Простая необратимая реакция пример. Что такое обратимая реакция

Обратимые реакции - химические реакции, в данных условиях протекающие одновременно в двух противоположных направлениях (прямом и обратном), исходные вещ-ва превращ в продукты не полностью. например: 3H 2 + N 2 ⇆ 2NH 3

Направление обратимых реакций зависит от концентраций веществ - участников реакции. По завершении обратимой реакции, т. е. при достижении химического равновесия , система содержит как исходные вещества, так и продукты реакции.

Простая (одностадийная) обратимая реакция состоит из двух происходящих одновременно элементарных реакций, которые отличаются одна от другой лишь направлением химического превращения. Направление доступной непосредственному наблюдению итоговой реакции определяется тем, какая из этих взаимно-обратных реакций имеет большую скорость. Например, простая реакция

N 2 O 4 ⇆ 2NO 2

складывается из элементарных реакций

N 2 O 4 ⇆ 2NO 2 и 2NO 2 ⇆ N 2 O 4

Для обратимости сложной (многостадийной) реакции, необходимо, чтобы были обратимы все составляющие её стадии.

Для обратимых реакций уравнение принято записывать следующим образом А + В АВ.

Две противоположно направленные стрелки указывают на то, что при одних и тех же условиях одновременно протекает как прямая, так и обратная реакция

Необратимыми называют такие химические процессы, продукты которых не способны реагировать друг с другом с образованием исходных веществ. С точки зр. Термодинамики – исходные вещ-вы полностью превр в родукты. Примерами необратимых реакций может служить разложение бертолетовой соли при нагревании 2КСlО3 > 2КСl + ЗО2,

Необратимыми называются такие реакции, при протекании которых:

1) образующиеся продукты уходят из сферы реакции - выпадают в виде осадка, выделяются в виде газа, например ВаСl 2 + Н 2 SО 4 = ВаSО 4 ↓ + 2НСl Na 2 CO 3 + 2HCl = 2NaCl + CO 2 ↓ + H 2 O

2) образуется малодиссоциированное соединение, напри­мер вода: НСl + NаОН = Н 2 О + NаСl

3) реакция сопровождается большим выделением энергии, например горение магния

Mg + 1 / 2 О 2 = МgО, ∆H = -602,5 кДж / моль

Хи­ми­че­ское рав­но­ве­сие – это со­сто­я­ние ре­ак­ци­он­ной си­сте­мы, в ко­то­ром ско­ро­сти пря­мой и об­рат­ной ре­ак­ции равны.

Рав­но­вес­ная кон­цен­тра­ция ве­ществ – это кон­цен­тра­ции ве­ществ в ре­ак­ци­он­ной смеси, на­хо­дя­щих­ся в со­сто­я­нии хи­ми­че­ско­го рав­но­ве­сия. Рав­но­вес­ная кон­цен­тра­ция обо­зна­ча­ет­ся хи­ми­че­ской фор­му­лой ве­ще­ства, за­клю­чен­ной в квад­рат­ные скоб­ки.

На­при­мер, сле­ду­ю­щая за­пись обо­зна­ча­ет, что рав­но­вес­ная кон­цен­тра­ция во­до­ро­да в рав­но­вес­ной си­сте­ме со­став­ля­ет 1 моль/л.

Хи­ми­че­ское рав­но­ве­сие от­ли­ча­ет­ся от при­выч­но­го для нас по­ня­тия «рав­но­ве­сие». Хи­ми­че­ское рав­но­ве­сие – ди­на­ми­че­ское. В си­сте­ме, на­хо­дя­щей­ся в со­сто­я­нии хи­ми­че­ско­го рав­но­ве­сия, про­ис­хо­дят и пря­мая, и об­рат­ная ре­ак­ции, но их ско­ро­сти равны, и по­это­му кон­цен­тра­ции участ­ву­ю­щих ве­ществ не ме­ня­ют­ся. Хи­ми­че­ское рав­но­ве­сие ха­рак­те­ри­зу­ет­ся кон­стан­той рав­но­ве­сия, рав­ной от­но­ше­нию кон­стант ско­ро­стей пря­мой и об­рат­ной ре­ак­ций.

Кон­стан­ты ско­ро­сти пря­мой и об­рат­ной ре­ак­ции – это ско­ро­сти дан­ной ре­ак­ции при кон­цен­тра­ци­ях ис­ход­ных для каж­дой из них ве­ществ в рав­ных еди­ни­цах. Также кон­стан­та рав­но­ве­сия равна от­но­ше­нию рав­но­вес­ных кон­цен­тра­ций про­дук­тов пря­мой ре­ак­ции в сте­пе­нях сте­хио­мет­ри­че­ских ко­эф­фи­ци­ен­тов к про­из­ве­де­нию рав­но­вес­ных кон­цен­тра­ций ре­а­ген­тов.

Н2+I2 = 2НI

Если , то в си­сте­ме боль­ше ис­ход­ных ве­ществ. Если , то в си­сте­ме боль­ше про­дук­тов ре­ак­ции. Если кон­стан­та рав­но­ве­сия зна­чи­тель­но боль­ше 1, такую ре­ак­цию на­зы­ва­ют необ­ра­ти­мой.

Положение химического равновесия зависит от следующих параметров реакции: температуры, давления и концентрации веществ. Влияние, которое оказывают эти факторы на химическую реакцию, подчиняются закономерности, которая была в общем виде высказана в 1884 г. французским физико-химиком Ле-Шателье, подтверждена в том же году голландским физико-химиком Вант-Гоффом. Современная формулировка принципа Ле-Шателье такова: если система находится в со стоянии равновесия, то любое воздействие, которое выражается в изменении одного из факторов, определяющих равновесие, вызывает в ней изменение, стремящееся ослабить это воздействие.

В принципе Ле-Шателье речь идет о смещении состояния динамического химического равновесия, этот принцип называется также принципом подвижного равновесия, или принципом смещения равновесия.

Рассмотрим использование этого принципа для различных случаев:

Влияние температуры. При изменении темпер сдвиг хим-о равновесия определяется знаком теплового эффекта хим-й реакции. В случае эндотермич реакции, т. е. реакции, идущей с поглощением тепла, повышение температуры способствует ее протеканию, поскольку в ходе реакции температура понижается. В результате равновесие смещается вправо, концентрации продуктов увеличиваются, их выход растет. Если температура понижается, то наблюдается обратная картина: равновесие смещается влево (в сторону обратной реакции, протекающей с выделением тепла), концентрация и выход продуктов уменьшаются.

Для экзотермической реакции, наоборот, повышение температуры приводит к смещению равновесия влево, а понижение температуры - к смещению равновесия вправо.

Изменения концентр продуктов и реагентов связаны с тем, что при изменении темпер изменяется константа равновесия реакции. Увеличение константы равновес приводит к повыш выхода продуктов, уменьшение - к понижению.

Так, например, повышение температуры в случае эндотермического процесса разложения карбоната кальция CaCO 3 (т) Û CaO(т)+ CO 2 (г) − Q вызывает смещение равновесия вправо, а в случае экзотермической реакции распада монооксида азота на простые вещества
2NO Û N 2 + O 2 +Q повышение температуры смещает равновесие влево, т. е. способствует образованию NO.

Влияние давления. Давление оказывает заметное влияние на состояние химического равновесия только в тех случаях, когда хотя бы один из участников хим-й реакции - газ. Повыш давления в таких сис-х сопровождается уменьш объема и увелич концентрации всех газообразных участников реакции.

Если в ходе прямой реакции количество газообразных веществ увеличивается, то повышение давления приводит к смещению равновесия влево (количество газов уменьшается при обратной реакции). Если в ходе реакции количество газообразных веществ уменьшается, при повышении давления равновесие смещается вправо. Если количества газообразных реагентов и продуктов равны между собой, изменение давления не приводит к смещению химического равновесия.

Следует отметить, что изменение давления не оказывает влияния на константу равновесия.

Влияние концентрации. Согласно принципу Ле-Шателье, повышение концентрации одного из участников реакции должно привести к его расходованию. Таким образом, если в систему при V = const добавлять реагент, равновесие сместится вправо, а если продукт реакции - влево. Удаление того или иного вещества из системы (уменьшение его концентрации) дает обратный эффект.

Все сказанное выше относится и к жидким, и к газообразным растворам (смесям газов)

Все химические реакции делятся на два типа: обратимые и необратимые.

Необратимыми называются реакции, которые протекают только в одном направлении, т. е. продукты этих реакций не взаимодействуют друг с другом с образованием исходных веществ.

Необратимая реакция заканчивается тогда, когда полностью расходуется хотя бы одно из исходных веществ. Необратимыми являются реакции горения; многие реакции термического разложения сложных веществ; большинство реакций, в результате которых образуются осадки или выделяются газообразные вещества, и др. Например:

C 2 H 5 OH + 3O 2 → 2CO 2 + 3H 2 O

2KMnO 4 = K 2 MnO 4 + MnO 2 + O 2

BaCl 2 + H 2 SO 4 = BaSO 4 ↓ + 2HCl

Обратимыми называются реакции, которые одновременно протекают в прямом и в обратом направлениях:

В уравнениях обратимых реакций используется знак обратимости .

Примером обратимой реакции является синтез йодоводорода из и :

Через некоторое время после начала химической реакции в газовой смеси можно обнаружить не только конечный продукт реакции НI, но и исходные вещества -H 2 и I 2 . Как бы долго ни продолжалась реакция, в реакционной смеси при 350 o С всегда будет содержаться приблизительно 80% HI,10% Н 2 и 10% I 2 . Если в качестве исходного вещества взять НI и нагреть его до той же температуры, то можно обнаружить, что через некоторое время соотношение между количествами всех трех веществ будет таким же. Таким образом, при образовании йодоводорода из водорода и йода одновременно осуществляются прямая и обратная реакции.

Если в качестве исходных веществ взяты водород и йод в концентрациях и , то скорость прямой реакции в начальный момент времени была равна: v пр = k пр ∙ . Скорость обратной реакции v обр = k обр 2 в начальный момент времени равна нулю, так как йодоводород в реакционной смеси отсутствует ( = 0). Постепенно скорость прямой реакции уменьшается, так как водород и йод вступают в реакцию и их концентрации понижаются. При этом скорость обратной реакции увеличивается, потому что концентрация образующегося йодоводорода постепенно возрастает. Когда скорости прямой и обратной реакций станут одинаковыми, наступает химическое равновесие. В состоянии равновесия за определенный промежуток времени образуется столько же молекул НI, сколько их распадается на Н 2 и I 2 .

Состояние обратимой реакции, при котором скорость прямой реакции равна скорости обратной реакции, называется химическим равновесием .

Химическое равновесие является динамическим равновесием. В равновесном состоянии продолжают протекать и прямая, и обратная реакции, но так как скорости их равны, концентрации всех веществ в реакционной системе не изменяются. Эти концентрации называются равновесными концентрациями.

Смещение химического равновесия

Принцип Ле-Шателье

Химическое равновесие является подвижным. При изменении внешних условий скорости прямой и обратной реакций могут стать неодинаковыми, что обусловливает смещение (сдвиг) равновесия.

Если в результате внешнего воздействия скорость прямой реакции становится больше скорости обратной реакции, то говорят о смещении равновесия вправо (в сторону прямой реакции). Если скорость обратной реакции становится больше скорости прямой реакции, то говорят о смещении равновесия влево (в сторону обратной реакции). Результатом смещения равновесия является переход системы в новое равновесное состояние с другим соотношением концентраций реагирующих веществ.

Направление смещения равновесия определяется принципом, который был сформулирован французским ученым Ле-Шателье (1884 г):

Если на равновесную систему оказывается внешнее воздействие, то равновесие смещается в сторону той реакции (прямой или обратной), которая противодействует этому воздействию.

Важнейшими внешними факторами, которые могут приводить к смещению химического равновесия, являются:

а) концентрации реагирующих веществ;

б) температура;

в) давление.

Влияние концентрации реагирующих веществ

Если в равновесную систему вводится какое-либо из участвующих в реакции веществ, то равновесие смещается в сторону той реакции, при протекании которой данное вещество расходуется. Если из равновесной системы выводится какое-либо вещество, то равновесие смещается в сторону той реакции, при протекании которой данное вещество образуется.

Например, рассмотрим, какие вещества следует вводить и какие вещества выводить из равновесной системы для смещения обратимой реакции синтеза вправо:

Для смещения равновесия вправо (в сторону прямой реакции образования аммиака) необходимо в равновесную смесь вводить и водород (т. е. увеличивать их концентрации) и выводить из равновесной смеси аммиак (т. е. уменьшать его концентрацию).

Влияние температуры

Прямая и обратная реакции имеют противоположные тепловые эффекты: если прямая реакция экзотермическая, то обратная реакция эндотермическая (и наоборот). При нагревании системы (т. е. повышении ее температуры) равновесие смещается в сторону эндотермической реакции; при охлаждении (понижении температуры) равновесие смещается в сторону экзотермической реакции.

Например, реакция синтеза аммиака является экзотермической: N 2 (г) + 3H 2 (г) → 2NH 3 (г) + 92кДж, а реакция разложения аммиака (обратная реакция) является эндотермической: 2NH 3 (г)→ N 2 (г) + 3H 2 (г) — 92кДж. Поэтому повышение температуры смещает равновесие в сторону обратной реакции разложения аммиака.

Влияние давления

Давление влияет на равновесие реакций, в которых принимают участие газообразные вещества. Если внешнее давление повышается, то равновесие смещается в сторону той реакции, при протекании которой число молекул газа уменьшается. И наоборот, равновесие смещается в сторону образования большего числа газообразных молекул при понижении внешнего давления. Если реакция протекает без изменения числа молекул газообразных веществ, то давление не влияет на равновесие в данной системе.

Например, для увеличения выхода аммиака (смещение вправо) необходимо повышать давление в системе обратимой реакции , так как при протекании прямой реакции число газообразных молекул уменьшается (из четырех молекул газов азота и водорода образуются две молекулы газа аммиака).

Химические реакции бывают обратимые и необратимые.

т.е. если некоторая реакция A + B = C + D необратима, это значит, что обратная реакция C + D = A + B не протекает.

т.е., например, если некая реакция A + B = C + D обратима, это значит, что одновременно протекает как реакция A + B → C + D (прямая), так и реакция С + D → A + B (обратная).

По сути, т.к. протекают как прямая, так и обратная реакции, реагентами (исходными веществами) в случае обратимых реакций могут быть названы как вещества левой части уравнения, так и вещества правой части уравнения. То же самое касается и продуктов.

Для любой обратимой реакции возможна ситуация, когда скорость прямой и обратной реакций равны. Такое состояние называют состоянием равновесия .

В состоянии равновесия концентрации как всех реагентов, так и всех продуктов неизменны. Концентрации продуктов и реагентов в состоянии равновесия называют равновесными концентрациями .

Смещение химического равновесия под действием различных факторов

Вследствие таких внешних воздействий на систему, как изменение температуры, давления или концентрации исходных веществ или продуктов, равновесие системы может быть нарушено. Однако после прекращения этого внешнего воздействия система через некоторое время перейдет в новое состояние равновесия. Такой переход системы из одного равновесного состояния в другое равновесное состояние называют смещением (сдвигом) химического равновесия .

Для того чтобы уметь определять, каким образом сдвигается химическое равновесие при том или ином типе воздействия, удобно пользоваться принципом Ле Шателье:

Если на систему в состоянии равновесия оказать какое-либо внешнее воздействие, то направление смещения химического равновесия будет совпадать с направлением той реакции, которая ослабляет эффект от оказанного воздействия.

Влияние температуры на состояние равновесия

При изменении температуры равновесие любой химической реакции смещается. Связано это с тем, что любая реакция имеет тепловой эффект. При этом тепловые эффекты прямой и обратной реакции всегда прямо противоположны. Т.е. если прямая реакция является экзотермической и протекает с тепловым эффектом, равным +Q, то обратная реакция всегда эндотермична и имеет тепловой эффект, равный –Q.

Таким образом, в соответствии с принципом Ле Шателье, если мы повысим температуру некоторой системы, находящейся в состоянии равновесия, то равновесие сместится в сторону той реакции, при протекании которой температура понижается, т.е. в сторону эндотермической реакции. И аналогично, в случае, если мы понизим температуру системы в состоянии равновесия, равновесие сместится в сторону той реакции, в результате протекания которой температура будет повышаться, т.е. в сторону экзотермической реакции.

Например, рассмотрим следующую обратимую реакцию и укажем, куда сместится ее равновесие при понижении температуры:

Как видно из уравнения выше, прямая реакция является экзотермической, т.е. в результате ее протекания выделяется тепло. Следовательно, обратная реакция будет эндотермической, то есть протекает с поглощением тепла. По условию температуру понижают, следовательно, смещение равновесия будет происходить вправо, т.е. в сторону прямой реакции.

Влияние концентрации на химическое равновесие

Повышение концентрации реагентов в соответствии с принципом Ле Шателье должно приводить к смещению равновесия в сторону той реакции, в результате которой реагенты расходуются, т.е. в сторону прямой реакции.

И наоборот, если концентрацию реагентов понижают, то равновесие будет смещаться в сторону той реакции, в результате которой реагенты образуются, т.е. сторону обратной реакции (←).

Аналогичным образом влияет и изменение концентрации продуктов реакции. Если повысить концентрацию продуктов, равновесие будет смещаться в сторону той реакции, в результате которой продукты расходуются, т.е. в сторону обратной реакции (←). Если же концентрацию продуктов, наоборот, понизить, то равновесие сместится в сторону прямой реакции (→), для того чтобы концентрация продуктов возросла.

Влияние давления на химическое равновесие

В отличие от температуры и концентрации, изменение давления оказывает влияние на состояние равновесия не каждой реакции. Для того чтобы изменение давления приводило к смещению химического равновесия, суммы коэффициентов перед газообразными веществами в левой и в правой частях уравнения должны быть разными.

Т.е. из двух реакций:

изменение давления способно повлиять на состояние равновесия только в случае второй реакции. Поскольку сумма коэффициентов перед формулами газообразных веществ в случае первого уравнения слева и справа одинаковая (равна 2), а в случае второго уравнения – различна (4 слева и 2 справа).

Отсюда, в частности, следует, что если среди и реагентов, и продуктов отсутствуют газообразные вещества, то изменение давления никак не повлияет на текущее состояние равновесия. Например, давление никак не повлияет на состояние равновесия реакции:

Если же слева и справа количество газообразных веществ различается, то повышение давления будет приводить к смещению равновесия в сторону той реакции, при протекании которой объем газов уменьшается, а понижение давления – в сторону той реакции, в результате которой объем газов увеличивается.

Влияние катализатора на химическое равновесие

Поскольку катализатор в равной мере ускоряет как прямую, так и обратную реакции, то его наличие или отсутствие никак не влияет на состояние равновесия.

Единственное, на что может повлиять катализатор, — это на скорость перехода системы из неравновесного состояния в равновесное.

Воздействие всех указанных выше факторов на химическое равновесие сведено ниже в таблицу-шпаргалку, в которую поначалу можно подглядывать при выполнении заданий на равновесия . Однако же пользоваться на экзамене ей не будет возможности, поэтому после разбора нескольких примеров с ее помощью, ее следует выучить и тренироваться решать задания на равновесия, уже не подглядывая в нее:

Обозначения: T – температура, p – давление, с – концентрация, — повышение, ↓ — понижение

Катализатор

T

Т — равновесие смещается в сторону эндотермической реакции
↓Т — равновесие смещается в сторону экзотермической реакции

p

p — равновесие смещается в сторону реакции с меньшей суммой коэффициентов перед газообразными веществами
↓p — равновесие смещается в сторону реакции с большей суммой коэффициентов перед газообразными веществами

c

c (реагента) – равновесие смещается в сторону прямой реакции (вправо)
↓c (реагента) – равновесие смещается в сторону обратной реакции (влево)
c (продукта) – равновесие смещается в сторону обратной реакции (влево)
↓c (продукта) – равновесие смещается в сторону прямой реакции (вправо)
На равновесие не влияет!!!

Очень часто химические реакции протекают так, что первичные реагирующие вещества полностью преобразуются в продукты реакции. К примеру, если в соляную кислоту положить гранулу цинка, то при определенном (достаточном) количестве кислоты реакция будет протекать до полного растворения цинка согласно уравнению: 2HCL + ZN = ZnCl 2 + H 2 .

Если провести данную реакцию в обратном направлении, другими словами – пропустить водород через раствор хлорида цинка, то металлический цинкне образуется – данная реакция не может протекать в обратном направлении, поэтому она необратима.

Химическая реакция, в результате которой первичные вещества практически полностью преобразуются в конечные продукты, называется необратимой.

К подобным реакциям имеют отношение как гетерогенные, так и гомогенные реакции. К примеру, реакции горения простых веществ – метана CH4, сероуглерода CS2. Как мы уже знаем, реакции горения относятся к экзотермическим реакциям. В большинстве случаев к экзотермическим реакциям относятся реакции соединения, к примеру, реакция гашения извести: CaO + H 2 O = Ca(OH) 2 + Q (выделяется теплота).

Будет логично предполагать что, к эндотермическим реакциям принадлежат обратные реакции, т.е. реакция разложения. К примеру, реакция обжига известняка: CaCo 3 = CaO + CO 2 – Q (теплота поглощается).

Необходимо помнить, что число необратимых реакций является не таким уж и большим.

Гомогенные реакции (между растворами веществ) являются необратимыми, если проходят с образованием нерастворимого, газообразного продукта или воды. Данное правило получило название " правило Бертолле". Проведем опыт. Возьмем три пробирки и нальем в них по 2мл раствора соляной кислоты. В первый сосуд добавим 1 мл окрашенный фенолфталеином малиновый раствор щелочи, он потеряет цвет в следствие реакции: HCl + NaOH = NaCl + H 2 O.

Во вторую пробирку добавим 1 мл раствора карбоната натрия – мы увидим бурную реакцию кипения, которая обусловлена выделением углекислого газа: Na 2 CO 3 + 2HCl = 2NaCl + H 2 O + CO 2 .

В третью пробирку добавим немного капель нитрата серебра и увидим, как в ней образовался беловатый осадок хлорида серебра: HCl + AgNO 3 = AgCl↓ + HNO 3 .

Большинство реакций являются обратимыми. Необратимых реакций не особенно много.

Химические реакции, которые могут проходить одновременно в двух противоположных направлениях – прямом и обратном, – называются обратимыми.

Нальем в пробирку 3 мл воды и добавим несколько кусочков лакмуса, а потом начнем пропускать через нее с помощью газоотводной трубки выходящий из другого сосуда углекислый газ, который образуется из-за взаимодействия мрамора и соляной кислоты. Спустя некоторое время мы увидим, как фиолетовый лакмус станет красным, это свидетельствует о наличии кислоты. Мы получили непрочную угольную кислоту, которая образовалась путем связи углекислого газа и воды: CO 2 + H 2 O = H 2 CO 3 .

Оставим данный раствор в штативе. Спустя некоторое время мы обратим внимание на то, что раствор опять стал фиолетовым. Кислота разложилась на исходные составляющие: H 2 CO 3 = H 2 O + CO 2 .

Данный процесс будет происходить намного быстрее, если мы подогреем раствор угольной кислоты. Таким образом, мы выяснили, что реакция получения угольной кислоты может протекать как в прямом, так и в обратном направлении, а значит, она является обратимой. Обратимость реакции обозначается на письме двумя противоположно направленными стрелками: CO 2 + H 2 O ↔ H 2 CO 3 .

Среди обратимых реакций, которые лежат в основе получения важныххимических продуктов, приведем в качестве примера реакцию синтеза оксида серы (VI) из оксида серы (IV) и кислорода: 2SO 2 + O 2 ↔ 2SO 3 + Q.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Среди многочисленных классификаций типов реакций, например таких, которые определяются по тепловому эффекту (экзотермические и эндотермические), по изменению степеней окисления веществ (окислительно-восстановительные), по количеству участвующих в них компонентов (разложения, соединения) и так далее, рассматриваются реакции, протекающие в двух взаимных направлениях, иначе, называемых обратимыми . Альтернативой обратимых реакций являются реакции необратимые, в процессе которых образуется конечный продукт (осадок, газообразное вещество, вода). Среди таких реакций можно указать следующие:

Реакции обмена между растворами солей, в процессе которых образуются либо нерастворимый осадок – СаСО 3:

Са(ОН) 2 + К 2 СО 3 → СаСО 3 ↓ + 2КОН (1)

либо газообразное вещество – СО 2:

3 К 2 СО 3 + 2Н 3 РО 4 →2К 3 РО 4 + 3СО 2 + 3Н 2 О (2)

или получается малодиссоциируемое вещество – Н 2 О:

2NaOH + H 2 SO 4 → Na 2 SO 4 + 2H 2 O (3)

Если рассматривать обратимую реакцию, то она протекает не только в прямом (в реакциях 1,2,3 слева направо), но и в обратном направлении. Примером такой реакции является синтез аммиака из газообразных веществ - водорода и азота:

3H 2 + N 2 ↔ 2NH 3 (4)

Таким образом, химическая реакция называется обратимой, если она протекает не только в прямом(→) , но и в обратном направлении (←) и обозначается символом (↔).

Главной особенностью данного типа реакций является то, что из исходных веществ образуются продукты реакции, но и одновременно из этих же продуктов, обратно, образуются исходные реагенты. Если рассматривать реакцию (4), то в относительную единицу времени одновременно с образованием двух молей аммиака будет происходить их распад с образованием трёх молей водорода и одного моля азота. Обозначим скорость прямой реакции (4) символом V 1 тогда выражение этой скорости примет вид:

V 1 = kˑ [Н 2 ] 3 ˑ , (5)

где величина «k» определяется как константа скорости данной реакции, величины [Н 2 ] 3 и соответствуют концентрациям исходных веществ, возведённых в степени, соответствующие коэффициентам в уравнении реакции. В соответствии с принципом обратимости, скорость обратной реакции примет выражение:

V 2 = kˑ 2 (6)

В начальный момент времени скорость прямой реакции принимает наибольшее значение. Но постепенно концентрации исходных реагентов уменьшаются и скорость реакции замедляется. Одновременно скорость обратной реакции начинает возрастать. Когда скорости прямой и обратной реакции становятся одинаковыми (V 1 = V 2) , наступает состояние равновесия , при котором уже не происходит изменения концентраций как исходных, так и образующихся реагентов.

Следует отметить, что некоторые необратимые реакции не следует понимать в буквальном смысле слова. Приведём пример наиболее часто приводимой реакции взаимодействия металла с кислотой, в частности, цинка с соляной кислотой:

Zn + 2HCl = ZnCl 2 + H 2 (7)

В действительности, цинк, растворяясь в кислоте, образует соль: хлорид цинка и газообразный водород, но по истечении некоторого времени скорость прямой реакции замедляется, поскольку увеличивается концентрация соли в растворе. Когда реакция практически прекращается, в растворе наряду с хлоридом цинка будет присутствовать некоторое количество соляной кислоты, поэтому реакцию (7) следует приводить в следующем виде:

2Zn + 2HCl = 2ZnНCl + H 2 (8)

Или в случае образования нерастворимого осадка, получаемого при сливании растворов Na 2 SO 4 и BaCl 2:

Na 2 SO 4 + BaCl 2 = BaSO 4 ↓ + 2NaCl (9)

осажденная соль BaSO 4 пусть и в малой степени, но будет диссоциировать на ионы:

BaSO 4 ↔ Ba 2+ + SO 4 2- (10)

Поэтому понятия необратимой и необратимой реакций является относительным. Но тем не менее, и в природе и в практической деятельности людей данные реакции имеют большое значение. К примеру, процессы горения углеводородов или более сложных органических веществ, например спирта:

СН 4 + О 2 = СО 2 + Н 2 О (11)

2С 2 Н 5 ОН + 5О 2 = 4СО 2 + 6Н 2 О (12)

являются процессами абсолютно необратимыми. Было бы считать счастливой мечтой человечества, если бы реакции (11) и (12) были бы обратимыми! Тогда бы можно было из СО 2 и Н 2 О опять синтезировать и газ и бензин и спирт! С другой стороны, обратимые реакции, такие как (4) или окисление сернистого газа:

SO 2 + O 2 ↔ SO 3 (13)

являются основными в производстве солей аммония, азотной кислоты, серной кислоты и др. как неорганических, так и органических соединений. Но данные реакции являются обратимыми! И чтобы получать конечные продукты: NH 3 или SO 3 необходимо использовать такие технологические приёмы, как: изменение концентраций реагентов, изменение давления, повышение или понижение температуры. Но это уже будет являться предметом следующей темы: «Смещение химического равновесия».

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.