Что относится к неорганической химии. Основные классы неорганических соединений

Лицей ИГУ

ОСНОВНЫЕ КЛАССЫ НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Лекция № 1. Классификация неорганических веществ

В настоящее время известно более 500 тысяч неорганических соединений, знать их формулы, названия, а тем более свойства практически невозможно. Для того чтобы легче ориентироваться в огромном многообразии химических веществ, все вещества разделены на отдельные классы, включающие соединения, сходные по строению и свойствам.

Первоначально все химические вещества делятся на простые и сложные.

Примером самой информативной классификации неорганических веществ является Периодическая система химических элементов, в которой элементы классифицируются по числу валентных электронов, по типу симметрии атомных орбиталей в валентной оболочке атома, по максимально возможным положительным и отрицательным степеням окисления, по количеству энергетических уровней, по размерам атомных радиусов и т. д.

По составу вещества подразделяются на простые и сложные. Прочные вещества – это вещества образованы атомами одного химического элемента. Водород, кислород, аргон, бром, магний, азот , золото, алмаз – все это простые вещества. Наименьшие частицы простого вещества могут проедставлять собой один атом (молекулы инертных газов, например неона Ne, гелия Не, одноатомные), содержать два атома (двухатомные молекулы водорода H2, кислорода О2) и больше двух атомов (озон О3, фосфор Р4).

Названия простых веществ обычно совпадают с названиями химических элементов, атомами которых они образованы. Например, слово «кислород» может означать как химический элемент, так и простое вещество, поэтому необходимо уметь различать эти понятия.

Отличить понятия «химический элемент» и «простое вещество» можно при сравнении свойств простых и сложных веществ. Например, простое вещество – кислород – бесцветный газ, необходимый для дыхания, поддерживающий горение. Мельчайшая частица простого вещества кислорода – молекула, которая состоит из двух атомов. Кислород входит в состав оксида углерода и воды. Однако, в состав воды и оксида углерода входит химически связанный кислород, который не обладает свойствами простого вещества, в частности не может быть использован для дыхания. Например, рыбы дышат не химически связанным кислородом, входящим в состав воды, а свободным, растворенным в ней. Поэтому, когда речь идет о составе химических соединений, необходимо понимать, что в эти соединения входят не простые вещества, а атомы определенного вида, то есть соответствующие элементы.

Простые вещества подразделяются на металлы и неметаллы.

Помимо типичных металлов и неметаллов есть большая группа веществ, обладающая промежуточными свойствами, их называют металлоидами.

Сложными называют такие вещества, которые состоят из атомов разных химических элементов. Например, оксид кальция CaO, хлорид натрия NaCl, серная кислота H2SO4.

Сложные вещества подразделяются на четыре класса химических соединений: оксиды, основания, кислоты и соли. Эта классификация разработана выдающимися химиками XVIII–XIX веков Антуаном Лораном Лавуазье, Михаилом Васильевичем Ломоносовым, Йёнсом Якобом Берцелиусом, Джоном Дальтоном.

javascript:showLayer("kislot")"> (от латинского названия кислорода «оксигениум»), а затем – название элемента в родительном падеже :

MgO - оксид магния, Al2O3 – оксид алюминия .

Если элемент образует несколько оксидов, то после названия элемента в скобках римской цифрой указывается численное значение его степени окисления:

FeO – оксид железа (II) (читается: «оксид железа два»)

Fe2O3 – оксид железа (III) (читается: «оксид железа три»)

СО – оксид углерода (II) (читается: «оксид углерода два»)

СО2 – оксид углерода (IV) (читается: «оксид углерода четыре»)

3. , Аминова –курс неорганической и органической химии. Для поступающих в ВУЗы – Ростов н/Д изд-во «Феникс», 2002 – 336 с.

4. Савинкина. Экспресс- диагностика.- М.: национальное образование, 2012. – 144 с.

5. , Неорганическая химия, М., Высшая Школа, 1978.

Лабораторная работа № 1

Цель работы: ознакомиться со свойствами неорганических соединений и способами их получения.

Общие сведения:

Оксиды –это сложные вещества, в состав которых атомы кислорода какого-либо другого элемента (Э х О у). Степень окисления кислорода в оксидах равна -2. Например, Fe 2 O 3 - оксид железа (III), CuO-оксид меди (II) или оксид меди (+2).

Основные оксиды - это оксиды металлов в степенях окисления.К ним относятся:

· оксиды металлов главной подгруппы первой группы (щелочные металлы) Li - Fr

· оксиды металлов главной подгруппы второй группы (Mg и щелочноземельные металлы) Mg - Ra

· оксиды переходных металлов в низших степенях окисления

Кислотные оксиды – это оксиды всех неметаллов (исключение – F, благородные газы), а также металлов в высокой степени окисления (+5, +6, +7) (Cl 2 O 3 , Mn 2 O 7 , P 2 O 5 и др.).

Амфотерные оксиды - солеобразующие оксиды, проявляющие в зависимости от условий либо основные, либо кислотные свойства (то есть проявляющие амфотерность). Образуются переходными металлами. Металлы в амфотерных оксидах обычно проявляют степень окисления от III до IV, за исключением ZnO, MnO 2 , SnO, PbO.

Кислоты - химические соединения, способные отдавать катион водорода (кислоты Брёнстеда) либо соединения, способные принимать электронную пару с образованием ковалентной связи (кислоты Льюиса).

В быту и технике под кислотами обычно подразумеваются кислоты Брёнстеда, образующие в водных растворах избыток ионов гидроксония H 3 O + . Присутствие этих ионов обуславливает кислый вкус растворов кислот, способность менять окраску индикаторов и, в высоких концентрациях, раздражающее действие кислот. Подвижные атомы водорода кислот способны замещаться на атомы металлов с образованием солей, содержащих катионы металлов и анионы кислотного остатка.

Основания (гидроксиды) - неорганические соединения, содержащие в составе гидроксильную группу -OH. Известны гидроксиды почти всех химических элементов; некоторые из них встречаются в природе в виде минералов. Гидроксиды щелочных и щёлочноземельных металлов, а также аммония являются щелочами. Например, Сu(ОН) 2 -гидроксид меди (II), Fe(ОН) 3 -гидроксид железа (III).

Основные гидроксиды - это сложные вещества, которые состоят из атомов металла или иона аммония и гидроксогруппы (OH) и в водном растворе диссоциируют с образованием анионов ОН − и катионов. Название основания обычно состоит из двух слов: слова «гидроксид» и названия металла в родительном падеже (или слова «аммония»). Хорошо растворимые в воде основания называются щелочами.

Кислотные гидроксиды (кислородсодержащие кислоты) - всегда содержат атомы водорода, способные замещаться на атомы металла. Исключение составляет борная кислота В(ОН) 3 , которая акцептирует ионы ОН - в результате чего в водномрастворе создается избыток гидроксоний-катионов.

Амфотерные гидроксиды - неорганические соединения, гидроксиды амфотерных элементов, в зависимости от условий проявляющие свойства кислотных или основных гидроксидов. Все амфотерные гидроксиды являются твёрдыми веществами. Нерастворимы в воде, в основном являются слабыми электролитами.

Соли - сложные вещества, которые в водных растворах диссоциируют на катионы металлов и анионы кислотных остатков. ИЮПАК определяет соли как химические соединения, состоящие из катионов и анионов. Есть ещё одно определение: солями называют вещества, которые могут быть получены при взаимодействии кислот иоснований с выделением воды.

Средние (нормальные) соли - продукты замещения всех катионов водорода в молекулах кислоты на катионы металла (Na 2 CO 3 , K 3 PO 4 , Ca 3 (PO 4) 2).

Кислые соли - продукты частичного замещения катионов водорода в кислотах на катионы металла (NaHCO 3 , CaHPO 4). Они образуются при нейтрализации основания избытком кислоты (то есть в условиях недостатка основания или избытка кислоты).

Основные соли - продукты неполного замещения гидроксогрупп основания (OH-) кислотными остатками ((CuOH) 2 CO 3). Они образуются в условиях избытка основания или недостатка кислоты.

Двойные соли – атомы водорода двух- или многоосновной кислоты замещены не одним металлом, а двумя различными: NaKCO 3 , KAl(SO 4) 2

Смешанные соли, в составе которых присутствует два различных аниона (Ca(OCl)Cl).

Комплексные – вещества, содержащие сложный комплексный ион, способный к самостоятельному существованию.

Пример: (NH 4) 2 - дигидроксотетрахлороплатинат(IV) аммония

Ход работы:

1. Несколько кристалликов дихромата аммония нагрейте на спиртовке. Напишите уравнение реакции.

2. К 2-3 мл соляной кислоты прибавьте кусочек мела. Обратите внимание на выделение пузырьков газа. Напишите уравнение реакции.

3. В металлической ложечке в пламени спиртовки сожгите немного красного фосфора. Что при этом получится? Напишите уравнение реакции.

4. К 2-3 мл нитрата ртути (II) прибавьте гидроксида натрия. Что выпало в осадок?

Напишите уравнение реакции

5. К 2-3 мл сульфата меди (II) прибавьте щелочи. Обратите внимание на Cu(OH)2. Напишите уравнение реакции. Разделите осадок на 2 части. Одну нагрейте на спиртовке. Что произошло с цветом осадка? Напишите уравнение реакции. Другую часть осадка сохраните для опыта 7.

6. К 2-3 мл сульфата хрома (III) прилейте до осадка гидроксида натрия. Выпавший осадок разделите пополам. К одной части осадка прилейте еще гидроксида натрия, а к другой – раствора соляной кислоты. Что наблюдаете? Напишите уравнения происходящих реакций.

II часть. Получение солей

7. К полученному в опыте 5 осадку гидроксида меди (II) прилейте соляной кислоты. Напишите уравнение реакции. Назовите образующуюся соль.

8. К раствору нитрата свинца (II) прилейте раствор иодида калия. Обратите внимание на осадок выпавшей соли. Напишите уравнение реакции. Назовите соли.

9. В раствор разбавленной азотной кислоты опустите кусочек меди. Нагрейте содержимое. Напишите уравнение реакции, если в результате образуется соль, газ (одноокись азота) и вода.

10. К раствору сульфата меди (II) прилейте раствора гидроксида аммония до появления светло – зеленного осадка основной соли. Напишите уравнение реакции. Назовите соли.

11. Через раствор хлорида кальция пропустите диоксид углерода (из аппарата Киппа). Выпадет осадок карбоната кальция. Продолжайте пропускать диоксид. Осадок исчезнет, т.е. образуется растворимая соль гидрокарбоната кальция.

Получение оксидов и гидроксидов:

(NH 4) 2 CrO 7 t→ N 2 + Cr2O 3 + H 2 O

Оранжевый Зеленый

Cr 2 O 3 – оксид хрома (III), амфотерный оксид.

Структурная формула: O = Cr – O – Cr = O

CaCO 3 + 2HCl → CaCl 2 + CO 2 + H 2 O

CO 2 - оксид углерода(IV), кислотный оксид.

Структурная формула: O = С = O

4P + 5O 2 → 2P 2 O 5

2P 2 O 5 – оксид P(V).

r
O O
P
P

O
O
P O P

CuSO 4 + 2NaOH → Cu(OH) 2 + Na 2 SO 4

Cu(OH) 2 ­ – осадок голубого цвета,

Cu(OH) 2 – гидроксид Сu(II).

Структурная формула: OH – Cu – OH

В ходе реакции наблюдаем появление осадка ярко-голубого цвета.

Разделяем вещество на 2 части. Первую часть нагреваем на спиртовке. Наблюдаем изменение цвета осадка с ярко-голубого на черный.

К полученному осадку добавляем соляную кислоту.

Наблюдаем растворение осадка.

6NaOH + Cr 2 (SO 4) 3 → 3Na 2 SO 4 + 2Cr(OH) 3 ↓

Сr(ОН) 3 + 3NaОН → Na 3 [Сr(ОН) 6 ]

Cr(OH) 3 + 3HCl → CrCl 3 + 3H 2 O

Cu(OH) 2 + 2HCl → CuCl 2 + 2H 2 O

Хлорид меди(II) - средняя соль

Pb(NO 3) 3 + 2KI→ 2 KNO 3 + PbI 2 ↓

Нитрат калия Иодид Ртути (II). – средняя соль.

Cu+4HNO 3 →Cu(NO 3) 2 +2NO 2 +2H 2 O

нитрат меди (II)- средняя соль

Структурная формула:

O= N - O - Cu - O - N =O

Cu 2 SO 4 + 2 NH 4 OH → 2 (CuOH) 2 SO 4 + (NH 4) 2 SO 4

сульфат меди (II) сульфат аммония

CaCl2+H2O+CO2 →CaCO3 + 3HCl

CaCO 3 +H 2 O+CO 2 → Ca(HCO 3) 2

Гидрокарбонат кальция (II) кислая соль

Структурная формула:

Контрольные вопросы:

1. Написать формулы и определить степень окисленности каждого элемента в соединениях: сульфат калия, гидрофосфат железа, нитрат кальция, оксид марганца (VI), сульфат гидроксокобальта.

Cульфат калия: K 2 SO 4 – K +1 S +6 O -2

Гидрофосфат железа: FeHPO 4 – Fe +2 H +1 P +5 O -2

Нитрат кальция: Ca(NO 3) 2 – Ca +2 N +5 O -2

Оксид марганца (VI): MnO 3 - Mn +6 O -2

Cульфат гидроксокобальта: (S +6 ) 2

2. Дать определение понятиям: оксид, гидроксид, соль. Привести примеры.

Оксиды –это сложные вещества, в состав которых атомы кислорода какого-либо другого элемента (Э х О у). Степень окисления кислорода в оксидах равна -2.

Пример: Fe 2 O 3 - оксид железа (III), CuO-оксид меди (II) или оксид меди (+2).

Гидроксидысложные вещества, в состав которых входят атомы металлов (катионов) и одна или несколько гидроксильных групп-Ме(ОН) n .

Пример: Ca(ОН) 2 ,NaOH

Соли это продукты полного или частичного замещения атомов водорода в кислоте на атомы металла или гидроксогрупп в основании на кислотные остатки. В случае полного замещения образуются средние (нормальные соли). В случае частичного замещения получаются кислые и основные соли.

Пример: NaCl, Na 2 SO 4, СаSO 4

3. Дописать уравнения реакций (получить среднюю, кислую, основную соли):

KOH+H 2 CO 3 = H 2 O + K 2 CO 3

Zn(OH) 2 +2HCl= ZnCl 2 + 2H 2 O

Ответ: KOH+H 2 CO 3 = K 2 CO 3 +H 2 O

Zn(OH) 2 +HCl= Zn(OH)Cl + H 2 O

ZnOHCL +HCL= ZnCL 2 +H 2 O

4. Доказать амфотерный характер гидроксида, рассматривая его взаимодействие с кислотой и щелочью.

Sn(OH) 2 +2HCl→SnCl 2 +H 2 O – хлорид олова (II)

Sn(OH) 2 +2NaCl→Na 2 – гексагидрокостаннат (IV) натрия

Так как Sn(OH)2 прореагировал с кислотой и со щёлочью, то сделаю вывод о том, что он амфотерный.

Вывод : На лабораторной работе я ознакомился со свойствами неорганических соединений и способами их получения.

Классификация неорганических веществ с примерами соединений

Теперь проанализируем представленную выше классификационную схему более детально.

Как мы видим, прежде всего все неорганические вещества делятся на простые и сложные :

Простыми веществами называют такие вещества, которые образованы атомами только одного химического элемента. Например, простыми веществами являются водород H 2 , кислород O 2 , железо Fe, углерод С и т.д.

Среди простых веществ различают металлы , неметаллы и благородные газы:

Металлы образованы химическими элементами, расположенными ниже диагонали бор-астат, а также всеми элементами, находящимися в побочных группах.

Благородные газы образованы химическими элементами VIIIA группы.

Неметаллы образованы соответственно химическими элементами, расположенными выше диагонали бор-астат, за исключением всех элементов побочных подгрупп и благородных газов, расположенных в VIIIA группе:

Названия простых веществ чаще всего совпадают с названиями химических элементов, атомами которых они образованы. Однако для многих химических элементов широко распространено такое явление, как аллотропия. Аллотропией называют явление, когда один химический элемент способен образовывать несколько простых веществ. Например, в случае химического элемента кислорода возможно существование молекулярных соединений с формулами O 2 и O 3 . Первое вещество принято называть кислородом так же, как и химический элемент, атомами которого оно образовано, а второе вещество (O 3) принято называть озоном. Под простым веществом углеродом может подразумеваться любая из его аллотропных модификаций, например, алмаз, графит или фуллерены. Под простым веществом фосфором могут пониматься такие его аллотропные модификации, как белый фосфор, красный фосфор, черный фосфор.

Сложные вещества

Сложными веществами называют вещества, образованные атомами двух или более химических элементов.

Так, например, сложными веществами являются аммиак NH 3 , серная кислота H 2 SO 4 , гашеная известь Ca(OH) 2 и бесчисленное множество других.

Среди сложных неорганических веществ выделяют 5 основных классов, а именно оксиды, основания, амфотерные гидроксиды, кислоты и соли:

Оксиды — сложные вещества, образованные двумя химическими элементами, один из которых кислород в степени окисления -2.

Общая формула оксидов может быть записана как Э x O y , где Э — символ какого-либо химического элемента.

Номенклатура оксидов

Название оксида химического элемента строится по принципу:

Например:

Fe 2 O 3 — оксид железа (III); CuO — оксид меди (II); N 2 O 5 — оксид азота (V)

Нередко можно встретить информацию о том, что в скобках указывается валентность элемента, однако же это не так. Так, например, степень окисления азота N 2 O 5 равна +5, а валентность, как это ни странно, равна четырем.

В случае, если химический элемент имеет единственную положительную степень окисления в соединениях, в таком случае степень окисления не указывается. Например:

Na 2 O — оксид натрия; H 2 O — оксид водорода; ZnO — оксид цинка.

Классификация оксидов

Оксиды по их способности образовывать соли при взаимодействии с кислотами или основаниями подразделяют соответственно на солеобразующие и несолеобразующие .

Несолеобразующих оксидов немного, все они образованы неметаллами в степени окисления +1 и +2. Список несолеобразующих оксидов следует запомнить: CO, SiO, N 2 O, NO.

Солеобразующие оксиды в свою очередь подразделяются на основные , кислотные и амфотерные .

Основными оксидами называют такие оксиды, которые при взаимодействии с кислотами (или кислотными оксидами) образуют соли. К основным оксидам относят оксиды металлов в степени окисления +1 и +2, за исключением оксидов BeO, ZnO, SnO, PbO.

Кислотными оксидами называют такие оксиды, которые при взаимодействии с основаниями (или основными оксидами) образуют соли. Кислотными оксидами являются практически все оксиды неметаллов за исключением несолеобразующих CO, NO, N 2 O, SiO, а также все оксиды металлов в высоких степенях окисления (+5, +6 и +7).

Амфотерными оксидами называют оксиды, которые могут реагировать как с кислотами, так и основаниями, и в результате этих реакций образуют соли. Такие оксиды проявляют двойственную кислотно-основную природу, то есть могут проявлять свойства как кислотных, так и основных оксидов. К амфотерным оксидам относятся оксиды металлов в степенях окисления +3, +4, а также в качестве исключений оксиды BeO, ZnO, SnO, PbO.

Некоторые металлы могут образовывать все три вида солеобразующих оксидов. Например, хром образует основный оксид CrO, амфотерный оксид Cr 2 O 3 и кислотный оксид CrO 3 .

Как можно видеть, кислотно-основные свойства оксидов металлов напрямую зависят от степени окисления металла в оксиде: чем больше степень окисления, тем сильнее выражены кислотные свойства.

Основания

Основания — соединения с формулой вида Me(OH) x , где x чаще всего равен 1 или 2.

Классификация оснований

Основания классифицируют по количеству гидроксогрупп в одной структурной единице.

Основания с одной гидроксогруппой, т.е. вида MeOH, называют однокислотными основаниями, с двумя гидроксогруппами, т.е. вида Me(OH) 2 , соответственно, двухкислотными и т.д.

Также основания подразделяют на растворимые (щелочи) и нерастворимые.

К щелочам относятся исключительно гидроксиды щелочных и щелочно-земельных металлов, а также гидроксид таллия TlOH.

Номенклатура оснований

Название основания строится по нижеследующему принципу:

Например:

Fe(OH) 2 — гидроксид железа (II),

Cu(OH) 2 — гидроксид меди (II).

В тех случаях, когда металл в сложных веществах имеет постоянную степень окисления, указывать её не требуется. Например:

NaOH — гидроксид натрия,

Ca(OH) 2 — гидроксид кальция и т.д.

Кислоты

Кислоты — сложные вещества, молекулы которых содержат атомы водорода, способные замещаться на металл.

Общая формула кислот может быть записана как H x A, где H — атомы водорода, способные замещаться на металл, а A — кислотный остаток.

Например, к кислотам относятся такие соединения, как H 2 SO 4 , HCl, HNO 3 , HNO 2 и т.д.

Классификация кислот

По количеству атомов водорода, способных замещаться на металл, кислоты делятся на:

— одноосновные кислоты : HF, HCl, HBr, HI, HNO 3 ;

— двухосновные кислоты : H 2 SO 4 , H 2 SO 3 , H 2 CO 3 ;

— трехосновные кислоты : H 3 PO 4 , H 3 BO 3 .

Следует отметить, что количество атомов водорода в случае органических кислот чаще всего не отражает их основность. Например, уксусная кислота с формулой CH 3 COOH, несмотря на наличие 4-х атомов водорода в молекуле, является не четырех-, а одноосновной. Основность органических кислот определяется количеством карбоксильных групп (-COOH) в молекуле.

Также по наличию кислорода в молекулах кислоты подразделяют на бескислородные (HF, HCl, HBr и т.д.) и кислородсодержащие (H 2 SO 4 , HNO 3 , H 3 PO 4 и т.д.). Кислородсодержащие кислоты называют также оксокислотами .

Более детально про классификацию кислот можно почитать .

Номенклатура кислот и кислотных остатков

Нижеследующий список названий и формул кислот и кислотных остатков обязательно следует выучить.

В некоторых случаях облегчить запоминание может ряд следующих правил.

Как можно видеть из таблицы выше, построение систематических названий бескислородных кислот выглядит следующим образом:

Например:

HF — фтороводородная кислота;

HCl — хлороводородная кислота;

H 2 S — сероводородная кислота.

Названия кислотных остатков бескислородных кислот строятся по принципу:

Например, Cl — — хлорид, Br — — бромид.

Названия кислородсодержащих кислот получают добавлением к названию кислотообразующего элемента различных суффиксов и окончаний. Например, если кислотообразующий элемент в кислородсодержащей кислоте имеет высшую степень окисления, то название такой кислоты строится следующим образом:

Например, серная кислота H 2 S +6 O 4 , хромовая кислота H 2 Cr +6 O 4 .

Все кислородсодержащие кислоты могут быть также классифицированы как кислотные гидроксиды, поскольку в их молекулах обнаруживаются гидроксогруппы (OH). Например, это видно из нижеследующих графических формул некоторых кислородсодержащих кислот:

Таким образом, серная кислота иначе может быть названа как гидроксид серы (VI), азотная кислота — гидроксид азота (V), фосфорная кислота — гидроксид фосфора (V) и т.д. При этом число в скобках характеризует степень окисления кислотообразующего элемента. Такой вариант названий кислородсодержащих кислот многим может показаться крайне непривычным, однако же изредка такие названия можно встретить в реальных КИМах ЕГЭ по химии в заданиях на классификацию неорганических веществ.

Амфотерные гидроксиды

Амфотерные гидроксиды — гидроксиды металлов, проявляющие двойственную природу, т.е. способные проявлять как свойства кислот, так и свойства оснований.

Амфотерными являются гидроксиды металлов в степенях окисления +3 и +4 (как и оксиды).

Также в качестве исключений к амфотерным гидроксидам относят соединения Be(OH) 2 , Zn(OH) 2 , Sn(OH) 2 и Pb(OH) 2 , несмотря на степень окисления металла в них +2.

Для амфотерных гидроксидов трех- и четырехвалентных металлов возможно существование орто- и мета-форм, отличающихся друг от друга на одну молекулу воды. Например, гидроксид алюминия (III) может существовать в орто-форме Al(OH) 3 или мета-форме AlO(OH) (метагидроксид).

Поскольку, как уже было сказано, амфотерные гидроксиды проявляют как свойства кислот, так и свойства оснований, их формула и название также могут быть записаны по-разному: либо как у основания, либо как у кислоты. Например:

Соли

Так, например, к солям относятся такие соединения как KCl, Ca(NO 3) 2 , NaHCO 3 и т.д.

Представленное выше определение описывает состав большинства солей, однако же существуют соли, не попадающие под него. Например, вместо катионов металлов в состав соли могут входить катионы аммония или его органические производные. Т.е. к солям относятся такие соединения, как, например, (NH 4) 2 SO 4 (сульфат аммония), + Cl — (хлорид метиламмония) и т.д.

Классификация солей

С другой стороны, соли можно рассматривать как продукты замещения катионов водорода H + в кислоте на другие катионы или же как продукты замещения гидроксид-ионов в основаниях (или амфотерных гидроксидах) на другие анионы.

При полном замещении образуются так называемые средние или нормальные соли. Например, при полном замещении катионов водорода в серной кислоте на катионы натрия образуется средняя (нормальная) соль Na 2 SO 4 , а при полном замещении гидроксид-ионов в основании Ca(OH) 2 на кислотные остатки нитрат-ионы образуется средняя (нормальная) соль Ca(NO 3) 2 .

Соли, получаемые неполным замещением катионов водорода в двухосновной (или более) кислоте на катионы металла, называют кислыми. Так, при неполном замещении катионов водорода в серной кислоте на катионы натрия образуется кислая соль NaHSO 4 .

Соли, которые образуются при неполном замещении гидроксид-ионов в двухкислотных (или более) основаниях, называют осно вными солями. Например, при неполном замещении гидроксид-ионов в основании Ca(OH) 2 на нитрат-ионы образуется осно вная соль Ca(OH)NO 3 .

Соли, состоящие из катионов двух разных металлов и анионов кислотных остатков только одной кислоты, называют двойными солями . Так, например, двойными солями являются KNaCO 3 , KMgCl 3 и т.д.

Если соль образована одним типом катионов и двумя типами кислотных остатков, такие соли называют смешанными. Например, смешанными солями являются соединения Ca(OCl)Cl, CuBrCl и т.д.

Существуют соли, которые не попадают под определение солей как продуктов замещения катионов водорода в кислотах на катионы металлов или продуктов замещения гидроксид-ионов в основаниях на анионы кислотных остатков. Это — комплексные соли. Так, например, комплексными солями являются тетрагидроксоцинкат- и тетрагидроксоалюминат натрия с формулами Na 2 и Na соответственно. Распознать комплексные соли среди прочих чаще всего можно по наличию квадратных скобок в формуле. Однако нужно понимать, что, чтобы вещество можно было отнести к классу солей, в его состав должны входить какие-либо катионы, кроме (или вместо) H + , а из анионов должны быть какие-либо анионы помимо (или вместо) OH — . Так, например, соединение H 2 не относится к классу комплексных солей, поскольку при его диссоциации из катионов в растворе присутствуют только катионы водорода H + . По типу диссоциации данное вещество следует скорее классифицировать как бескислородную комплексную кислоту. Аналогично, к солям не относится соединение OH, т.к. данное соединение состоит из катионов + и гидроксид-ионов OH — , т.е. его следует считать комплексным основанием.

Номенклатура солей

Номенклатура средних и кислых солей

Название средних и кислых солей строится по принципу:

Если степень окисления металла в сложных веществах постоянная, то ее не указывают.

Названия кислотных остатков были даны выше при рассмотрении номенклатуры кислот.

Например,

Na 2 SO 4 — сульфат натрия;

NaHSO 4 — гидросульфат натрия;

CaCO 3 — карбонат кальция;

Ca(HCO 3) 2 — гидрокарбонат кальция и т.д.

Номенклатура основных солей

Названия основных солей строятся по принципу:

Например:

(CuOH) 2 CO 3 — гидроксокарбонат меди (II);

Fe(OH) 2 NO 3 — дигидроксонитрат железа (III).

Номенклатура комплексных солей

Номенклатура комплексных соединений значительно сложнее, и для сдачи ЕГЭ многого знать из номенклатуры комплексных солей не нужно.

Следует уметь называть комплексные соли, получаемые взаимодействием растворов щелочей с амфотерными гидроксидами. Например:

*Одинаковыми цветами в формуле и названии обозначены соответствующие друг другу элементы формулы и названия.

Тривиальные названия неорганических веществ

Под тривиальными названиями понимают названия веществ не связанные, либо слабо связанные с их составом и строением. Тривиальные названия обусловлены, как правило, либо историческими причинами либо физическими или химическими свойствами данных соединений.

Список тривиальных названий неорганических веществ, которые необходимо знать:

Na 3 криолит
SiO 2 кварц, кремнезем
FeS 2 пирит, железный колчедан
CaSO 4 ∙2H 2 O гипс
CaC2 карбид кальция
Al 4 C 3 карбид алюминия
KOH едкое кали
NaOH едкий натр, каустическая сода
H 2 O 2 перекись водорода
CuSO 4 ∙5H 2 O медный купорос
NH 4 Cl нашатырь
CaCO 3 мел, мрамор, известняк
N 2 O веселящий газ
NO 2 бурый газ
NaHCO 3 пищевая (питьевая) сода
Fe 3 O 4 железная окалина
NH 3 ∙H 2 O (NH 4 OH) нашатырный спирт
CO угарный газ
CO 2 углекислый газ
SiC карборунд (карбид кремния)
PH 3 фосфин
NH 3 аммиак
KClO 3 бертолетова соль (хлорат калия)
(CuOH) 2 CO 3 малахит
CaO негашеная известь
Ca(OH) 2 гашеная известь
прозрачный водный раствор Ca(OH) 2 известковая вода
взвесь твердого Ca(OH) 2 в его водном растворе известковое молоко
K 2 CO 3 поташ
Na 2 CO 3 кальцинированная сода
Na 2 CO 3 ∙10H 2 O кристаллическая сода
MgO жженая магнезия