Физические свойства фенола и его применение. Фенол (гидроксибензол, карболовая кислота)

Вопрос 2.Фенол, его строение, свойства и применение.

Ответ. Фенолы – органические вещества, производные ароматических углеводородов, в которых гидроксильные группы (одна или несколько) связаны с бензольным кольцом.

Простейший представитель этой группы веществ – фенол, или карболовая кислота С 6 Н 5 ОН. В молекуле фенола π-электроны бензольного кольца оттягивают на себя неподеленные пары электронов атома кислорода гидроксильное группы, вследствие чего увеличивается подвижность атома водорода этой группы.

Физические свойства

Твердое бесцветное кристаллическое вещество, с резким характерным запахом, при хранении окисляется на воздухе и приобретает розовый цвет, плохо растворим в холодной воде, но хорошо растворяется в горячей воде. Температура плавления – 43 °C, кипения – 182 °C. Сильный антисептик, очень ядовит.

Химические свойства

Химические свойства обусловлены взаимным влиянием гидроксильной группы и бензольного кольца.

Реакции по бензольному кольцу

1. Бромирование:

C 6 H 5 OH + 3Br 2 = C 6 H 2 Br 3 OH + 3HBr.

2 , 4 ,6-трибромфенол (белый осадок)

2. Взаимодействие с азотной кислотой:

C 6 H 5 OH + 3HNO 3 = C 6 H 2 (NO 2) 3 OH + 3H 2 O.

2,4,6-тринитрофенол (пикриновая кислота)

Эти реакции проходят в обычных условиях (без нагревания и катализаторов), тогда как для нитрования бензола требуется температура и катализаторы.

Реакции по гидроксигруппе

1. Как и спирты, взаимодействует с активными металлами:

2C 6 H 5 OH + 2Na = 2C 6 H 5 ONa + H 2 .

фенолят натрия

2. В отличие от спиртов взаимодействует со щелочами:

C 6 H 5 OH + NaOH = C 6 H 5 ONa + H 2 O.

Феноляты легко разлагаются слабыми кислотами:

а) C 6 H 5 ONa + H 2 O + CO 2 = C 6 H 5 OH + NaHCO 3 ;

б) C 6 H 5 ONa + CH 3 I + CO 2 = C 6 H 5 OСH 3 + NaI.

метилфениловый эфир

3. Взаимодействие с галогенопроизводными:

C 6 H 5 OH + C 6 H 5 I = C 6 H 5 OC 2 H 5 + HI

этилфениловый эфир

4. Взаимодействие со спиртами:

C 6 H 5 OH + HOC 2 H 5 = C 6 H 5 OC 2 H 5 + H 2 O.

5. Качественная реакция:

3C 6 H 5 OH + FeCl 3 = (C 6 H 5 O) 3 Fe↓+ 3HCl.

фенолят железа (III)

Фенолят железа (III) имеет коричнево-фиолетовый цвет с запахом туши (краски).

6. Ацелирование:

C 6 H 5 OH + CH 3 COOH = C 6 H 5 OCOCH 3 + H 2 O.

7. Сополиконденсация:

C 6 H 5 OH + СH 2 O + … → - n. –.

метаналь –Н 2 О фенолоформальдегидная смола

Получение

1. Из каменноугольной смолы.

2. Получение из хлорпроизводных:

C 6 H 5 Cl + NaOH = C 6 H 5 ONa + HCl,

2C 6 H 5 ONa + H 2 SO 4 = 2C 6 H 5 OH + Na 2 SO 4 .

3. Кумольный способ:

C 6 H 6 + CH 2 CHCH 3 C 6 H 5 CH(CH 3) 2 ,

C 6 H 5 CH(CH 3) 2 + O 2 С 6 H 5 C(CH 3) 2 OOH C 6 H 5 OH +CH 3 COCH 3.

фенол ацетон

Применение

1. Как антисептик используется в качестве дезинфицирующего средства.

2. В производстве пластмасс (фенолформальдегидная смола).

3. В производстве взрывчатых веществ (тринитрофенол).

4. В производстве фотореактивов (проявители для черно- белой бумаги).

5. В производстве лекарств.

6. В производстве красок (гуашь).

7. В производстве синтетических материалов.

Вопрос 3.Через 200г 40-% раствора КОН пропустили 1,12л СО 2 . Определите тип и массу образовавшейся соли.

Ответ.

Дано: Найти : тип и массу соли.

V(CO 2)= 1,12 л.


Решение

m(KOH безводн)= 200*0,4=80г.

х 1 г 1,12 л x 2 г

2KOH + CO 2 = K 2 CO 3 +H 2 O.

v: 2 моль 1 моль 1 моль

M: 56 г/моль – 138 г/моль

m: 112 г -- 138 г

x 1 = m(KOH) = (1,12* 112)/22,4=5,6 г,

x 2 =m(K 2 CO 3)=138*1,12/22,4=6,9 г.

Поскольку КОН взят в избытке, то образовалась средняя соль К 2 СО 3 , а не кислая КНСО 3 .

Ответ: m(K 2 CO 3)= 6,9 г.

БИЛЕТ №3

Вопрос 1 .Теория строения органических соединений. Значение теории для развития науки.

Ответ. В 1861 г. Русский учёный Александр Михайлович Бутлеров сформулировал основные положения теории строения органических веществ.

1.Молекулы органических соединений состоят из атомов, связанных между собой в определённой последовательности согласно их валентности (C-IV,H-I, O-II, N-III, S-II).

2.Физические и химические свойства вещества зависят не только от природы атомов и их количественного соотношения в молекуле, но и от порядка соединения атомов, то есть от строение молекулы.

3. Химические свойства вещества можно определить, зная его строение молекулы. И наоборот, строение молекулы вещества можно установить опытным путём, изучая химические превращения вещества.

4.В молекулах имеет место взаимное влияние атомов или групп атомов друг на друга:

CH 3 - CH 3 (t кип =88,6 0 С), CH 3 - CH 2 – CH 3 (t кип, = 42,1 0 С)

этан пропан

На основе своей теории Бутлеров предсказал существование изомеров соединений, например двух изомеров бутана (бутана и изобутана):

CH 3 -CH 2 - CH 2 -CH 3 (t кип. =0,5 0 C),

CH 3 -CH(CH 3)- CH 3 (t кип = -11,7 0 С).

2-метилпропан или изобутан

Изомеры – вещества, имеющий одинаковый состав молекулы, но различное химическое строение и по этому обладающие различными свойствами.

Зависимость свойств веществ от их структур- одна из идей, лежащих в основе теории строения органических веществ А.М. Бутлерова.

Значение теории А.М.Бутлерова

1.ответила на основные «Противоречия» органической химии:

а) Многообразие соединений углерода

б) кажущееся несоответствие валентности и органических веществах:

в) различные физические и химические свойства соединений, имеющих одинаковую молекулярную формулу (С 6 Н 12 O 6 – глюкоза и фруктоза).

2. Позволила предсказать существование новых органических веществ, и также указать пути их получения.

3. Дала возможность предвидеть различные случаи изомерии, предугадывать возможные направления реакций.

Вопрос 2.Виды Химической связи в органических и органических соединениях.

Ответ: Основная движущая сила, проводящая к образованию химической связи,- стремление атомов к завершению внешнего энергетического уровня.

Ионная связь химическая связь, осуществляемая за счёт электростатического притяжения между ионами. Образование ионных связей возможно только между атомами, значения электроотрицательности которых очень сильно различаются.

К ионным соединениями относят галогениды и оксиды щелочных и щелочно-земельных металлов (NAI, KF,CACI 2 ,K 2 O,LI 2 O).

Ионы могут состоять и из нескольких атомов, связи между которыми не ионные:

NаOH = Nа + + OH - ,

Nа 2 SO 4 = 2Nа + + SO 4 2- .

Следует отметить, что свойства ионов существенно отличаются от свойств соответствующих им атомов и молекул простых веществ: Na- металл бурно реагирующий с водой, ион Na + растворяется в ней; H 2 - растворяется в ней; H 2 - газ без цвета, вкуса и запаха, ион H + придает раствору кислый вкус, изменяет цвет лакмуса (на красный).

Свойства ионных соединений

1.Соединения с ионной связью являются электролитами. Электрический ток проводят только растворы и расплавы.

2. Большая хрупкость кристаллических веществ.

Ковалентная связь- химическая связь, осуществляемая за счет образования общих (связывающих) электронных пар.

Ковалентная неполярная связь- связь, образующаяся между атомами, проявляющими одинаковую электроотрицательность. При ковалентной неполярной связи электронная плотность общей пары электронов распределяется в пространстве симметрично относительно ядер общих атомов (H 2 ,I 2, O 2 ,N 2).

Ковалентная полярная связь- ковалентная связь между атомами с различной (но не сильно отличающейся друг от друга) электроотрицательностью (H 2 S, H 2 O,NH 3).

По донорно-акцепторному механизму образуется:NH + 4 , H 3 , O + , SO 3 , NO 2 . В случае возникновения иона NH + 4 атом азота-донор, предоставляющий в общее пользование не поделённую электронную пару, а ион водорода – акцептор, принимающий эту пару и предоставляющий для этого свою орбиталь. При этом образуется донорно-акцепторная (координационная) связь. Атом акцептора приобретает большой отрицательный заряд, а атом донора- положительный.

У Соединений с ковалентной полярной связью температуры кипения и плавления выше, чем к веществ с ковалентной неполярной связью.

В молекулах органический соединений связь атомов ковалентная полярная.

В таких молекулах происходит гибридизация (смешение орбиталей и выравнивание их по формуле и энергии) валентных (внешних) орбиталей атомов углерода.

Гибридные орбитали перекрываются, и образуются прочные химические связи.

Металлические связи- связь, осуществляемая относительно свободными электронами между ионами металлов в кристаллической решетке. Атомы металлов легко отдают электроны, превращаясь в положительно заряженные ионы. Оторвавшиеся электроны свободно перемещаются между положительными ионами металлов, т.е. они обобществлены ионами металлов, т.е. они обобществлены и передвигаются по всему куску металла, в целом электронейтрального.

Свойства металлов.

1. Электропроводимость. Обусловлено наличием свободных электронов, способных создавать электрический ток.

2. Теплопроводность. Обусловлена тем же.

3. Ковкость и пластичность. Ионы и атомы металлов в металлической решетке непосредственно не связаны друг с другом, и отдельные слои металла могут свободно перемещаться один относительно другого.

Водородная связь- может быть межмолекулярной и внутримолекулярной.

Межмолекулярная водородная связь образуется между атомами водорода одной молекулы и атомами сильноэлектроотрицательного элемента (F,O,N)другой молекулы. Такая связь определяет аномально высокие температуры кипения и плавления некоторых соединений (HF,H 2 O). При испарении этих веществ происходит разрыв водородных связей, что требует затрат дополнительной энергии.

Причина водородной связи: при отдаче единственного электрона «своему» атому электроотрицательного элемента водород приобретает относительно сильный положительный заряд, который затем взаимодействует с неподеленной электронной парой «чужого» атома электроотрицательного элемента.

Внутримолекулярная водородная связь осуществляется внутри молекулы. Эта связь определяет структуру нуклеиновых кислот (двойная спираль) и вторичную (спиралевидную) структуру белка.

Водородная связь гораздо слабее ионной или ковалентной, но сильнее, чем межмолекулярное взаимодействие.

Вопрос 3. Решить задачу. 20г нитробензола подвергли реакции восстановления. Найти массу образовавшегося анилина, если выход реакции составляет 50%.

Ответ.

Дано: Найти: m(C 6 H 6 NH 2).

m(C 6 H 6 NO 2) = 20г,

Решение

(C 6 H 6 NO 2) + 3H 2 = C 6 H 6 NH 2 +2H 2 0.

v: 1 моль 1 моль

M: 123г/моль 93 г /моль

х= m теор (C 6 H 6 NH 2) =20*93/123=15г,

m практ = 15*0,5=7,5 г.

Ответ: 7,5 г.

Билет № 4

Свойства Металл Li, K, Rb, Ba, Sr, Ca, Na, Mg, Al, Mn, Zn, Cr, Fe, Ni, Sn, Pb, (H), Cu, Hg, Ag, Pt, Au
Восстановительная способность (отдавать электроны) Возрастает
Взаимодействие с кислородом воздуха Быстро окисляются при обычной температуре Медленно окисляются при обычной температуре или при нагревании Не окисляются
Взаимодействие с водой Выделяется Н 2 и образуется гидроксид При нагревании выделяется водород и образуется гидроксид Не вытесняют водород из воды
Взаимодействие с кислотами Вытесняют водород из разбавленных кислот Не вытеснят водород из разбавленных кислот
Окислительная способность (присоединять электроны) Возрастает

Вопрос 1.Общие свойства металлов. Особенности строение атомов .

Ответ . Атомы металлов сравнительно легко отдают валентные электроны и превращаются при этом в положительно заряженные ионы. Поэтому металлы являются восстановителями. В этом и состоит главная и наиболее общая химическая свойства металлов. Соединениях металлы проявляют только положительные степень окисления. Восстановительная способность разных металлов не одинакова и возрастает в электрохимическом ряду напряжений металлов от Au и до Li.

Физические свойства

1.Электропроводность. Обусловлена наличием в металлах свободных электронов, образующих электрический ток(направленное движение электронов).

2.Теплопроводность.

3.Ковкость и пластичность.

Металлы c ρ <5 г /см 3 – легкие, c ρ > 5 г/см 3 – тяжелые.

Легкоплавкие металлы: c t пл < 1000 0 C ,тугоплавкие – c t пл >1000 0 C.

Схемы взаимодействия металлов с серной кислотой.

Разбавленная H 2 SO 4 растворяет металлы расположенные в ряду стандартных электродных потенциалов (ряд активности металлов)до водорода:

M + H 2 SO 4 (разб.) → соль + H 2

(M = (Li →Fe) в ряду активности металлов).

При этом образуются соответствующая соль и вода.

С Ni разбавленная H 2 SO 4 реагирует очень медленно, с Ca, Mn, и Pb кислота не реагирует. При действии кислоты на поверхности свинца образуется пленка PbSO 4 , защищающая его от дальнейшего взаимодействия с кислотой.

Концентрированная H 2 SO 4 при обычной температуре со многими металлами не взаимодействует. Однако при нагревании концентрированная кислота реагирует почти со всеми металлами (кроме Pt ,Au и некоторых других). При этом кислота восстанавливается до H 2 S,или SO 2:

M + H 2 SO 4 (конц.) → соль + H 2 O + H 2 S (S ,SO 2).

Водород в этих реакциях не выделяется, а образуется вода.

Схемы взаимодействия металлов с азотной кислотой.

При взаимодействии металлов с HNO 3 водород не выделяется; он окисляется, образуя воду. В зависимости от активности металла кислота может восстанавливаться до соединений.

5 +4 +2 +1 0 -3 -3

HNO 3 →NO 2 → NO→ N 2 O→N 2 →NH 3 (NH 4 NO 3).

При этом образуется также и соль азотной кислоты.

Разбавленная HNO 3 реагирует со многими металлами (исключение: Ca ,Cr ,Pb, Au) чаще всего с образованием NH 3 ,NH 4 NO 3 ,N 2 или NO:

M + HNO 3 (разб.) → соль + H 2 O + NH 3 (NH 4 NO 3 , N 2 ,NO).

Концентрированная HNO 3 взаимодействует в основном с тяжелыми металлами с образованием N 2 O или NO 2:

M + HNO 3 (конц.) → соль + H 2 O + N 2 O(NO 2­).

При обычной температуре эта кислота (сильный окислитель) не реагирует с Al ,Cr, Fe и Ni. Она легко переводит их в пассивное состояние (на поверхности металла образуется плотная защитная оксидная пленка, препятствующая контакту металла со средой.)

Вопрос 2. Крахмал и целлюлоза. Сравнить их строение и свойства. Их применение.

Ответ. Строение крахмала: структурное звено – остаток молекулы

α-глюкозы. Строение целлюлозы: структурное звено-остаток молекулы β-глюкозы.

Физические свойства

Крахмал-белый хрустящий порошок,нерастворимый в холодной воде. В горячей воде образует коллоидный раствор-клейстер.

Целлюлоза-твердое волокнистое вещество,нерастворимое в воде и органических растворителях.

Химические свойства

1. Крахмал целлюлоза подвергаются гидролизу:

(C 6 H 10 O 5) n + nH 2 O=nC 6 H 12 O 6 .

При гидролизе крахмала образуется альфа-глюкоза, при гидролизе целлюлоза бета-глюкоза.

2. Крахмал с йодом дает синие окрашивание(в отличие от целлюлозы).

3. Крахмал переваривается в пищеварительной системой человека,а целлюлоза не переваривается.

4. Для целлюлозы характерна реакция этерификации:

[(C 6 H 7 O 2)(OH) 3 ] n +3nHONO 2 (конц.) [(C 6 H 7 O 2)(ONO 2) 3 ] n +3nH 2 O.

тринитроцеллюлоза

5. Молекулы крахмала имеют как линейную, так и разветвленную структуру. Молекулы же целлюлоза имеет линейное (то есть не разветвленное) строение, благодаря чему целлюлоза легко образует волокна.Это основное различие крахмала и целлюлозы.

6.Горение крахмала и целлюлозы:

(C 6 H 10 O 5) n +O 2 =CO 2 +H 2 O+Q.

Без доступа воздуха происходит термическое разложение. Образуются CH 3 O, CH 3 COOH, (CH 3) 2 CO и др.

Применение

1. Путем гидролиза превращают в потоку и глюкозу.

2. Как ценный и питательный продукт(основной углевод пищи человека-хлеба,крупы,картофеля).

3. В производстве клейстера.

4. В производстве красок (загуститель)

5. В медицине (для приготовления мазей, присыпок).

6. Для накрахмаливания белья.

Целлюлоза:

1. В производстве ацетатного волокна,оргстекла, негорючей пленки(целлофан).

2. При изготовлении бездымного пороха(тринитроцеллюлоза).

3. В производстве целлулоида и колодита (динитроцеллюлоза).

Вопрос 3. К 500 грамм 10% раствора NACL прибавили 200 грамм 5% раствора того же вещества, потом еще 700 грамм воды. Найдите процентную концентрации полученного раствора.


Ответ. Найти:m 1 (NаCl)= 500г

Дано:

ω 1 (NаCl)=10%

m 2 (NаCl)=200г

Решение

m 1 (NaCl, безв.)=500 *10\100 = 50 г,

m 2 (NaCl, безв.)=200*5\100=10 г,

m (р-ра)=500+200+700=1400г,

m общ (NaCl)=50+10=60г,

ω 3 (NaCl)=60\1400 * 100 % = 4,3 %

Ответ: ω 3 (NaCl)=4,3 %

БИЛЕТ № 5

Вопрос 1. Ацетилен. Его строение, свойства, получение и применение.

Ответ. Ацетилен относится к классу алкинов.

Ацетеленовые углеводороды, или алкины, -непредельные (ненасыщенные) углеводороды с общей формулой , в молекулах которых между атомами углерода есть тройная связь.

Электронное строение

Углерод в молекуле ацетилена находится в состоянии sp – гибридизации. Атомы углерода в этой молекуле образуют тройную связь, состоящую из двух -связей и одной σ-связи.

Молекулярная формула: .

Графическая формула: H-C≡ C-H

Физические свойства

Газ, легче воздуха, малорастворим в воде, в чистом виде почти без запаха, бесцветный, = - 83,6 . (В ряду алкинов с увеличением молекулярной массы алкина температуры кипения и плавления увеличиваются.)

Химические свойства

1. Горение:

2. Присоединение:

а) водорода:

б) галогена:

C 2 H 2 + 2Cl 2 = C 2 H 2 Cl 4 ;

1,1,2,2-тетрохлорэтан

в) галогеноводорода:

HC≡CH + HCl = CHCl

винилхлорид

CH 2 =CHCl + HCl = CH 3 -CHCl 2

1,1-дихлорэтан

(по правилу Марковникова);

г) воды(реакция Кучерова):

HC=CH + H 2 O = CH 2 =CH-OH CH 3 -CHO

виниловый спирт уксусный альдегид

3. Замещение:

HC≡CH + 2AgNO 3 + 2NH 4 = AgC≡CAg↓+ 2NH 4 NO 3 + 2H 2 O.

ацетиленид серебра

4. Окисление:

HC≡CH + + H 2 O → HOOC-COOH ( -KMnO 4).

щавельная кислота

5. Тримеризация:

3HC≡CH t, кат

6. Димеризация:

HC≡CH + HC≡CH КАТ. HC≡C - HC=CH 2

винилацетилен

Получение

1. Дегидрирование алканов (крекинг жидких нефтяных фракций):

C 2 H 6 = C 2 H 2 + 2H 2 .

2. Из природного газа (термический крекинг метана):

2CH 4 C 2 H 2 + 3H 2

3. Карбидный способ:

CaC 2 + 2H 2 O = Ca(OH) 2 + C 2 H 2

Применение

1.В производстве винилхлорида, ацетальдегида, винилацетата, хлоропрена, уксусной кислоты и других органических веществ.

2.В синтезе каучука и поливинилхлоридных смол.

3.В производстве поливинилхлорида (кожзаменитель).

4.В производстве лаков, лекарств.

5.При изготовлении взрывчатых веществ (ацетилениды).

В зависимости от числа групп ОН фенолы делятся на: одноатомные и

двухатомные фенолы:

трехзамещенные фенолы: (пирогаллол), симметричный и несимметричный

Номенклатура и изомерия.

Названия фенолов составляют с учетом того, что для родоначальной структуры по правилам ИЮПАК сохранено тривиальное название «фенол». Нумерацию атомов углерода бензольного кольца начинают от атома, непосредственно связанного с группой ОН и продолжают в такой последовательности, чтобы имеющиеся заместители получили наименьшие номера.

Строение фенола, взаимное влияние бензольного кольца и гидроксильной группы.

В молекуле фенола бензольное кольцо и группа ОН взаимно влияют друг на друга. Неподеленная пара электронов атома кислорода группы ОН находится в р, π-сопряжение с бензольным кольцом. Поэтому в феноле группа ОН, помимо отрицательного индуктивного эффекта проявляет положительный мезомерный эффект. Величина +М- эффекта больше, чем I - эффекта. Поэтому группа ОН является электронодонором (Э.Д) по отношению к бензольному кольцу и повышает полярность связи О – Н и, следовательно происходит увеличение подвижности атома водорода и тем самым усиливаются кислотные свойства.

Кроме того, +М- эффект группы ОН повышает электронную плотность в орто пара- положениях бензольного кольца и в положениях 2, 4, 6 возникает частичный отрицательный заряд что облегчает реакции электрофильного замещения.

Кислотный центр

I < +М, ЭД

Физические свойства.

Фенол – это бесцветное кристаллическоевещество с резким запахом, плохо растворим в воде при обычной температуре, а при температуре выше 66 0 смешивается с водой в любых соотношениях. На воздухе окисляется и становится розовым. Фенол – токсичное вещество, вызывает ожоги кожи, его 10% водный раствор называется карболовой кислотой и применяется как антисептик.

Химические свойства.

Химические свойства фенолов обусловлены наличием группы ОН и бензольного кольца.

Реакции с участием гидроксильной группы.

    Диссоциация в водных растворах:

фенолят - ион

    Взаимодействие с активными металлами (сходство с простыми спиртами):

    Взаимодействие со щелочами (отличие от спиртов):

Образующиеся феноляты легко разлагаются при действии кислот. Поэтому при действии Н 2 СО 3 (СО 2 + Н 2 О) и др. кислот феноляты легко разлагаются и обратная реакция не возможна.

С 6 Н 5 ОNа + СО 2 + Н 2 О  С 6 Н 5 ОН + NаНСО 3

    Взаимодействие с галогеналканами с образованием простых эфиров:

метилфениловый эфир

    Взаимодействие с ангидридами кислот с образованием сложных эфиров:

фенилацетат

    Взаимодействие с солями (хлоридом железа III). Данная реакция является качественной реакцией на фенольный гидроксид

Каждый фенол дает свое характерное окрашивание в качественной реакции с FеС1 3:

Фенол  Фиолетовое, Гидрохинон  Грязно-зеленое,

Пирокатехин  Зеленое, Пирогаллол  Красное.

Резорцин  Фиолетовое

3С 6 Н 5 ОН + FеС1 3  (С 6 Н 5 О) 3 Fе + 3НС1

Фиолетовое окрашивание

    Р-ция восстановления с цинковой пылью при нагревании:

С 6 Н 5 ОН + 3Н 2 С 6 Н 12 + ZnО

      .Р-ции по бензольному кольцу ( S Е )

Как было сказано выше, –ОН группа – ориентант I рода, облегчает реакции по бензольному кольцу, направляя атаку электрофильного реагента преимущественно в орто- и пара- положения:

    Галогенирование фенола:

2,4,6-трибромфенол

Происходит обесцвечивание бромной воды и образование белого осадка. Эта реакция используется как качественная реакция на фенол.

    Нитрование фенола. Под действием 20% раствора азотной кислоты на холожу фенол превращается в смесь орто- и пара- нитрофенол:

2-нитрофенол – 40% 4-нитрофенол – 10%

Для получения 2,4,6-тринитрофенола (пикриновой кислоты) фенол предварительно растворяют в концентрированной серной кислоте, а зате6м подвергают нитрованию концентрированной азотной кислотой:

пикриновая кислота

    Сульфирование фенола:

    Р-ция конденсации . При взаимодействии с формальдегидом фенол образует полимеры различного строения (линейного, разветвленного, сетчатого) – фенолформальдегидные смолы.

Фрагмент

фенолоформальдегидной

5.Р-ция гидрирования (восстановление):

    Окисление. Фенолы легко окисляются под действием кислорода воздуха:

хинон

Многие биологические вещества содержат «хиноидную» систему: витамин К 2 (фактор свертываемости крови), окислительно-восстановительные ферменты тканевого дыхания – убихиноны.

Фенолы.

1. Определение. Классификация.

2. Номенклатура и изомерия. Основные представители

3. Получение

4. Физические свойства

5. Химические свойства

6. Применение. Влияние на здоровье человека.

Фенолы – это производные бензола с одной или нескольким гидроксильными группами.

Классификация.

В зависимости от числа гидроксигрупп фенолы разделяются по атомности на: одно-, двух - и трехатомные.

По степени летучести веществ их принято делить на две группы - летучие с паром фенолы (фенол, крезолы, ксиленолы, гваякол, тимол) и нелетучие фенолы (резорцин, пирокатехин, гидрохинон, пирогаллол и другие многоатомные фенолы). Строение и номенклатуру отдельных представителей рассмотрим ниже.

Номенклатура и изомерия. Основные представители.

Первого представителя, как правило, называют по тривиальной номенклатуре, фенол (оксибензол, устар. карболовая кислота).

https://pandia.ru/text/78/359/images/image005_11.gif" width="409" height="104">

3,5-диметилфенол 4-этилфенол

Часто для фенолов разной степени замещенности употребляют тривиальные названия.

Получение

1) Выделение из продуктов сухой каменноугольной смолы, а также из продуктов пиролиза бурых углей и древесины (деготь).

2) Через бензолсульфокислоту. Сначала бензол обрабатывают при нагревании концентрированной серной кислотой

C6H6 + H2SO4 = C6H5SO3H + H2O

Полученную бензолсульфокислоту сплавляют со щёлочью

C6H5SO3H + 3NaOH = C6H5ONa + 2H2O + Na2SO3

После обработки фенолята сильной кислотой получают фенол.

3) Кумольный способ (основан на окислении ароматического углеводорода кумола (изопропилбензол) кислородом воздуха с последующим разложением получающейся гидроперекиси, разбавленной H2SO4). Реакция проходит с высоким выходом и привлекательна тем, что позволяет получить сразу два технически ценных продукта – фенол и ацетон (нужно рассмотреть самостоятельно).

Физические свойства

Фено́л представляет собой бесцветные игольчатые кристаллы, розовеющие на воздухе из-за окисления, приводящего к окрашенным продуктам. Обладают специфическим запахом гуаши. Растворим в воде (6 г на 100 г воды), в растворах щелочей, в спирте, в бензоле, в ацетоне.

При работе с фенолом необходимо соблюдать технику безопасности : работать под вытяжкой, использовать средства индивидуальной защиты, т. к. при попадании на кожу вызывает ожоги.

Химические свойства фенолов

Строение молекулы фенола

Бензольное кольцо и ОН-группа, объединенные в молекуле фенола, влияют друг на друга, взаимно повышая реакционную способность друг друга. Фенильная группа оттягивает на себя неподеленную электронную пару от атома кислорода в ОН-группе.

https://pandia.ru/text/78/359/images/image007_10.gif" width="348" height="62">

Каталитическое взаимодействие со спиртами приводит к простым эфирам, а в результате реакции с ангидридами или хлорангидридами карбоновых кислот образуются сложные эфиры. Это реакции, аналогичные реакциям спиртов, которые были изучены на прошлой лекции (еще их называют о-алкилирование и о-ацилирование).

2. Реакции с отрывом ОН-группы

При взаимодействии с аммиаком (при повышенной температуре и давлении) происходит замена ОН-группы на NH2, образуется анилин.

3. Реакции замещения атомов водорода в бензольном кольце

(реакции электрофильного замещения) .

ОН-группа является активирующим ориентантом I рода. поэтому при галогенировании, нитровании, сульфировании и алкилировании фенола атакуются центры с повышенной электронной плотностью, т. е. замещение проходят преимущественно в орто- и пара- положениях. Подробно такие реакции были изучены в лекции о правилах ориентации в бензольном кольце.

Реакции фенолов с галогенами протекают быстро, без катализаторов.

о-хлор- и п-хлорфенол

Фенол при действии конц. HNO 3 превращается в 2,4,6-тринитрофенол (пикриновая кислота). Нитрование сопровождается окислением, поэтому выход продукта невысок.

Мононитрофенолы образуются при нитровании фенола разбавленной азотной кислотой (при комнатной температуре).

о-нитро- и п-нитрофенол

Фенол легко сульфируется концентрированной H 2 SO 4, при этом при температуре 15-20оС преимущественно получается о-изомер, а при 100оС – п-изомер.

о-фенол- и п-фенолсульфокислоты

Фенолы также легко подвергаются алкилированию и ацилированию в ядро.

Одна из наиболее ярких реакций – это нагревание фенолов с фталевым ангидридом в присутствии серной кислоты, которая ведет к получению триарилметиленовых красителей, называемых фенолфталеинами.

Аспирин" href="/text/category/aspirin/" rel="bookmark">аспирина . Феноляты натрия и калия взаимодействуют с СО2. При температуре 125оС получается о - изомер фенолкарбоновой кислоты, который ацилируется по ОН-группе, с образованием аспирина.

Важно отметить еще две качественные реакции фенолов:

1) Реакция фенолов с бромом : она протекает очень быстро и остановить ее на стадии монобромирования весьма затруднительно. В результате образуется 2.4.6-трибромфенол – осадок белого цвета.

Реакция применяется для обнаружения фенола в воде: помутнение заметно даже при крайне незначительном содержании фенола в воде (1:100000).

2) Реакция с солями Fe (III). Реакция основана на образовании комплексов фенолятов железа, имеющих фиолетовую окраску.

https://pandia.ru/text/78/359/images/image023_0.gif" width="204" height="49">

Гидрирование водородом в присутствии никелевого катализатора оказывает действие на ароматическое кольцо, восстанавливая именно его.

4. Окисление фенолов

Фенолы чувствительны к действию окислителей. Под действием хромовой кислоты фенол и гидрохинон окисляются до п-бензохинона, а пирокатехин – до о-бензохинона. Метапроизводные фенола окисляются достаточно сложно.

Отделочные материалы и работы" href="/text/category/otdelochnie_materiali_i_raboti/" rel="bookmark">отделочных материалов , лакокрасочных изделий, декоративной косметики и даже детских игрушек могут пренебречь требованиями безопасности и выпускать продукцию с недопустимо высоким содержанием таких токсичных веществ, как фенолы и их производные.

Поэтому необходимо проявлять бдительность и при первых же симптомах отравления принять меры. Помните, если вас настораживает неприятный запах недавно приобретенной вещи, если вам кажется, что ваше здоровье после покупки мебели или недавнего ремонта пошатнулось, будет лучше вызвать специалиста-эколога, который проведет все нужные исследования и даст необходимые рекомендации, чем пребывать в тревоге и сомнениях, опасаясь за свое здоровье и здоровье своих близких.

Во Вторую мировую войну фенол применялся в концентрационных лагерях Третьего рейха для умерщвления.

Серьезно фенол влияет и на окружающую среду: в незагрязненных или слабозагрязненных речных водах содержание фенолов обычно не превышает 20 мкг/дм3. Превышение естественного фона может служить указанием на загрязнение водоемов . В загрязненных фенолами природных водах содержание их может достигать десятков и даже сотен микрограммов в 1 л. ПДК фенолов в воде для России составляет 0,001 мг/дм3

Анализ воды на фенол важен для природных и сточных вод. Необходимо проверять воду на содержание фенола если есть подозрение в загрязнении водотоков промышленными стоками.

Фенолы - соединения нестойкие и подвергаются биохимическому и химическому окислению . Многоатомные фенолы разрушаются в основном путем химического окисления.

Однако при обработке хлором воды, содержащей примеси фенола, могут образовываться очень опасные органические токсиканты - диоксины .

Концентрация фенолов в поверхностных водах подвержена сезонным изменениям. В летний период содержание фенолов падает (с ростом температуры увеличивается скорость распада). Спуск в водоемы и водотоки фенольных вод резко ухудшает их общее санитарное состояние, оказывая влияние на живые организмы не только своей токсичностью, но и значительным изменением режима биогенных элементов и растворенных газов (кислорода, углекислого газа). В результате хлорирования воды, содержащей фенолы, образуются устойчивые соединения хлорфенолов, малейшие следы которых (0,1 мкг/дм3) придают воде характерный привкус.

Молекулярная формула: C 6 H 5 – OH.

Строение молекулы: в молекуле фенола гидроксильная группа атомов связана с бензольным кольцом (ядром).

Ароматический радикал фенил (C 6 H 5 –) или бензольное ядро, в отличие от радикалов предельных углеводородов обладает свойством оттягивать к себе электроны кислородного атома гидроксильной группы, поэтому в молекуле фенола химическая связь между атомами кислорода и водорода становится более полярной, а атом водорода – более подвижным, чем в молекулах спиртов, и фенол проявляет свойства слабой кислоты (его называют карболовой кислотой).

С другой стороны, гидроксильная группа влияет на бензольное кольцо (ядро) так, что в нем происходит перераспределение электронной плотности и атомы водорода в положениях 2,4,6 становятся более подвижными, чем в молекуле бензола. Поэтому в реакциях замещения для фенола характерно замещение трех атомов водорода в положениях 2,4,6 (в бензоле замещается только один атом водорода). Таким образом, в молекуле фенола наблюдается взаимное влияние гидроксильной группы и бензольного кольца друг на друга.

Физические свойства: фенол – бесцветное кристаллическое вещество с характерным запахом, на воздухе бывает розового цвета, т.к. окисляется. Температура плавления – 42 ºC.

Фенол – ядовитое вещество! При попадании на кожу вызывает ожоги!

Химические свойства: хим. свойства обусловлены гидроксильной группой и бензольным кольцом (ядром).

· Реакции, идущие по гидроксильной группе:

Атом водорода в гидроксильной группе фенола более подвижен, чем в спиртах, поэтому фенол проявляет св-ва слабой кислоты (второе название – карболовая кислота) и взаимодействует не только с активными металлами, как спирты,но также со щелочами (спирты со щелочами не реагируют!).

2C 6 H 5 OH + 2Na → 2C 6 H 5 ONa + H 2 . C 6 H 5 OH + NaOH → C 6 H 5 ONa + H 2 O

фенол гидроксид натрия фенолят натрия

· Реакции, идущие по бензольному кольцу (ядру):

Фенол энергично (без нагревания и катализаторов) взаимодействует с бромом и азотной кислотой, при этом в бензольном кольце замещаются три атома водорода в положениях 2,4,6.



фенол бром 2,4,6 – трибромфенол бромоводород

фенол азотная кислота 2,4,6-тринитрофенол

Применение: Фенол используется для производства лекарственных веществ, красителей, веществ для дезинфекции (антисептиков), пластмасс (фенопластов), взрывчатых веществ

Получение: из каменноугольной смолы и из бензола.

Альдегиды, их строение и свойства. Получение, применение муравьиного и уксусного альдегидов.

Альдегиды – органические вещества, содержащие функциональную альдегидную группу

Связанную с углеводородным радикалом или атомом водорода.

Общая формула альдегидов: или R – CОН

Строение молекул. В молекуле альдегида между атомами углерода и водорода существуют σ-связи, а между атомами углерода и кислорода – одна σ-связь и одна π-связь. Электронная плотность смещена от атома углерода к более электроотрицательному атому – атому кислорода. Т.о. атом углерода альдегидной группы приобретает частичный положительный (δ+), а атом кислорода – частичный отрицательный заряд (δ–).

Номенклатура . Названия альдегидам даются: 1) от исторических названий соответствующих органических кислот, в которые они превращаются при окислении – муравьиный альдегид, уксусный альдегид и т.д. 2) по международной номенклатуре – от названий соответствующих углеводородов + суффикс -аль . Например,

H – C или Н – СНО муравьиный альдегид, или метаналь

СH 3 – C или СН 3 – СНО уксусный альдегид, или этаналь

Физические свойства. Метаналь – бесцветный газ с резким запахом, этаналь и следующие адьдегиды – жидкости, высшие альдегиды – твердые вещества.

Химические свойства.

Реакции окисления. Качественные реакции на альдегиды:

1) реакция «серебряного зеркала» – окисление альдегидов аммиачным раствором оксида серебра при нагревании:

CH 3 – C НО + Ag 2 O → CH 3 – CООН + 2Ag ↓

Уксусный альдегид уксусная кислота

окислитель оксид серебра восстановливается до серебра, которое оседает на стенках пробирки, а альдегид окисляется в соответствующую кислоту

2) Окисление альдегидов гидроксидом меди (II) при нагревании.

H – C НО + 2 Cu(OH) 2 → H – CООН + 2CuOH + H 2 O

голубой желтый

муравьиный альдегид муравьиная кислота

2CuOH → Cu 2 O + H 2 O

желтый красный

окислителем является медь со степенью окисления +2, которая восстанавливается до меди со степенью окисления +1.

Реакции присоединения.

3) Альдегиды при нагревании и в присутствии катализатора присоединяют водород за счет разрыва двойной связи в альдегидной группе. При этом альдегид восстанавливается – превращается в соответствующий спирт. Например, метаналь превращается в метанол:

H– C НО + H 2 → CH 3 – OH

метаналь метиловый спирт (метанол)

Получение.

Альдегиды можно получить:

1. Окислением первичных спиртов, например,

2CH 3 OH + O 2 → 2H – C НО + 2H 2 O

метиловый спирт муравьиный альдегид (метаналь).

2. метаналь можно также получить непосредственным окислением метана:

CH 4 + O 2 → H – CНО + H 2 O

3. Уксусный альдегид можно получить гидратацией этилена в присутствии катализатора (солей ртути) – реакция М.Г. Кучерова:

H – C ≡ C – H + H 2 O → CH 3 – CНО

Применение. Наибольшее применение имеют метаналь и этаналь.

· Метаналь используется для получения фенолформальдегидной смолы, из которой делают пластмассы - фенопласты.

· При растворении этой смолы в ацетоне или спирте получают различные лаки.

· Метаналь используется для производства некоторых лекарственных веществ и красителей.

· Широко используется 40%-ный водный раствор метаналя – формалин. Он применяется при дублении кож (свертывает белок – кожа твердеет и не поддается гниению), для сохранения биологических препаратов, для дезинфекции и протравления семян.

· Этаналь в основном используется для производства уксусной кислоты.

Фенол – это химическое органическое вещество, углеводород. Другие названия – карболовая кислота, гидроксибензол. Он бывает природного и промышленного происхождения. Что такое фенол и каково его значение в жизни человека?

Происхождение вещества, химические и физические свойства

Химическая формула фенола – c6h5oh. По внешнему виду вещество напоминает кристаллы в виде иголок, прозрачные, с белым оттенком. На открытом воздухе при взаимодействии с кислородом окраска приобретает светло-розовый цвет. Для вещества характерен специфический запах. Фенол пахнет как краска гуашь.

Природные фенолы – это антиоксиданты, которые в разных количествах присутствуют во всех растениях. Они обуславливают цвет, аромат, защищают растения от вредных насекомых. Природный фенол полезен для организма человека. Он содержится в оливковом масле, зернах какао, фруктах, орехах. Но встречаются и ядовитые соединения, например, танин.

Химическая промышленность производит эти вещества путем синтеза. Они ядовиты и очень токсичны. Фенол опасен для человека, также промышленные масштабы его производства значительно загрязняют окружающую среду.

Физические свойства:

  • нормально растворяется фенол в воде, спирте, щелочи;
  • имеет низкую температуру плавления, при 40°C превращается в газ;
  • по своим свойствам во многом напоминает спирт;
  • обладает высокой кислотностью и растворимостью;
  • при комнатной температуре находятся в твердом состоянии;
  • запах фенола резкий.

Как применяют фенолы

Более 40% веществ используют в химической промышленности для получения других органических соединений, в основном смол. Также из него искусственные волокна – капрон, нейлон. Вещество применяют в нефтеперерабатывающей отрасли для очищения масел, которые применяют в буровых установках и других технологических объектах.

Фенол используют для производства лакокрасочной продукции, пластмасс, в составе химикатов и пестицидов. В ветеринарии веществом на фермах обрабатывают животных сельскохозяйственного значения для профилактики инфекций.

Применение фенола в фармацевтической промышленности значительное. Он входит в состав многих лекарственных препаратов:

  • антисептики;
  • обезболивающие;
  • антиагреганты (разжижают кровь);
  • как консервант для производства вакцин;
  • в косметологии в составе препаратов для химического пилинга.

В генной инженерии фенол применяют для очистки ДНК и его выделения из клетки.

Токсическое действие фенола

Фенол – это яд . По своей токсичности соединение относится ко 2-му классу опасности. Это значит, что оно высокоопасное для окружающей среды. Степень воздействия на живые организмы высокая. Вещество способно нанести серьезный ущерб экологической системе. Минимальный период восстановления после действия фенола составляет минимум 30 лет, при условии полной ликвидации источника загрязнения.

Синтетический фенол влияние на организм человека оказывает негативное. Токсическое действие соединения на органы и системы:

  1. При вдыхании паров или проглатывании поражаются слизистые оболочки пищеварительного тракта, верхних дыхательных путей, глаз.
  2. При попадании на кожу образуется ожог фенолом.
  3. При глубоком проникновении вызывает некроз тканей.
  4. Оказывает выраженное токсическое действие на внутренние органы. При поражении почек вызывает пиелонефрит, разрушает структуру эритроцитов, что приводит к кислородному голоданию. Способен вызвать аллергический дерматит.
  5. При вдыхании фенола в больших концентрациях нарушается работа мозговой деятельности, может привести к остановке дыхания.

Механизм токсичного действия фенолов заключается в изменении структуры клетки и, как следствие, ее функционирования. Наиболее восприимчивы к ядовитым веществам нейроны (нервные клетки).

Предельно допустимая концентрация (ПДК фенола):

  • максимально разовая доза в атмосфере для населенных мест составляет 0,01 мг/м³, которая держится в воздухе на протяжении получаса;
  • среднесуточная доза в атмосфере для населенных мест составляет 0,003 мг/м³;
  • смертельная доза при попадании внутрь организма составляет для взрослых от 1 до 10 г, для детей от 0,05 до 0,5 г.

Симптомы отравления фенолом

Вред фенола на живой организм давно доказан. При попадании на кожу или слизистые соединение быстро всасывается, преодолевает гематогенный барьер и с кровью разносится по всему телу.

Первым на воздействие яда реагирует головной мозг. Признаки отравления у человека:

  • Психика. Первоначально пациент испытывает легкое возбуждение, которое длится непродолжительно и сменяется раздражение. Затем наступает апатия, безразличие к происходящему вокруг, человек находится в угнетенном состоянии.
  • Нервная система. Нарастает общая слабость, вялость, упадок сил. Смазывается тактильная чувствительность, но реакция на свет и звуки обостряется. Пострадавший чувствует тошноту, которая не связана с работой пищеварительной системы. Появляется головокружение, головная боль становится более интенсивной. Тяжелое отравление может привести к судорогам и бессознательному состоянию.
  • Кожные покровы. Кожа становится бледной и холодной на ощупь, при тяжелом состоянии приобретает синий оттенок.
  • Органы дыхания. При попадании даже незначительных доз в организм у человека появляется одышка и учащенное дыхание. Из-за раздражения слизистой носа у пострадавшего беспрерывное чихание. При отравлении средней степени тяжести развивается кашель и спастические сокращения гортани. В тяжелых случаях возрастает угроза спазма трахеи и бронхов и, как следствие, удушье, приводящее к летальному исходу.

Обстоятельства, при которых может произойти отравление – нарушение правил техники безопасности при работе с особо опасными веществами, передозировке лекарственными препаратами, бытовом отравлении моющими и чистящими средствами, в результате несчастного случая.

Если в доме находится мебель низкого качества, детские игрушки, не соответствующие международным стандартам безопасности, стены покрашены краской, не предназначенной для этих целей, то исходящие пары фенола человек вдыхает постоянно. В этом случае развивается хроническое отравление. Его основной признак – синдром хронической усталости.

Принципы оказания первой помощи

Первое, что необходимо сделать, это прервать контакт человека с отравляющим источником.

Пострадавшего вынести из помещения на свежий воздух, расстегнуть пуговицы, замки, молнии, чтобы лучше обеспечить доступ кислорода.

Если раствор фенола попал на одежду, ее немедленно снять. Пораженную кожу и слизистую глаз многократно и тщательно промыть проточной водой.

При попадании фенола в ротовую полость ничего не проглатывать, а немедленно прополоскать рот в течение 10 минут. Если вещество успело попасть в желудок, можно выпить сорбент со стаканом воды:

  • активированный или белый уголь;
  • энтеросорб;
  • энтеросгель;
  • сорбекс;
  • карболен;
  • полисорб;
  • лактофильтрум.

Нельзя промывать желудок, так как эта процедура усилит степень ожога и увеличит площадь поражения слизистой.

Антидот фенола – раствор глюконата кальция для внутривенного введения. При отравлении любой степени тяжесть пострадавший доставляется в больницу для наблюдения и лечения.

Вывести фенол из организма в условиях стационара при тяжелых отравлениях можно такими методами:

  1. Гемосорбция – очищение крови специальным сорбентом, который связывает молекулы ядовитого вещества. Кровь очищается путем прогонки в специальном аппарате.
  2. Дезинтоксикационная терапия – внутривенное вливание растворов, которые разбавляют концентрацию вещества в крови и способствуют его естественному выведению из организма (через почки).
  3. Гемодиализ – показан в тяжелых случаях, когда есть потенциальная угроза жизни. Процедура проводится с помощью аппарата «искусственная почка», в котором кровь проходит через специальные мембраны и оставляет молекулы отравляющего вещества. В организм кровь возвращается чистая и насыщенная полезными микроэлементами.

Фенол – это синтетическое отравляющее вещество, опасное для человека. Даже соединение природного происхождения может нанести вред здоровью. Чтобы избежать отравления, необходимо с ответственностью относится к работе на производстве, где есть риск контакта с ядом. При покупках интересоваться составом продукции. Неприятный запах пластмассовых изделий должен насторожить. При употреблении лекарственных препаратов с содержанием фенола соблюдать предписанную дозировку.