатский; 4 – Переднеазиатский; 5 – Средиземноморский; 6 – Абиссинский (Эфиопский); 7 –Центральноамериканский; 8 – Южноамериканский, включающий Чилианский и Бразильско-Парагвайский.

По мере накопления фактического материала о культивируемых растениях и их предках границы центров уточнялись. Н.И.Вавилов счел более правильным называть их очагами происхождения культурных растений, выделяя при этом центры генетического разнообразия и центры формообразования. П.М.Жуковский приводит следующую классификацию центров генетического разнообразия культурных растений:

Китайско-Японский (Восточноазиатский, по Н.И.Вавилову), включающий умеренные и субтропические районы Китая, Кореи, Японии, – родина сои, пшеницы мягкой, проса, чумизы, пайзы, гречихи и др.

2. Индонезийско-Южнокитайский (Южноазиатский тропический, по Н.И.Вавилову) – родина овса, овсюга, сахарного тростника и многих тропических плодовых и овощных культур.

3. Австралийский – родина диких видов риса, австралийских видов хлопчатника, клевера подземного, табака, эвкалипта, многих древесных тропических растений.

Индостанский (Н.И.Вавилов включил его в Южноазиатский тропический) – родина риса, пшеницы круглозернянки, сахарного тростника, азиатских видов хлопчатника, овощных и плодовых растений.

5. Среднеазиатский (по Н.И.Вавилову, Юго-Западноазиатский), куда входят территории Таджикистана и Узбекистана, а также Западного Тянь-Шаня и Афганистана.

Он тесно связан с Переднеазиатским очагом. Здесь возникли культуры гороха, кормовых бобов, чечевицы, нута, маша, конопли, ржи афганской, сафлора, дыни, некоторых видов хлопчатника, других многолетних растений.

6. Переднеазиатский (Горная Туркмения, Иран, Закавказье, Малая Азия и государства Аравийского полуострова) – родина ряда видов пшеницы, ячменя, ржи, овса, гороха, люцерны, стелющегося льна и многих овощных и плодовых культур.

Средиземноморский (по Н.И.Вавилову) включает Египет, Сирию, Палестину, Грецию, Италию и другие страны, прилежащие к Средиземноморью – родина овса, некоторых видов пшеницы, ячменя, большинства видов бобовых растений, клевера ползучего, клевера лугового, льна, капусты, свеклы, моркови, брюквы, редьки, лука, чеснока, мака, белой горчицы и др.

Африканский (вместе с Абиссинским, по Н.И.Вавилову) – родина сорго, проса африканского, клещевины, африканского риса, ряда видов пшеницы, некоторых видов бобовых, масличной пальмы, кунжута, кофе, ореха кола, некоторых видов хлопчатника и др.

9. Европейско-Сибирский – родина льна-долгунца, клевера гибридного и ползучего, люцерны изменчивой и посевной, хмеля, дикой конопли, кендыря, других плодовых и овощных растений.

Среднеамериканский, куда входят Мексика, Гватемала, Гондурас и Пана-

ма, – первичный очаг культуры кукурузы, длинноволокнистого хлопчатника, фасоли, тыквы, кабачков, батата, некоторых видов картофеля, махорки, перца и др.

Южноамериканский (по Н.И.Вавилову, Андийский) – родина культурного картофеля, томата, табака, многолетних видов ячменя, лопающейся кукурузы и др.

12. Североамериканский – родина некоторых видов ячменя, люпинов, травянистых многолетних видов подсолнечника, многих овощных и плодовых растений.

В мировом земледелии господствующее положение занимают полевые культуры, в группу которых входит около 90 видов растений.

Каждый из видов различается морфологическими, ботаническими, хозяйственными признаками. Для удобства изучения полевые культуры принято делить на группы с учетом наиболее характерных признаков (искусственные системы классификаций): по особенностям возделывания (И.А.Стебут), по использованию (Д.Н.Прянишников), характеру использования главного продукта (В.Н.Степанов, П.П.Вавилов), ботаническим и биологическим особенностям вида (табл.

Таблица 14.

Производственная и ботанико-биологическая группировка

(классификация) полевых культур

Группа культур по использованию

Биологическая

Культура

Зерновые

1.Зерновые мятликовые

Зерновые бобовые

3. Гречиха

Пшеница, рожь, овес, ячмень, тритикале

Кукуруза, просо, рис, сорго

Горох, кормовые бобы, соя, чечевица, чина, нут, фасоль, люпин

кормовые

4. Корнеплоды

5. Клубнеплоды

Бахчевые

7. Кормовая капуста

Сахарная свекла, кормовая свекла, брюква, морковь, турнепс

Картофель, топинамбур

Арбуз, тыква, дыня

Кормовая капуста

Кормовые травы

Масличные и эфиромасличные

Многолетние бобовые травы

5. Многолетние мятликовые травы

6. Однолетние бобовые травы

7. Однолетние мятликовые травы

8.Нетрадиционные кормовые растения

9. Масличные

10. Эфиромасличные

Клевер, люцерна, донник, лядвенец, козлятник восточный, эспарцет, многолетний люпин

Тимофеевка, ежа, кострец, овсяница, житняк, лисохвост, райграс, пырей

Вика, пелюшка, сераделла, клевер пунцовый, шабдар

Суданская трава, могар, плевел

Левзея, окопник, борщевик, сильфия, горец, мальва, редька масличная

Подсолнечник, сафлор, рапс, горчица, рыжик, клещевина, кунжут, арахис

Кориандр, анис, тмин, мята, шалфей

Прядильные

Растения с волокном на семенах

16. Лубноволокнистые

Хлопчатник

Лен, конопля, кенаф

Наркотические

17. Наркотические и хмель

Табак, махорка, хмель

Факторы, определяющие рост и развитие культурных растений

На рост, развитие растений, урожай и его качество влияет комплекс факторов внешней среды. При этом ни один фактор не может быть заменен другим, по своему физиологическому действию все они имеют равное значение для жизни растения (закон равнозначности факторов).

Например, недостаточная освещенность не может быть заменена повышенной температурой, избыток калия не компенсирует недостаток фосфора.

Растениеводство как наука

Кроме того, рост, развитие растений, урожай и его качество ограничиваются фактором, находящимся в минимуме (закон минимума).

Все физиологические процессы в растении будут идти активно и они реализуют свою потенциальную продуктивность, если параметры каждого фактора среды будут оптимальными (закон оптимума).

Избыток каждого фактора так же вреден, как и его недостаток. Например, избыток воды приводит к снижению аэрации почвы, и кислород становится ограничивающим фактором; избыток двухвалентного кальция выступает антагонистом катиона калия даже при повышенном содержании этого элемента в почве.

Некоторые из факторов, влияющих на растения, человек может регулировать – сортовые качества, засоренность посевов, поражение болезнями и вредителями, обеспеченность элементами питания, рН почвы, некоторые может регулировать только частично – гумуссированность и влажность почвы, емкость ППК, ветровая и водная эрозия и др., некоторые регулированию не поддаются – сумма активных температур, продолжительность безморозного периода, рельеф, сумма осадков и др.

(параметры нерегулируемых факторов определяются географической зоной).

Поэтому главной задачей растениеводства является сведение к минимуму с помощью регулируемых факторов негативного влияния нерегулируемых и частично регулируемых факторов на рост, развитие растений, урожай и его качество.

Например, для условий короткой продолжительности вегетационного периода и низкой суммы активных температур подбирают культуры и сорта с соответствующими требованиями биологии; недостаточное содержание элементов питания в почве восполняют применением органических и минеральных макро- и микроудобрений; для снижения засоренности посевов, поражения растений болезнями и повреждения вредителями используют агротехнические, химические и биологические методы борьбы с вредными организмами.

Роль системы защиты растений от сорняков, вредителей и болезней в земледелии.

Большим резервом увеличения урожая сельскохозяйственных культур и повышения его качества является грамотная, хорошо организованная защита растений от вредителей, болезней и сорняков. При этом необходимо тесное сочетание или интегрирование химического, биологического, агрономического и других методов защиты растений с учётом складывающейся экономической обстановки.

Мировой опыт показывает, что любая из известных ныне систем земледелия в условиях самой высокой и перспективной формы интенсификации сельского хозяйства невозможна без организованной защиты растений, как фактора, определяющего постоянно высокие урожаи.

В условиях крупных специализированных хозяйств, агропромышленных объединений, на фоне широкой мелиорации земель, резко возросшего обеспечения сельского хозяйства минеральными и органическими удобрениями, энергетическими мощностями ежегодные потери от вредителей, болезней и сорняков все еще велики и достигают 20-30% валового урожая, а по некоторым культурам и больше.

Все современные сельскохозяйственные предприятия не могут рассчитывать на стабильную прибыльную работу, если не обеспечит надежную и эффективную защиту возделываемых культур. И совершенно очевидно, что по мере дальнейшей интенсификации сельскохозяйственного производства роль защиты растений будет возрастать, так как одновременно с созданием более благоприятных условий для роста растений создаются и лучшие условия для развития и размножения вредных организмов.

Естественно, без решения проблем защиты растений нельзя серьезно рассматривать задачи повышения эффективности стабильности сельскохозяйственного производства.

Тимирязев главной задачей научного земледелия считал изучение требований культурных растений и разработку способов их удовлетворения. Эти способы должны быть направлены прежде всего на развитие растения в нужном для земледельца направлении, например, для получения максимального количества семян хорошего качества или для развития вегетативных органов (стебля и листьев), для получения корнеплодов и т.

Развивая учение Тимирязева о связи физиологии растений с земледелием, Д.Н. Прянишников считал объектами изучения физиологии – свойства растений, почвоведения и метеорологии – свойства окружающей среды, а земледелия – способы согласования этих свойств путем воздействия преимущественно на почву и растение.

2. Растениеводство как наука

В.Р. Вильямс основную задачу земледелия видел «в обеспечении культурным растениям непрерывно в течение всего периода их жизни одновременного максимального наличия в почве усвояемой воды и усвояемой пищи» .

Законы земледелия – это частное выражение законов природы, проявляющихся в земледельческом процессе.

Они раскрывают закономерные связи развивающегося растения с условиями внешней среды. В то же время ими определяются пути развития важнейших отраслей сельскохозяйственного производства, которое должно происходить в строгом соответствии с требованиями законов земледелия.

Закон возврата был открыт в середине XIX столетия основоположником агрохимии Ю.

Либихом. Он формулируется так: все вещества, используемые растениями при формировании урожая, должны полностью возвратиться в почву с удобрениями. Нарушение этого закона рано или поздно приводит к утрате почвой плодородия.

В принципе постановка вопроса о необходимости возврата биологически важных элементов, а не всех элементов, вынесенных из почвы урожаем, правильна и прогрессивна.

Это неоднократно подчеркивали К. Маркс, К.А. Тимирязев, Д.Н. Прянишников, отмечавшие, что учение о необходимости возврата вещества в почву представляет собой одно из величайших приобретений сельскохозяйственной науки.

История растениеводства тесно связана с развитием естествознания, земледелия и агрономии). Зачатками растениеводства как науки можно, по-видимому, считать первые записи по ведению сельского хозяйства. В Древнем Риме к числу работ такого рода следует отнести «Земледелие» Катона Старшего (234-149 до н.

э.). В России развитие научного растениеводства связано с именами М. В. Ломоносова, И. М. Комова, А. Т. Болотова, А. В. Советова, А. Н. Энгельгардта, Д. И. Менделеева, И. А. Стебута, В. В. Докучаева, П. А. Костычева и многих др. учёных. Выдающиеся работы по интродукции с.-х. растений, созданию мировой коллекции культурных растений принадлежат Н.

И. Вавилову.

Быстрая интенсификация сельскохозяйственного производства создала благоприятные условия для развития исследований по растениеводству и внедрению передовой агротехники с.-х. культур. На основе научных данных и опыта передовых хозяйств:

  • разработаны рекомендации по введению и освоению севооборотов применительно к почвенно-климатическим условиям и возделываемым культурам,
  • установлена степень эффективности удобрений,
  • обоснованы оптимальные дозы, способы и сроки их внесения под разные культуры и сорта в основных почвенно-климатических зонах страны, даны рекомендации по их использованию,
  • внедрены комплексные удобрения с оптимальным сочетанием элементов питания для различных с.-х.

    культур и сортов.

Под руководством учёных-селекционеров П. П. Лукьяненко, В. Н.Ремесло, В. С. Пустовойта, Ф. Г. и др. созданы новые и улучшены многие сорта зерновых культур. Выведены формы пшеницы гибридного происхождения в результате скрещивания:

  • пшеницы с пыреем (Н.

    В. Цицин),

  • ржи с пшеницей (В. Е. Писарев).

Получены высоколизиновые гибриды кукурузы (М. И. Хаджинов, Г. С. Галеев, Б. П. Соколов) и сорта ячменя (П. Ф. Гаркавый), сорта односемянной сахарной свёклы и полигибриды этой культуры, устойчивые к вилту сорта хлопчатника. Учёные-картофелеводы внедряют в производство приёмы агротехники, увеличивающие крахмалистость картофеля.

Распространены высокоурожайные сорта картофеля, созданные А. Г. Лорхом, И. А. Веселовским, Н. И. Альсмиком и др.

Селекционеры-овощеводы вывели новые межсортовые гибриды огурцов, лука, капусты. Созданы сорта овощных культур для Крайнего Севера, пустынь и полупустынь, для выращивания в парниках и теплицах. Используя мичуринские методы селекции, садоводы вывели много ценных сортов плодовых, ягодных культур и винограда для различных природных зон СССР.

Успешно ведутся начатые Н. И. Вавиловым исследования иммунитета растений к заболеваниям и повреждениям насекомыми (М. С. Дунин, П. М. Жуковский и др.). Выведены сорта подсолнечника, устойчивые против моли и заразихи, картофеля - против фитофторы и рака, льна-долгунца - против ржавчины, и т.д.

Наряду с созданием сортов с.-х.

культур интенсивного типа большое внимание уделяют разработке агротехнических приёмов, способствующих более полной реализации потенциальных возможностей новых сортов и максимальному использованию плодородия почв.

Учитывая тот факт, что Россия обладает огромными площадями, которые расположены в различных климатических поясах, сельское хозяйство в стране не специализируется на определенной культуре, а может обеспечивать себя почти всеми видами продукции.

Все регионы с развитым сельским хозяйством производят определенные культуры. Так, Алтайский край специализирован на производстве рапса, сои и подсолнечника.

А хозяйственное объединение «Сады Алтая» производит большие объемы плодов и ягод. При этом огромные площади в Алтайском крае на данный момент не используются. Ростовская область обеспечивает страну рисом, просом и кукурузой. В Воронежской области выращивается подсолнечник, картофель, сахарная свекла.

Можно сказать, что развитие растениеводства в России идет по пути максимальной диверсификации.

Российские потребители не зависят от одного конкретного производителя. А это в свою очередь дает уверенность в том, что даже при чрезвычайных обстоятельствах российские аграрии смогут обеспечить население продовольствием в достаточных количествах. Алтайский край - традиционный производитель зерна, молока, мяса, также здесь выращивается сахарная свекла, подсолнечник, лён масличный, лён-долгунец, хмель, рапс и соя.

Архангельская область.

Основными культурами являются картофель и овощи.

Башкортостан.

НАУЧНАЯ БИБЛИОТЕКА — РЕФЕРАТЫ — Растениеводство как наука

Выращиваются пшеница, рожь, овёс, ячмень (зерновые культуры) и сахарная свёкла, подсолнечник (технические культуры) Ивановская область. Ведущая отрасль представлено льноводство, картофелеводство и лесное хозяйство.

Ростовская область. Первостепенное значение в его структуре имеет зерновое хозяйство, под которым занято около половины посевных площадей. Главная зерновая культура - озимая пшеница. Широко распространены посевы кукурузы, риса, проса, гречихи и других крупяных культур, сои.

Ведущей технической культурой является подсолнечник. На промышленной основе создано садоводство и виноградарство. Большие площади заняты под овощеводство.

Социальные кнопки для Joomla

Методы исследований в растениеводстве

Для получения высоких и устойчивых урожаев полевых культур необходимо проведение соответствующих исследований, а также обработка информации, получаемой растениеводами, почвоведами, агрохимиками, агрометеорологами.

Анализ и обобщение этих материалов предусматривают широкое внедрение в растениеводство электронно-вычислительных машин, а также подготовку соответствующих кадров.

В исследованиях по растениеводству используют различные методы: полевые, лабораторные, лабораторно-полевые, вегетационные, производственные.

При постановке опытов, широко применяют наблюдения и методики, разрабатываемые агрометеорологией, агрохимией, биохимией, почвоведением, физиологией, биофизикой, биологией развития растений, генетикой.

ПОЛЕВОЙ ОПЫТ .

Основным методом исследований в растениеводстве является полевой опыт, так как только в результате проведения полевого опыта с тем или иным видом, сортом можно сделать определенное заключение, например, о реакции сорта на сроки, нормы высева в той или иной точке исследования и другие выводы, имеющие прикладное значение.

По этому методу опыты ставят в полевой обстановке, приближенной к производственным условиям.

Полевой сельскохозяйственный опыт - исследование, осуществляемое в полевой обстановке на специально выделенном участке. Основной задачей полевого опыта является установление различий между вариантами опыта, количественная оценка действия факторов жизни, условий или приемов возделывания на урожай растений и его качество.

Как бы ни были ценны наблюдения, результаты лабораторных, вегетационных и лизиметрических опытов, прежде чем сделать выводы из них и рекомендации для производства (если вообще такие могут быть предложены), они должны быть проверены в условиях сравнительного полевого опыта.

Все это делает полевой опыт основным, важнейшим методом исследования в полеводстве, луговодстве, овощеводстве и плодоводстве.

Полевой опыт связывает теоретические исследования в агрономии с сельскохозяйственной практикой. Результаты полевых опытов и обобщения практических наблюдений могут быть достаточно убедительным основанием для широкого внедрения новых средств повышения урожаев - агротехнических приемов, новых сортов, удобрений и др.

Полевые опыты проводят в нескольких повторностях на одном участке для нивелировки различий, вызываемых микрорельефом почвы.

Результаты полевых опытов подвергают вариационно-статистической обработке.

ВИДЫ ПОЛЕВЫХ ОПЫТОВ

Полевые опыты делятся на две большие группы: 1) агротехнические; 2) опыты по сортоиспытанию сельскохозяйственных культур.

Основная задача агротехнических опытов - сравнительная объективная оценка действия различных факторов жизни, условий, приемов возделывания или их сочетаний на урожай сельскохозяйственных культур и его качество.

К этой группе относятся, например, полевые опыты по изучению обработки почвы, предшественников, удобрений, способов борьбы с сорняками, болезнями и вредителями, норм и сроков посева и т.

Опыты по сортоиспытанию, где сравниваются при одинаковых условиях генетически различные растения, служат для объективной оценки сортов и гибридов сельскохозяйственных культур.

На основании этих опытов наиболее урожайные, ценные по качеству и устойчивые сорта и гибриды районируют и внедряют в сельскохозяйственное производство.

По месту проведения подразделяют полевые опыты, заложенные на специально организованных и приспособленных для этих целей участках или опытных полях и полевые опыты, проведенные в производственной обстановке-в колхозах и совхозах на полях хозяйственных севооборотов.

Опыты называют единичными, если их закладывают в отдельных пунктах, независимых друг от друга, по различным схемам.

Если полевые опыты одинакового содержания проводят одновременно по согласованным схемам и методикам в различных почвенно-климатических и хозяйственных условиях, в масштабе страны, области или района, то их называют массовыми или географическими.

По длительности проведения полевые опыты разделяют на краткосрочные, многолетние и длительные.

К краткосрочным относят опыты продолжительностью от 3 до 10 лет. Они могут быть нестационарными. Первые закладывают ежегодно по одной схеме с одной и той же культурой и повторяют во времени обычно 3 - 4 года. К многолетним — опыты 10-50 лет и длительные более 50 лет.

ЛАБОРАТОРНО-ПОЛЕВЫЕ ОПЫТЫ . Разновидность полевого метода исследования - лабораторно-полевые опыты.

Особенность их - небольшие размеры делянок при увеличенном числе повторностей в сочетании с углубленным изучением растений и почвы в лабораторных условиях. Этот метод приобретает особое значение при изучении влияния новых видов и форм удобрений на растения, а также при детальном морфо-физиологическом анализе роста и органогенеза растений, в частности для установления коррелятивных связей между развитием растений и действием тех или иных факторов среды или агротехнических приемов.

Лабораторно-полевой метод используют при изучении особенностей реакции растений на действие условий среды, на поступление питательных веществ при исследовании реакции почвы, роли микроорганизмов и других вопросов.

Этот метод открывает широкие возможности для применения изотопного анализа, непрерывной регистрации ростовых процессов, рентгенографии внутренних органов растений на разных этапах органогенеза, а также для изучения реакции растений на действие различных источников ионизирующей радиации (на гамма-полях).

Предварительную информацию, менее дорогостоящую, чем полевого опыта, можно получить из лабораторного и вегетационного опытов.

Эти опыты проводятся на небольшой площади с большим числом вариантов. В результате их проведения можно отобрать наиболее действенные варианты, которые в дальнейшем изучить в полевых условиях.

ВЕГЕТАЦИОННЫЙ ЭКСПЕРИМЕНТ.

Не менее широко в растениеводстве применяют и вегетационный метод, при котором растения выращивают в вегетационных домиках, в специальных сосудах (почвенные или водные культуры).

В последние годы наряду с вегетационными домиками используют фотопериодические камеры, люминесцентные установки, а также фитотроны, в которых изучают влияние различных условий (продолжительность фотопериодов, спектральный состав, интенсивность света, температурный режим и другие) на жизненные процессы растений.

ЛИЗИМЕТРИЧЕСКИЙ СЕЛЬСКОХОЗЯЙСТВЕННЫЙ ЭКСПЕРИМЕНТ .

Исследование жизни растений и динамики почвенных процессов в специальных лизиметрах, позволяющих учитывать передвижение и баланс влаги и питательных, веществ в естественных условиях.

Лизиметрический метод отличается от вегетационного тем, что исследование жизни растений и свойств почвы проводят в поле, в специальных лизиметрах, где почва отгорожена со всех сторон (с боков и снизу) от окружающей почвы и подпочвы. Основное условие, определяющее конструкцию лизиметра, - приспособления, позволяющие изучать просачивание воды и растворенных в ней веществ.

Мощность слоя в лизиметре может варьировать в широких пределах - от глубины пахотного слоя до 1-2 м.

Лизиметрические опыты используют в земледелии, мелиорации, почвоведении, агрометеорологии, физиологии, агрохимии и селекции для выяснения таких вопросов, как водный баланс под различными сельскохозяйственными культурами, вымывание и перемещение питательных веществ атмосферными осадками и поливными водами, определение транспирационных коэффициентов в естественной обстановке и др.

В зависимости от способа наполнения почвой различают лизиметры с почвой естественного строения и лизиметры с насыпной почвой.

Материалы, из которых изготовляют лизиметры, могут быть очень разнообразными- делают бетонные и кирпичные лизиметры объемом 1-2 м3 в расчете на длительное использование; металлические- с радиусом от 10 до 40-50 см и так называемые лизиметрические воронки диаметром 25-50 см.

2. Растениеводство как наука

Могут быть и другие конструкции лизиметров.

В лизиметрах значительно легче вести учет влаги и питательных веществ в почве и растениях, растущих на ней. Однако полное отделение почвы в лизиметрах от нижележащих слоев ее создает в них, несомненно, иной питательный и водно-воздушный режим, чем в обычных полевых условиях.

ЛАБОРАТОРНЫЙ ЭКСПЕРИМЕНТ . Лабораторный эксперимент - исследование, осуществляемое в лабораторной обстановке с целью установления действия и взаимодействия факторов на изучаемые объекты.

Проводят лабораторные опыты как в обычных (комнатных), так и в искусственных строго регулируемых условиях - в термостатах, боксах и климатических камерах, позволяющих строго регулировать свет, температуру, влажность воздуха и другие факторы. Многие важные агрономические вопросы успешно разрешают именно методом лабораторного опыта.

Например, в семеноведении широко используют лабораторный эксперимент для выяснения оптимальных условий прорастания семян, оценки влияния биологических свойств и качества семян на их всхожесть. Лабораторные опыты на прорастающих семенах и проростках растений используют в исследованиях с удобрениями, пестицидами и регуляторами роста.

ПРОИЗВОДСТВЕННЫЙ ОПЫТ . Одной из форм полевого метода исследований является производственный опыт, который проводится в колхозах и совхозах.

Результаты этих опытов позволяют установить экономическую целесообразность возделывания той или иной культуры при определенных способах разрабатываемой агротехники.

Производственный сельскохозяйственный опыт -это комплексное, научно поставленное исследование, которое проводится непосредственно в производственных условиях и отвечает конкретным задачам самого материального производства, его постоянного развития и совершенствования

Производственный опыт проводится на большой площади (от одного до нескольких десятков гектаров), следует рассматривать как синтетический метод изучения вопросов растениеводства.

В него включают лучшие варианты опыта, полученные в результате проведения полевого опыта. Производственный опыт может быть заложен с повторениями или без них, но обязательно с делянками контрольного варианта. За контроль берут уже отработанные в условиях производства элементы агротехники. Успешно проведенный производственный опыт одновременно можно рассматривать как результат внедрения достижений науки в сельскохозяйственное производство, так как он, как правило, распространяется затем на значительные площади.

При проведении полевых и лабораторно-полевых исследований существенное значение имеют фенологические и агрометеорологические наблюдения.

Однако фенологические наблюдения не полностью вскрывают ход индивидуального развития растений в межфазные периоды, когда проходят сложные процессы развития и роста и определяются не только строение, но и количественные признаки каждого органа.

МОРФОФИЗИОЛОГИЧЕСКИЙ МЕТОД . Углубление исследований по выявлению закономерностей развития и роста растений потребовало разработки такой методики анализа, которая охватывала бы весь процесс индивидуального развития растений.

Такой метод, названный морфофизиологическим, ныне разработан и уже применяется рядом научно-исследовательских институтов и кафедр.

Он заключается в систематических наблюдениях за процессами дифференциации зачаточных органов. При этом периодически осуществляются анатомические, цитохимические анализы тканей и клеток каждого из органов, развивающихся на том или ином этапе. Морфофизиологические приемы исследования послужили основой для разработки метода биологического контроля за развитием и ростом растений (Ф.

М. Куперман, 1952-1973).

Современное растениеводство располагае т широким арсеналом различных аналитических и синтетических методов, позволяющих рассматривать растение и почву в их взаимосвязи со всем комплексом агротехнических мероприятий.

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 |