Сценарий эволюции звезды. Цикл жизни звезды

Эволюция Звёзд Разной Массы

Астрономы не могут наблюдать жизнь одной звезды от начала до конца, потому что даже самые короткоживущие звезды существуют миллионы лет - дольше жизни всего человечества. Изменение со временем физических характеристик и химического состава звезд, т.е. звездную эволюцию, астрономы изучают на основе сопоставления характеристик множества звезд, находящихся на разных стадиях эволюции.

Физические закономерности, связывающие наблюдаемые характеристики звезд, отражаются на диаграмме цвет-светимость - диаграмме Герцшпрунга - Ресселла, на которой звезды образуют отдельные группировки - последовательности: главную последовательность звезд, последовательности сверхгигантов, ярких и слабых гигантов, субгигантов, субкарликов и белых карликов.

Большую часть своей жизни любая звезда находится на так называемой главной последовательности диаграммы цвет-светимость. Все остальные стадии эволюции звезды до образования компактного остатка занимают не более 10% от этого времени. Именно поэтому большинство звезд, наблюдаемых в нашей Галактике, - скромные красные карлики с массой Солнца или меньше. Главная последовательность включает в себя около 90% всех наблюдаемых звезд.

Срок жизни звезды и то, во что она превращается в конце жизненного пути, полностью определяется ее массой. Звезды с массой больше солнечной живут гораздо меньше Солнца, а время жизни самых массивных звезд - всего миллионы лет. Для подавляющего большинства звезд время жизни - около 15 млрд. лет. После того как звезда исчерпает свои источники энергии она начинает остывать и сжиматься. Конечным продуктом эволюции звезд являются компактные массивные объекты, плотность которых во много раз больше, чем у обычных звезд.

Звезды разной массы приходят в итоге к одному из трех состояний: белые карлики, нейтронные звезды или черные дыры. Если масса звезды невелика, то силы гравитации сравнительно слабы и сжатие звезды (гравитационный коллапс) прекращается. Она переходит в устойчивое состояние белого карлика. Если масса превышает критическое значение, сжатие продолжается. При очень высокой плотности электроны, соединяясь с протонами, образуют нейтроны. Вскоре уже почти вся звезда состоит из одних нейтронов и имеет такую громадную плотность, что огромная звездная масса сосредоточивается в очень небольшом шаре радиусом несколько километров и сжатие останавливается - образуется нейтронная звезда. Если же масса звезды будет настолько велика, что даже образование нейтронной звезды не остановит гравитационного коллапса, то конечным этапом эволюции звезды будет черная дыра.

Как и любые тела в природе, звезды тоже не могут оставаться неизменными. Они рождаются, развиваются и, наконец, «умирают». Эволюция звезд занимает миллиарды лет, а вот по поводу времени их образования ведутся споры. Раньше астрономы считали, что процесс их «рождения» из звездной пыли требует миллионы лет, но не так давно были получены фотографии области неба из состава Большой Туманности Ориона. За несколько лет там возникло небольшое

На снимках 1947 года в этом месте была зафиксирована небольшая группа звездоподобных объектов. К 1954 году некоторые из них уже стали продолговатыми, а еще через пять лет эти объекты распались на отдельные. Так впервые процесс рождения звезд проходил буквально на глазах у астрономов.

Давайте подробно разберем, как проходит строение и эволюция звезд, с чего начинается и чем заканчивается их бесконечная, по людским меркам, жизнь.

Традиционно ученые предполагают, что звезды образуются в результате конденсации облаков газо-пылевой среды. Под действием гравитационных сил из образовавшихся облаков формируется непрозрачный газовый шар, плотный по своей структуре. Его внутреннее давление не может уравновесить сжимающие его гравитационные силы. Постепенно шар сжимается настолько, что температура звездных недр повышается, и давление горячего газа внутри шара уравновешивает внешние силы. После этого сжатие прекращается. Длительность этого процесса зависит от массы звезды и обычно составляет от двух до нескольких сотен миллионов лет.

Строение звезд предполагает очень высокую температуру в их недрах, что способствует беспрерывным термоядерным процессам (водород, который их образует, превращается в гелий). Именно эти процессы являются причиной интенсивного излучения звезд. Время, за которое они расходуют имеющийся запас водорода, определяется их массой. От этого же зависит и длительность излучения.

Когда запасы водорода истощаются, эволюция звезд подходит к этапу образования Это происходит следующим образом. После прекращения выделения энергии гравитационные силы начинают сжимать ядро. При этом звезда значительно увеличивается в размерах. Светимость также возрастает, поскольку процесс продолжается, но только в тонком слое на границе ядра.

Этот процесс сопровождается повышением температуры сжимающегося гелиевого ядра и превращением ядер гелия в ядра углерода.

По прогнозам, наше Солнце может превратиться в красного гиганта через восемь миллиардов лет. Радиус его при этом увеличится в несколько десятков раз, а светимость вырастет в сотни раз по сравнению с нынешними показателями.

Продолжительность жизни звезды, как уже отмечалось, зависит от ее массы. Объекты с массой, которая меньше солнечной, очень экономно «расходуют» запасы своего поэтому могут светить десятки миллиардов лет.

Эволюция звезд заканчивается образованием Это происходит с теми из них, чья масса близка к массе Солнца, т.е. не превышает 1,2 от нее.

Гигантские звезды, как правило, быстро истощают свой запас ядерного горючего. Это сопровождается значительной потерей массы, в частности, за счет сброса внешних оболочек. В результате остается только постепенно остывающая центральная часть, в которой ядерные реакции полностью прекратились. Со временем такие звезды прекращают свое излучение и становятся невидимыми.

Но иногда нормальная эволюция и строение звезд нарушается. Чаще всего это касается массивных объектов, исчерпавших все виды термоядерного горючего. Тогда они могут преобразовываться в нейтронные, или И чем больше ученые узнают об этих объектах, тем больше возникает новых вопросов.

Если где-то во Вселенной накапливается достаточно вещества, оно сжимается в плотный комок, в котором начинается термоядерная реакция. Так зажигаются звёзды. Первые вспыхнули во тьме юной Вселенной 13,7 миллиардов (13,7*10 9) лет назад, а наше Солнце — всего каких-то 4,5 миллиарда лет назад. Срок жизни звезды и процессы, происходящие в конце этого срока, зависят от массы звезды.

Пока в звезде продолжается термоядерная реакция превращения водорода в гелий, она находится на главной последовательности . Время нахождения звезды на главной последовательности зависит от массы: самые большие и тяжёлые быстро доходят до стадии красного гиганта, а затем сходят с главной последовательности в результате взрыва сверхновой или образования белого карлика.

Судьба гигантов

Самые большие и массивные звёзды сгорают быстро и взрываются сверхновыми. После взрыва сверхновой остаётся нейтронная звезда или чёрная дыра, а вокруг них — материя, выброшенная колоссальной энергией взрыва, которая после становится материалом для новых звёзд. Из наших ближайших звёздных соседей такая судьба ждёт, например, Бетельгейзе , однако когда она взорвётся, подсчитать невозможно.

Туманность, образовавшаяся в результате выброса материи при взрыве сверхновой. В центре туманности — нейтронная звезда.

Нейтронная звезда — это страшный физический феномен. Ядро взорвавшейся звезды сжимается — примерно так же, как газ в двигателе внутреннего сгорания, только в очень большом и эффективном: шар диаметром в сотни тысяч километров превращается в шарик от 10 до 20 километров в поперечнике. Сила сжатия так велика, что электроны падают на атомные ядра, образуя нейтроны — отсюда название.


NASA Нейтронная звезда (видение художника)

Плотность материи при таком сжатии вырастает примерно на 15 порядков, а температура поднимается до непредставимых 10 12 К в центре нейтронной звезды и 1 000 000 К на периферии. Часть этой энергии излучается в форме фотонного излучения, часть уносят с собой нейтрино, образующииеся в ядре нейтронной звезды. Но даже за счёт очень эффективного нейтринного охлаждения нейтронная звезда остывает очень медленно: для полного исчерпания энергии требуется 10 16 или даже 10 22 лет. Что останется на месте остывшей нейтронной звезды, сказать сложно, а пронаблюдать — невозможно: мир слишком для этого слишком молод. Существует предположение о том, что на месте остывшей звезды опять-таки образуется чёрная дыра.


Черные дыры возникают в результате гравитационного коллапса очень массивных объектов — например, при взрывах сверхновых. Возможно, через триллионы лет в чёрные дыры превратятся остывшие нейтронные звёзды.

Участь звёзд средних масштабов

Другие, менее массивные звёзды дольше, чем самые большие, остаются на главной последовательности, зато, сойдя с неё, умирают гораздо быстрее, чем их нейтронные родственники. Больше 99% звёзд во Вселенной никогда взорвутся и не превратятся ни в черные дыры, ни в нейтронные звёзды — их ядра слишком малы для таких космических драм. Вместо этого звёзды средней массы в конце жизни превращаются в красные гиганты, которые, в зависимости от массы, превращаются в белые карлики, взрываются, полностью рассеиваясь, или становятся нейтронными звёздами.

Белые карлики составляют сейчас от 3 до 10% звёздного населения Вселенной. Их температура очень велика — более 20 000 К, более чем втрое больше, чем температура поверхности Солнца — но всё-таки меньше, чем у нейтронных звёзд, и благодаря более низкой температуре и большей площади белые карлики остывают быстрее — за 10 14 — 10 15 лет. Это означает, что в ближайшие 10 триллионов лет — когда Вселенная станет в тысячу раз старше, чем сейчас, — во вселенной появится новый тип объекта: чёрный карлик, продукт остывания белого карлика.

Пока черных карликов в космосе нет. Даже самые старые остывающие звёзды на сегодняшний день потеряли максимум 0,2% своей энергии; для белого карлика с температурой в 20 000 К это означает остывание до 19 960 K.

Для самых маленьких

О том, что происходит, когда остывают самые маленькие звёзды — такие, как наш ближайший сосед, красный карлик Проксима Центавра, науке известно ещё меньше, чем о сверхновых и чёрных карликах. Термоядерный синтез в их ядрах идёт медленно, и на главной последовательности они остаются дольше остальных — по некоторым расчётам, до 10 12 лет, а после, предположительно, продолжат жизнь как белые карлики, то есть будут сиять еще 10 14 — 10 15 лет до превращения в чёрный карлик.

Астрофизика уже достаточно продвинулась в изучении эволюции звезд. Теоретические модели подкреплены надежными наблюдениями, и несмотря на наличие некоторых пробелов, общая картина жизненного цикла звезды давно известна.

Рождение

Все начинается с молекулярного облака. Это огромные области межзвездного газа, достаточно плотные для того, чтобы в них сформировались молекулы водорода.

Затем происходит событие. Возможно, оно будет вызвано ударной волной от взорвавшейся рядом сверхновой, а может и естественной динамикой внутри молекулярного облака. Однако исход один – гравитационная неустойчивость приводит к формированию центра тяжести где-то внутри облака.

Поддаваясь соблазну гравитации, окружающее вещество начинает вращаться вокруг этого центра и наслаивается на его поверхность. Постепенно образуется уравновешенное сферическое ядро с растущей температурой и светимостью – протозвезда.

Газопылевой диск вокруг протозвезды вращается все быстрее, из-за ее растущей плотности и массы все больше частиц сталкиваются в ее недрах, температура продолжает расти.

Как только она достигает миллионов градусов, в центре протозвезды происходит первая термоядерная реакция. Два ядра водорода преодолевают кулоновский барьер и соединяются, образуя ядро гелия. Затем – другие два ядра, потом – другие… пока цепная реакция не охватит всю область, в которой температура позволяет водороду синтезировать гелий.

Энергия термоядерных реакций затем стремительно достигает поверхности светила, резко увеличивая его яркость. Так протозвезда, если обладает достаточной массой, превращается в полноценную молодую звезду.

Область активного звездообразования N44 / ©ESO, NASA

Ни детства, ни отрочества, ни юности

Все протозвезды, которые разогреваются достаточно для запуска термоядерной реакции в своих недрах, затем вступают в самый продолжительный и стабильный период, занимающий 90% всего времени их существования.

Все, что с ними происходит на данном этапе, это постепенное выгорание водорода в зоне термоядерных реакций. Буквальное «прожигание жизни». Звезда очень медленно – в течение миллиардов лет – будет становиться горячее, станет расти интенсивность термоядерных реакций, как и светимость, но не более того.

Конечно, возможны события, которые ускоряют звездную эволюцию – например, близкое соседство или даже столкновение с другой звездой, однако от жизненного цикла отдельного светила это никак не зависит.

Есть и своеобразные «мертворожденные» звезды, которые не могут выйти на главную последовательность – то есть не способны справляться с внутренним давлением термоядерных реакций.

Это маломассивные (менее 0,0767 от массы Солнца) протозвезды – те самые, которые называют коричневыми карликами. Из-за недостаточного гравитационного сжатия они теряют энергии больше, чем образуется в результате синтеза водорода. Со временем термоядерные реакции в недрах этих звезд прекращаются, и все, что им остается, это продолжительное, но неизбежное остывание.

Коричневый карлик в представлении художника / ©ESO/I. Crossfield/N. Risinger

Неспокойная старость

В отличие от людей, самая активная и интересная фаза в «жизни» массивных звезд начинается к концу их существования.

Дальнейшая эволюция каждого отдельного светила, достигшего конца главной последовательности – то есть точки, когда водорода для термоядерного синтеза в центре звезды уже не осталось – напрямую зависит от массы светила и его химического состава.

Чем меньшей массой обладает звезда на главной последовательности, тем более продолжительной будет ее «жизнь», и менее грандиозным будет ее финал. Например, звезды с массой менее половины от массы Солнца – такие, которые называются красными карликами – вообще еще ни разу не «умирали» с момента Большого взрыва. Согласно вычислениям и компьютерному моделированию, такие звезды из-за слабой интенсивности термоядерных реакций могут спокойно сжигать водород от десятков миллиардов до десятков триллионов лет, а в конце своего пути, вероятно, потухнут так же, как коричневые карлики.

Звезды со средней массой от половины до десяти масс Солнца после выгорания водорода в центре оказываются способны сжигать более тяжелые химические элементы в своем составе – сначала гелий, затем углерод, кислород и далее, насколько повезло с массой, вплоть до железа-56 (изотоп железа, который иногда называют «пеплом термоядерного горения»).

Для таких звезд фаза, следующая за главной последовательностью, называется стадией красного гиганта. Запуск гелиевых термоядерных реакций, затем углеродных и т.д. каждый раз приводит к значительным трансформациям звезды.

В каком-то смысле это предсмертная агония. Звезда то расширяется в сотни раз и краснеет, то снова сжимается. Светимость тоже меняется – то в тысячи раз увеличивается, то снова уменьшается.

В конце этого процесса внешняя оболочка красного гиганта сбрасывается, образуя зрелищную планетарную туманность. В центре остается обнаженное ядро - белый гелиевый карлик с массой приблизительно в половину солнечной и радиусом, примерно равным радиусу Земли.

Белые карлики обладают судьбой, схожей с красными карликами – спокойное выгорание в течение миллиардов-триллионов лет, если, конечно, рядом нет звезды-компаньона, за счет которой белый карлик может увеличить свою массу.

Система KOI-256, состоящая из красного и белого карликов / ©NASA/JPL-Caltech

Экстремальная старость

Если звезде особенно повезло с массой, и она равна примерно 12 солнечным и более, то финальные стадии ее эволюции характеризуются значительно более экстремальными событиями.

Если масса ядра красного гиганта превышает предел Чандрасекара, равный 1,44 солнечной массы, то звезда не просто сбрасывают свою оболочку в финале, но высвобождает скопившуюся энергию в мощнейшем термоядерном взрыве – сверхновой.

В сердце остатков сверхновой, разбрасывающей звездное вещество с огромной силой на многие световые годы вокруг, остается в этом случае уже не белый карлик, а сверхплотная нейтронная звезда, радиусом всего в 10-20 километров.

Однако если масса красного гиганта больше 30 солнечных масс (вернее, уже сверхгиганта), а масса его ядра превышает предел Оппенгеймера-Волкова, равный примерно 2,5-3 массам Солнца, то не образуется уже ни белый карлик, ни нейтронная звезда.

В центре останков сверхновой появляется нечто куда более впечатляющее – черная дыра, так как ядро взорвавшейся звезды сжимается настолько сильно, что коллапсировать начинают даже нейтроны, и больше уже ничто, включая свет, не может покинуть пределов новорожденной черной дыры – вернее, ее горизонта событий.

Особо массивные звезды – голубые сверхгиганты – могут миновать стадию красного сверхгиганта и также взорваться в сверхновой.

Сверхновая SN 1994D в галактике NGC 4526 (яркая точка в нижнем левом углу) / ©NASA

А что ждет наше Солнце?

Солнце относится к звездам средней массы, так что если вы внимательно читали предыдущую часть статьи, то уже сами можете предсказать, на каком именно пути находится наша звезда.

Однако человечество еще до превращения Солнца в красного гиганта ждет ряд астрономических потрясений. Жизнь на Земле станет невозможна уже через миллиард лет, когда интенсивность термоядерных реакций в центре Солнца станет достаточной, чтобы испарить земные океаны. Параллельно с этим условия для жизни на Марсе будут улучшаться, что в определенный момент может сделать его пригодным для обитания.

Примерно через 7 миллиардов лет Солнце разогреется достаточно, чтобы термоядерная реакция была запущена в его внешних областях. Радиус Солнца увеличится примерно в 250 раз, а светимость в 2700 раз – произойдет превращение в красного гиганта.

Из-за усилившегося солнечного ветра звезда на этом этапе потеряет до трети своей массы, однако успеет поглотить Меркурий.

Масса солнечного ядра за счет выгорания водорода вокруг него увеличится затем настолько, что произойдет так называемая гелиевая вспышка, и начнется термоядерный синтез ядер гелия в углерод и кислород. Радиус звезды значительно уменьшится, до 11 стандартных солнечных.

Солнечная активность / ©NASA/Goddard/SDO

Однако уже 100 миллионов лет спустя реакция с гелием перейдет на внешние области звезды, и та снова увеличится до размеров, светимости и радиуса красного гиганта.

Солнечный ветер на этой стадии станет настолько сильным, что унесет внешние области звезды в космическое пространство, и они образуют обширную планетарную туманность.

А там, где было Солнце, останется белый карлик размером с Землю. Сначала крайне яркий, но с течением времени все более и более тусклый.

Звёздная эволюция в астрономии - последовательность изменений, которым звезда подвергается в течение её жизни, то есть на протяжении миллионов или миллиардов лет, пока она излучает свет и тепло. В течение таких колоссальных промежутков времени изменения оказываются весьма значительными.

Эволюция звезды начинается в гигантском молекулярном облаке, также называемом звёздной колыбелью. Большая часть «пустого» пространства в галактике в действительности содержит от 0,1 до 1 молекулы на см³. Молекулярное облако же имеет плотность около миллиона молекул на см³. Масса такого облака превышает массу Солнца в 100 000-10 000 000 раз благодаря своему размеру: от 50 до 300 световых лет в поперечнике.

Пока облако свободно обращается вокруг центра родной галактики, ничего не происходит. Однако из-за неоднородности гравитационного поля в нём могут возникнуть возмущения, приводящие к локальным концентрациям массы. Такие возмущения вызывают гравитационный коллапс облака. Один из сценариев, приводящих к этому - столкновение двух облаков. Другим событием, вызывающим коллапс, может быть прохождение облака через плотный рукав спиральной галактики. Также критическим фактором может стать взрыв близлежащей сверхновой звезды, ударная волна которого столкнётся с молекулярным облаком на огромной скорости. Кроме того, возможно столкновение галактик, способное вызвать всплеск звёздообразования, по мере того, как газовые облака в каждой из галактик сжимаются в результате столкновения. В общем, любые неоднородности в силах, действующих на массу облака, могут запустить процесс звездообразования.
Из-за возникших неоднородностей давление молекулярного газа больше не может препятствовать дальнейшему сжатию, и газ начинает под действием гравитационных сил притяжения собираться вокруг центров будущих звезд. Половина высвобождающейся гравитационной энергии уходит на нагрев облака, а половина - на световое излучение. В облаках же давление и плотность нарастают к центру, и коллапс центральной части происходит быстрее, нежели периферии. По мере сжатия длина свободного пробега фотонов уменьшается и облако становится всё менее прозрачным для собственного излучения. Это приводит к более быстрому росту температуры и ещё более быстрому росту давления. В конце концов градиент давления уравновешивает гравитационную силу, образуется гидростатическое ядро, массой порядка 1 % от массы облака. Этот момент невидим, - глобула непрозрачна в оптическом диапазоне. Дальнейшая эволюция протозвезды - это аккреция продолжающего падать на «поверхность» ядра вещества, которое за счёт этого растет в размерах. В конце концов масса свободно перемещающегося в облаке вещества исчерпывается и звезда становится видимой в оптическом диапазоне. Этот момент считается концом протозвёздной фазы и началом фазы молодой звезды.

Согласно закону сохранения импульса, по мере уменьшения размера облака растёт скорость его вращения, и в определённый момент вещество перестает вращаться как одно тело и разделяется на слои, продолжающие коллапсировать независимо друг от друга. Число и массы этих слоёв зависят от начальных массы и скорости вращения молекулярного облака. В зависимости от этих параметров формируются различные системы небесных тел: звёздные скопления, двойные звёзды, звёзды с планетами.

Молодая звёзда — фаза молодой звезды.

Процесс формирования звёзд можно описать единым образом, но последующие стадии эволюции звезды почти полностью зависят от её массы, и лишь в самом конце эволюции звезды свою роль может сыграть её химический состав.

Молодые звёзды малой массы

Молодые звёзды малой массы (до трёх масс Солнца), находящиеся на подходе к главной последовательности, полностью конвективны, - процесс конвекции охватывает все тело звезды. Это ещё по сути протозвёзды, в центрах которых только-только начинаются ядерные реакции, и всё излучение происходит, в основном, из-за гравитационного сжатия. До тех пор пока гидростатическое равновесие не установится, светимость звезды убывает при неизменной эффективной температуре. По мере замедления сжатия молодая звезда приближается к главной последовательности. Объекты такого типа ассоциируются со звёздами типа T Тельца.

В это время у звёзд массой больше 0,8 масс Солнца ядро становится прозрачным для излучения, и лучистый перенос энергии в ядре становится преобладающим, поскольку конвекция все больше затрудняется всё большим уплотнением звездного вещества. Во внешних же слоях тела звезды превалирует конвективный перенос энергии.

По мере сжатия звезды начинает расти давление вырожденного электронного газа и при достижении определённого радиуса звезды сжатие останавливается, что приводит к остановке дальнейшего роста температуры в ядре звезды, вызываемого сжатием, а затем и к её снижению. Для звёзд меньше 0,0767 масс Солнца это не происходит: выделяющейся в ходе ядерных реакций энергии никогда не хватит, чтобы уравновесить внутреннее давление и гравитационное сжатие. Такие «недозвёзды» излучают энергии больше, чем образуется в процессе термоядерных реакций, и относятся к так называемым коричневым карликам. Их судьба - постоянное сжатие, пока давление вырожденного газа не остановит его, и, затем, постепенное остывание с прекращением всех начавшихся термоядерных реакций.

Молодые звёзды промежуточной массы

Молодые звёзды промежуточной массы (от 2 до 8 масс Солнца) качественно эволюционируют точно так же, как и их меньшие сестры и братья, за тем исключением, что в них нет конвективных зон вплоть до главной последовательности. Объекты этого типа ассоциируются с т. н. звёздами Ae\Be Хербига неправильными переменными спектрального класса B-F0. У них также наблюдаются диски и биполярные джеты. Скорость истечения вещества с поверхности, светимость и эффективная температура существенно выше, чем для T Тельца, поэтому они эффективно нагревают и рассеивают остатки протозвёздного облака.

Молодые звёзды с массой больше 8 солнечных масс

Молодые звёзды с массой больше 8 солнечных масс. Звезды с такими массами уже обладают характеристиками нормальных звезд, поскольку прошли все промежуточные стадии и смогли достичь такой скорости ядерных реакций, которая компенсировала потери энергии на излучение, пока накапливалась масса для достижения гидростатического равновесия ядра. У этих звёзд истечение массы и светимость настолько велики, что не просто останавливают гравитационный коллапс ещё не ставших частью звезды внешних областей молекулярного облака, но, наоборот, разгоняют их прочь. Таким образом, масса образовавшейся звезды заметно меньше массы протозвёздного облака. Скорее всего, этим и объясняется отсутствие в нашей галактике звёзд с массой больше, чем около 300 масс Солнца.

Середина жизненного цикла звезды

Среди звёзд встречается широкое многообразие цветов и размеров. По спектральному классу они варьируются от горячих голубых до холодных красных, по массе - от 0,0767 до около 300 Солнечных масс по последним оценкам. Светимость и цвет звезды зависят от температуры её поверхности, которая, в свою очередь, определяется её массой. Все новые звёзды «занимают своё место» на главной последовательности согласно своему химическому составу и массе.

Маленькие и холодные красные карлики медленно сжигают запасы водорода и остаются на главной последовательности десятки миллиардов лет, в то время как массивные сверхгиганты сходят с главной последовательности уже через несколько десятков миллионов (а некоторые спустя всего несколько миллионов) лет после формирования.

Звёзды среднего размера, такие как Солнце, остаются на главной последовательности в среднем 10 миллиардов лет. Считается, что Солнце все ещё на ней, так как оно находится в середине своего жизненного цикла. Как только звезда истощает запас водорода в ядре, она покидает главную последовательность.

Зрелость звезды

По прошествии определённого времени - от миллиона до десятков миллиардов лет (в зависимости от начальной массы) - звезда истощает водородные ресурсы ядра. В больших и горячих звёздах это происходит гораздо быстрее, чем в маленьких и более холодных. Истощение запаса водорода приводит к остановке термоядерных реакций.

Без давления, возникавшего в ходе этих реакций и уравновешивавшего внутреннюю гравитацию в теле звезды, звезда снова начинает сжиматься, как уже было ранее в процессе её формирования. Температура и давление снова растут, но, в отличие от стадии протозвезды, до гораздо более высокого уровня. Коллапс продолжается до тех пор, пока при температуре приблизительно в 100 миллионов К не начнутся термоядерные реакции с участием гелия.

Возобновившееся на новом уровне термоядерное «горение» вещества становится причиной чудовищного расширения звезды. Звезда «распухает», становясь очень «рыхлой», и её размер увеличивается приблизительно в 100 раз. Так звезда становится , а фаза горения гелия продолжается около нескольких миллионов лет. Практически все красные гиганты являются переменными звёздами.

Финальные стадии звёздной эволюции

Старые звёзды с малой массой

В настоящее время достоверно неизвестно, что происходит с лёгкими звёздами после истощения запаса водорода в их недрах. Поскольку возраст Вселенной составляет 13,7 миллиардов лет, что недостаточно для истощения запаса водородного топлива в таких звёздах, современные теории основываются на компьютерном моделировании процессов, происходящих в таких звёздах.

Некоторые звёзды могут синтезировать гелий лишь в некоторых активных зонах, что вызывает их нестабильность и сильные звёздные ветры. В этом случае образования планетарной туманности не происходит, и звезда лишь испаряется, становясь даже меньше, чем коричневый карлик.

Звезда с массой менее 0,5 солнечной не в состоянии преобразовывать гелий даже после того, как в её ядре прекратятся реакции с участием водорода, - масса такой звезды слишком мала для того, чтобы обеспечить новую фазу гравитационного сжатия до степени, достаточной для «поджига» гелия. К таким звёздам относятся красные карлики, такие как Проксима Центавра, срок пребывания которых на главной последовательности составляет от десятков миллиардов до десятков триллионов лет. После прекращения в их ядрах термоядерных реакций, они, постепенно остывая, будут продолжать слабо излучать в инфракрасном и микроволновом диапазонах электромагнитного спектра.

Звёзды среднего размера

При достижении звездой средней величины (от 0,4 до 3,4 солнечных масс) фазы красного гиганта в её ядре заканчивается водород, и начинаются реакции синтеза углерода из гелия. Этот процесс идет при более высоких температурах и поэтому поток энергии от ядра увеличивается и, как следствие, внешние слои звезды начинают расширяться. Начавшийся синтез углерода знаменует новую стадию в жизни звезды и продолжается некоторое время. Для звезды, по размеру близкой к Солнцу, этот процесс может занять около миллиарда лет.

Изменения в величине излучаемой энергии заставляют звезду пройти через периоды нестабильности, включающие в себя изменения размера, температуры поверхности и выпуск энергии. Выпуск энергии смещается в сторону низкочастотного излучения. Все это сопровождается нарастающей потерей массы вследствие сильных звёздных ветров и интенсивных пульсаций. Звёзды, находящиеся в этой фазе, получили название «звёзд позднего типа» (также «звезды-пенсионеры»), OH-IR звёзд или Мира-подобных звёзд, в зависимости от их точных характеристик. Выбрасываемый газ относительно богат производимыми в недрах звезды тяжёлыми элементами, такими как кислород и углерод. Газ образует расширяющуюся оболочку и охлаждается по мере удаления от звезды, делая возможным образование частиц пыли и молекул. При сильном инфракрасном излучении звезды-источника в таких оболочках формируются идеальные условия для активации космических мазеров.

Реакции термоядерного сжигания гелия очень чувствительны к температуре. Иногда это приводит к большой нестабильности. Возникают сильнейшие пульсации, которые в результате сообщают внешним слоям достаточное ускорение, чтобы быть сброшенными и превратиться в планетарную туманность. В центре такой туманности остаётся оголенное ядро звезды, в котором прекращаются термоядерные реакции, и оно, остывая, превращается в гелиевый белый карлик, как правило, имеющий массу до 0,5-0,6 Солнечных масс и диаметр порядка диаметра Земли.

Вскоре после гелиевой вспышки «загораются» углерод и кислород; каждое из этих событий вызывает серьёзную перестройку тела звезды и её быстрое перемещение по диаграмме Герцшпрунга - Рассела. Размер атмосферы звезды увеличивается ещё больше, и она начинает интенсивно терять газ в виде разлетающихся потоков звёздного ветра. Судьба центральной части звезды полностью зависит от её исходной массы, - ядро звезды может закончить свою эволюцию как:

  • (маломассивные звёзды)
  • как нейтронная звезда (пульсар), если масса звезды на поздних стадиях эволюции превышает предел Чандрасекара
  • как чёрная дыра, если масса звезды превышает предел Оппенгеймера - Волкова

В двух последних ситуациях эволюция звёзды завершается катастрофическими событием - вспышкой сверхновых.

Подавляющее большинство звёзд, и Солнце в том числе, завершают свою эволюцию, сжимаясь до тех пор, пока давление вырожденных электронов не уравновесит гравитацию. В этом состоянии, когда размер звезды уменьшается в сотню раз, а плотность становится в миллион раз выше плотности воды, звезду называют белым карликом. Она лишена источников энергии и, постепенно остывая, становится невидимым .

У звёзд более массивных, чем Солнце, давление вырожденных электронов не может остановить дальнейшее сжатие ядра, и электроны начинают «вдавливаться» в атомные ядра, что превращает протоны в нейтроны, между которыми не существуют силы электростатического отталкивания. Такая нейтронизация вещества приводит к тому, что размер звезды, которая теперь, фактически, представляет собой одно огромное атомное ядро, измеряется несколькими километрами, а плотность в 100 млн раз превышает плотность воды. Такой объект называют нейтронной звездой; его равновесие поддерживается давлением вырожденного нейтронного вещества.

Сверхмассивные звёзды

После того, как звезда с массой большей, чем пять Солнечных масс, входит в стадию красного сверхгиганта, её ядро под действием сил гравитации начинает сжиматься. По мере сжатия растут температура и плотность, и начинается новая последовательность термоядерных реакций. В таких реакциях синтезируются все более тяжёлые элементы: гелий, углерод, кислород, кремний и железо, что временно сдерживает коллапс ядра.

В результате по мере образования всё более тяжёлых элементов Периодической системы, из кремния синтезируется железо-56. На этой стадии дальнейший экзотермический термоядерный синтез становится невозможен, поскольку ядро железа-56 обладает максимальным дефектом массы и образование более тяжёлых ядер с выделением энергии невозможно. Поэтому когда железное ядро звезды достигает определённого размера, то давление в нём уже не в состоянии противостоять весу вышележащих слоёв звезды, и происходит незамедлительный коллапс ядра с нейтронизацией его вещества.

Сильные струи нейтрино и вращающееся магнитное поле выталкивают большую часть накопленного звездой материала - так называемые рассадочные элементы, включая железо и более лёгкие элементы. Разлетающаяся материя бомбардируется вылетающими из звездного ядра нейтронами, захватывая их и тем самым создавая набор элементов тяжелее железа, включая радиоактивные, вплоть до урана (а возможно, даже до калифорния). Таким образом, взрывы сверхновых объясняют наличие в межзвёздном веществе элементов тяжелее железа, но это не есть единственно возможный способ их образования, что, к примеру, демонстрируют технециевые звёзды.

Взрывная волна и струи нейтрино уносят вещество прочь от умирающей звезды в межзвёздное пространство. В последующем, остывая и перемещаясь по космосу, этот материал сверхновой может столкнуться с другим космическим «утилем» и, возможно, участвовать в образовании новых звёзд, планет или спутников.

Процессы, протекающие при образовании сверхновой, до сих пор изучаются, и пока в этом вопросе нет ясности. Также под вопросом остаётся момент, что же на самом деле остаётся от изначальной звезды. Тем не менее, рассматриваются два варианта: нейтронные звезды и чёрные дыры.

Нейтронные звёзды

Известно, что в некоторых сверхновых сильная гравитация в недрах сверхгиганта заставляет электроны поглотиться атомным ядром, где они, сливаясь с протонами, образуют нейтроны. Этот процесс называется нейтронизацией. Электромагнитные силы, разделяющие близлежащие ядра, исчезают. Ядро звезды теперь представляет собой плотный шар из атомных ядер и отдельных нейтронов.
Такие звёзды, известные, как нейтронные звёзды, чрезвычайно малы - не более размера крупного города, и имеют невообразимо высокую плотность. Период их обращения становится чрезвычайно мал по мере уменьшения размера звезды (благодаря сохранению момента импульса). Некоторые нейтронные звёзды совершают 600 оборотов в секунду. У некоторых из них угол между вектором излучения и осью вращения может быть таким, что Земля попадает в конус, образуемый этим излучением; в этом случае можно зафиксировать импульс излучения, повторяющийся через промежутки времени, равные периоду обращения звезды. Такие нейтронные звёзды получили название «пульсары», и стали первыми открытыми нейтронными звёздами.

Чёрные дыры

Далеко не все звезды, пройдя фазу взрыва сверхновой, становятся нейтронными звёздами. Если звезда обладает достаточно большой массой, то коллапс такой звезды продолжится, и сами нейтроны начнут обрушиваться внутрь, пока её радиус не станет меньше радиуса Шварцшильда. После этого звезда становится чёрной дырой.

Существование чёрных дыр было предсказано общей теорией относительности. Согласно этой теории, материя и информация не может покидать чёрную дыру ни при каких условиях. Тем не менее, квантовые эффекты, вероятно, позволяют этого избежать, например, в виде излучения Хокинга. Остаются ряд открытых вопросов. В частности, до недавнего времени оставался без ответа главный из них: «А есть ли чёрные дыры вообще?». Ведь чтобы сказать точно, что данный объект - это чёрная дыра, необходимо наблюдать его горизонт событий. Это невозможно сугубо по определению горизонта, но с помощью радиоинтерферометрии со сверхдлинной базой можно определить метрику вблизи объекта по движению газа там, а также зафиксировать быструю, миллисекундную для чёрных дыр звёздных масс, переменность. Эти свойства, наблюдаемые у одного объекта, должны окончательно доказать, что наблюдаемый объект есть чёрная дыра.

В настоящее время черные дыры доступны только для косвенных наблюдений. Так, наблюдая светимость ядер активных галактик, можно оценить массу объекта, на который происходит аккреция. Также массу объекта можно оценить по кривой вращения галактики или по частоте обращения близких к объекту звёзд, используя теорему вириала. Ещё один вариант - это наблюдение профиля линий излучения газа из центральной области активных галактик, позволяющее определить скорости его вращения, которые достигают в блазарах десятков тысяч километров в секунду. Для многих галактик масса центра оказывается слишком большой для любого объекта, кроме сверхмассивной чёрной дыры. Есть объекты с явной аккрецией вещества на них, но при этом не наблюдается специфического излучения, вызванного ударной волной. Из этого можно сделать вывод, что аккреция не останавливается твёрдой поверхностью звезды, а просто уходит в области очень большого гравитационно красного смещения, где согласно с современными представлениями и данным (2009 год) никакой стационарный объект, кроме чёрной дыры, невозможен.