Выглядит график y x. Графики и основные свойства элементарных функций

Длина отрезка на координатной оси находится по формуле:

Длина отрезка на координатной плоскости ищется по формуле:

Для нахождения длины отрезка в трёхмерной системе координат используется следующая формула:

Координаты середины отрезка (для координатной оси используется только первая формула, для координатной плоскости - первые две формулы, для трехмерной системы координат - все три формулы) вычисляются по формулам:

Функция – это соответствие вида y = f (x ) между переменными величинами, в силу которого каждому рассматриваемому значению некоторой переменной величины x (аргумента или независимой переменной) соответствует определенное значение другой переменной величины, y (зависимой переменной, иногда это значение просто называют значением функции). Обратите внимание, что функция подразумевает, что одному значению аргумента х может соответствовать только одно значение зависимой переменной у . При этом одно и то же значение у может быть получено при различных х .

Область определения функции – это все значения независимой переменной (аргумента функции, обычно это х ), при которых функция определена, т.е. ее значение существует. Обозначается область определения D (y ). По большому счету Вы уже знакомы с этим понятием. Область определения функции по другому называется областью допустимых значений, или ОДЗ, которую Вы давно умеете находить.

Область значений функции – это все возможные значения зависимой переменной данной функции. Обозначается Е (у ).

Функция возрастает на промежутке, на котором большему значению аргумента соответствует большее значение функции. Функция убывает на промежутке, на котором большему значению аргумента соответствует меньшее значение функции.

Промежутки знакопостоянства функции – это промежутки независимой переменной, на которых зависимая переменная сохраняет свой положительный или отрицательный знак.

Нули функции – это такие значения аргумента, при которых величина функции равна нулю. В этих точках график функции пересекает ось абсцисс (ось ОХ). Очень часто необходимость найти нули функции означает необходимость просто решить уравнение. Также часто необходимость найти промежутки знакопостоянства означает необходимость просто решить неравенство.

Функцию y = f (x ) называют четной х

Это означает, что для любых противоположных значений аргумента, значения четной функции равны. График чётной функции всегда симметричен относительно оси ординат ОУ.

Функцию y = f (x ) называют нечетной , если она определена на симметричном множестве и для любого х из области определения выполняется равенство:

Это означает, что для любых противоположных значений аргумента, значения нечетной функции также противоположны. График нечётной функции всегда симметричен относительно начала координат.

Сумма корней чётной и нечетной функций (точек пересечения оси абсцисс ОХ) всегда равна нулю, т.к. на каждый положительный корень х приходится отрицательный корень –х .

Важно отметить: некоторая функция не обязательно должна быть четной либо нечетной. Существует множество функций не являющихся ни четными ни нечетными. Такие функции называются функциями общего вида , и для них не выполняется ни одно из равенств или свойств приведенных выше.

Линейной функцией называют функцию, которую можно задать формулой:

График линейной функции представляет из себя прямую и в общем случае выглядит следующим образом (приведен пример для случая когда k > 0, в этом случае функция возрастающая; для случая k < 0 функция будет убывающей, т.е. прямая будет наклонена в другую сторону - слева направо):

График квадратичной функции (Парабола)

График параболы задается квадратичной функцией:

Квадратичная функция, как и любая другая функция, пересекает ось ОХ в точках являющихся её корнями: (x 1 ; 0) и (x 2 ; 0). Если корней нет, значит квадратичная функция ось ОХ не пересекает, если корень один, значит в этой точке (x 0 ; 0) квадратичная функция только касается оси ОХ, но не пересекает её. Квадратичная функция всегда пересекает ось OY в точке с координатами: (0; c ). График квадратичной функции (парабола) может выглядеть следующим образом (на рисунке примеры, которые далеко не исчерпывают все возможные виды парабол):

При этом:

  • если коэффициент a > 0, в функции y = ax 2 + bx + c , то ветви параболы направлены вверх;
  • если же a < 0, то ветви параболы направлены вниз.

Координаты вершины параболы могут быть вычислены по следующим формулам. Икс вершины (p - на рисунках выше) параболы (или точка в которой квадратный трехчлен достигает своего наибольшего или наименьшего значения):

Игрек вершины (q - на рисунках выше) параболы или максимальное, если ветви параболы направлены вниз (a < 0), либо минимальное, если ветви параболы направлены вверх (a > 0), значение квадратного трехчлена:

Графики других функций

Степенной функцией

Приведем несколько примеров графиков степенных функций:

Обратно пропорциональной зависимостью называют функцию, заданную формулой:

В зависимости от знака числа k график обратно пропорциональной зависимости может иметь два принципиальных варианта:

Асимптота - это линия, к которой линия графика функции бесконечно близко приближается, но не пересекает. Асимптотами для графиков обратной пропорциональности приведенных на рисунке выше являются оси координат, к которым график функции бесконечно близко приближается, но не пересекает их.

Показательной функцией с основанием а называют функцию, заданную формулой:

a график показательной функции может иметь два принципиальных варианта (приведем также примеры, см. ниже):

Логарифмической функцией называют функцию, заданную формулой:

В зависимости от того больше или меньше единицы число a график логарифмической функции может иметь два принципиальных варианта:

График функции y = |x | выглядит следующим образом:

Графики периодических (тригонометрических) функций

Функция у = f (x ) называется периодической , если существует такое, неравное нулю, число Т , что f (x + Т ) = f (x ), для любого х из области определения функции f (x ). Если функция f (x ) является периодической с периодом T , то функция:

где: A , k , b – постоянные числа, причем k не равно нулю, также периодическая с периодом T 1 , который определяется формулой:

Большинство примеров периодических функций - это тригонометрические функции. Приведем графики основных тригонометрических функций. На следующем рисунке изображена часть графика функции y = sinx (весь график неограниченно продолжается влево и вправо), график функции y = sinx называют синусоидой :

График функции y = cosx называется косинусоидой . Этот график изображен на следующем рисунке. Так как и график синуса он бесконечно продолжается вдоль оси ОХ влево и вправо:

График функции y = tgx называют тангенсоидой . Этот график изображен на следующем рисунке. Как и графики других периодических функций, данный график неограниченно далеко повторяется вдоль оси ОХ влево и вправо.

Ну и наконец, график функции y = ctgx называется котангенсоидой . Этот график изображен на следующем рисунке. Как и графики других периодических и тригонометрических функций, данный график неограниченно далеко повторяется вдоль оси ОХ влево и вправо.

  • Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  • Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.
  • Успешное, старательное и ответственное выполнение этих трех пунктов позволит Вам показать на ЦТ отличный результат, максимальный из того на что Вы способны.

    Нашли ошибку?

    Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на почту. Написать об ошибке можно также в социальной сети (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

    Национальный научно-исследовательский университет

    Кафедра прикладной геологии

    Реферат по высшей математике

    На тему: «Основные элементарные функции,

    их свойства и графики»

    Выполнил:

    Проверил:

    преподаватель

    Определение. Функция, заданная формулой у=а х (где а>0, а≠1), называется показательной функцией с основанием а.

    Сформулируем основные свойства показательной функции:

    1. Область определения - множество (R) всех действительных чисел.

    2. Область значений - множество (R+) всех положительных действительных чисел.

    3. При а > 1 функция возрастает на всей числовой прямой; при 0<а<1 функция убывает.

    4. Является функцией общего вида.

    , на интервале xÎ [-3;3]
    , на интервале xÎ [-3;3]

    Функция вида у(х)=х n , где n – число ÎR, называется степенной функцией. Число n может принимать раличные значения: как целые, так и дробные, как четные, так и нечетные. В зависимости от этого, степенная функция будет иметь разный вид. Рассмотрим частные случаи, которые являются степенными функциями и отражают основные свойства данного вида кривых в следующем порядке: степенная функция у=х² (функция с четным показателем степени – парабола), степенная функция у=х³ (функция с нечетным показателем степени – кубическая парабола) и функция у=√х (х в степени ½) (функция с дробным показателем степени), функция с отрицательным целым показателем (гипербола).

    Степенная функция у=х²

    1. D(x)=R – функция определена на все числовой оси;

    2. E(y)= и возрастает на промежутке

    Степенная функция у=х³

    1. График функции у=х³ называется кубической параболой. Степенная функция у=х³ обладает следующими свойствами:

    2. D(x)=R – функция определена на все числовой оси;

    3. E(y)=(-∞;∞) – функция принимает все значения на своей области определения;

    4. При х=0 у=0 – функция проходит через начало координат O(0;0).

    5. Функция возрастает на всей области определения.

    6. Функция является нечетной (симметрична относительно начала координат).


    , на интервале xÎ [-3;3]

    В зависимости от числового множителя, стоящего перед х³, функция может быть крутой/пологой и возрастать/убывать.

    Степенная функция с целым отрицательным показателем:

    Если показатель степени n является нечетным, то график такой степенной функции называется гиперболой. Степенная функция с целым отрицательным показателем степени обладает следующими свойствами:

    1. D(x)=(-∞;0)U(0;∞) для любого n;

    2. E(y)=(-∞;0)U(0;∞), если n – нечетное число; E(y)=(0;∞), если n – четное число;

    3. Функция убывает на всей области определения, если n – нечетное число; функция возрастает на промежутке (-∞;0) и убывает на промежутке (0;∞), если n – четное число.

    4. Функция является нечетной (симметрична относительно начала координат), если n – нечетное число; функция является четной, если n – четное число.

    5. Функция проходит через точки (1;1) и (-1;-1), если n – нечетное число и через точки (1;1) и (-1;1), если n – четное число.


    , на интервале xÎ [-3;3]

    Степенная функция с дробным показателем

    Степенная функция с дробным показателем вида (картинка) имеет график функции, изображенный на рисунке. Степенная функция с дробным показателем степени обладает следующими свойствами: (картинка)

    1. D(x) ÎR, если n – нечетное число и D(x)=
    , на интервале xÎ
    , на интервале xÎ [-3;3]

    Логарифмическая функция у = log a x обладает следующими свойствами:

    1. Область определения D(x)Î (0; + ∞).

    2. Область значений E(y) Î (- ∞; + ∞)

    3. Функция ни четная, ни нечетная (общего вида).

    4. Функция возрастает на промежутке (0; + ∞) при a > 1, убывает на (0; + ∞) при 0 < а < 1.

    График функции у = log a x может быть получен из графика функции у = а х с помощью преобразования симметрии относительно прямой у = х. На рисунке 9 построен график логарифмической функции для а > 1, а на рисунке 10 - для 0 < a < 1.


    ; на интервале xÎ
    ; на интервале xÎ

    Функции y = sin х, у = cos х, у = tg х, у = ctg х называют тригонометрическими функциями.

    Функции у = sin х, у = tg х, у = ctg х нечетные, а функция у = соs х четная.

    Функция y = sin (х).

    1. Область определения D(x) ÎR.

    2. Область значений E(y) Î [ - 1; 1].

    3. Функция периодическая; основной период равен 2π.

    4. Функция нечетная.

    5. Функция возрастает на промежутках [ -π/2 + 2πn; π/2 + 2πn] и убывает на промежутках [ π/2 + 2πn; 3π/2 + 2πn], n Î Z.

    График функции у = sin (х) изображен на рисунке 11.

    1. Дробно-линейная функция и ее график

    Функция вида y = P(x) / Q(x), где P(x) и Q(x) – многочлены, называется дробно-рациональной функцией.

    С понятием рациональных чисел вы уже наверняка знакомы. Аналогично рациональные функции – это функции, которые можно представить как частное двух многочленов.

    Если дробно-рациональная функция представляет собой частное двух линейных функций – многочленов первой степени, т.е. функцию вида

    y = (ax + b) / (cx + d), то ее называют дробно-линейной.

    Заметим, что в функции y = (ax + b) / (cx + d), c ≠ 0 (иначе функция становится линейной y = ax/d + b/d) и что a/c ≠ b/d (иначе функция константа). Дробно-линейная функция определена при всех действительных числах, кроме x = -d/c. Графики дробно-линейных функций по форме не отличаются от известного вам графика y = 1/x. Кривая, являющаяся графиком функции y = 1/x, называется гиперболой . При неограниченном увеличении x по абсолютной величине функция y = 1/x неограниченно уменьшается по абсолютной величине и обе ветки графика приближаются к оси абсцисс: правая приближается сверху, а левая – снизу. Прямые, к которым приближаются ветки гиперболы, называются ее асимптотами .

    Пример 1.

    y = (2x + 1) / (x – 3).

    Решение.

    Выделим целую часть: (2x + 1) / (x – 3) = 2 + 7/(x – 3).

    Теперь легко видеть, что график этой функции получается из графика функции y = 1/x следующими преобразованиями: сдвигом на 3 единичных отрезка вправо, растяжением вдоль оси Oy в 7 раз и сдвигом на 2 единичных отрезка вверх.

    Любую дробь y = (ax + b) / (cx + d) можно записать аналогичным образом, выделив «целую часть». Следовательно, графики всех дробно-линейных функций есть гиперболы, различным образом сдвинутые вдоль координатных осей и растянутые по оси Oy.

    Для построения графика какой-нибудь произвольной дробно-линейной функции совсем не обязательно дробь, задающую эту функцию, преобразовывать. Поскольку мы знаем, что график есть гипербола, будет достаточно найти прямые, к которым приближаются ее ветки – асимптоты гиперболы x = -d/c и y = a/c.

    Пример 2.

    Найти асимптоты графика функции y = (3x + 5)/(2x + 2).

    Решение.

    Функция не определена, при x = -1. Значит, прямая x = -1 служит вертикальной асимптотой. Для нахождения горизонтальной асимптоты, выясним, к чему приближаются значения функции y(x), когда аргумент x возрастает по абсолютной величине.

    Для этого разделим числитель и знаменатель дроби на x:

    y = (3 + 5/x) / (2 + 2/x).

    При x → ∞ дробь будет стремиться к 3/2. Значит, горизонтальная асимптота – это прямая y = 3/2.

    Пример 3.

    Построить график функции y = (2x + 1)/(x + 1).

    Решение.

    Выделим у дроби «целую часть»:

    (2x + 1) / (x + 1) = (2x + 2 – 1) / (x + 1) = 2(x + 1) / (x + 1) – 1/(x + 1) =

    2 – 1/(x + 1).

    Теперь легко видеть, что график этой функции получается из графика функции y = 1/x следующими преобразованиями: сдвигом на 1 единицу влево, симметричным отображением относительно Ox и сдвигом на 2 единичных отрезка вверх по оси Oy.

    Область определения D(y) = (-∞; -1)ᴗ(-1; +∞).

    Область значений E(y) = (-∞; 2)ᴗ(2; +∞).

    Точки пересечения с осями: c Oy: (0; 1); c Ox: (-1/2; 0). Функция возрастает на каждом из промежутков области определения.

    Ответ: рисунок 1.

    2. Дробно-рациональная функция

    Рассмотрим дробно-рациональную функцию вида y = P(x) / Q(x), где P(x) и Q(x) – многочлены, степени выше первой.

    Примеры таких рациональных функций:

    y = (x 3 – 5x + 6) / (x 7 – 6) или y = (x – 2) 2 (x + 1) / (x 2 + 3).

    Если функция y = P(x) / Q(x) представляет собой частное двух многочленов степени выше первой, то ее график будет, как правило, сложнее, и построить его точно, со всеми деталями бывает иногда трудно. Однако, часто достаточно применить приемы, аналогичные тем, с которыми мы уже познакомились выше.

    Пусть дробь – правильная (n < m). Известно, что любую несократимую рациональную дробь можно представить, и притом единственным образом, в виде суммы конечного числа элементарных дробей, вид которых определяется разложением знаменателя дроби Q(x) в произведение действительных сомножителей:

    P(x)/Q(x) = A 1 /(x – K 1) m1 + A 2 /(x – K 1) m1-1 + … + A m1 /(x – K 1) + …+

    L 1 /(x – K s) ms + L 2 /(x – K s) ms-1 + … + L ms /(x – K s) + …+

    + (B 1 x + C 1) / (x 2 +p 1 x + q 1) m1 + … + (B m1 x + C m1) / (x 2 +p 1 x + q 1) + …+

    + (M 1 x + N 1) / (x 2 +p t x + q t) m1 + … + (M m1 x + N m1) / (x 2 +p t x + q t).

    Очевидно, что график дробно-рациональной функции можно получить как сумму графиков элементарных дробей.

    Построение графиков дробно-рациональных функций

    Рассмотрим несколько способов построения графиков дробно-рациональной функции.

    Пример 4.

    Построить график функции y = 1/x 2 .

    Решение.

    Используем график функции y = x 2 для построения графика y = 1/x 2 и воспользуемся приемом «деления» графиков.

    Область определения D(y) = (-∞; 0)ᴗ(0; +∞).

    Область значений E(y) = (0; +∞).

    Точек пересечения с осями нет. Функция четная. Возрастает при все х из интервала (-∞; 0), убывает при x от 0 до +∞.

    Ответ: рисунок 2.

    Пример 5.

    Построить график функции y = (x 2 – 4x + 3) / (9 – 3x).

    Решение.

    Область определения D(y) = (-∞; 3)ᴗ(3; +∞).

    y = (x 2 – 4x + 3) / (9 – 3x) = (x – 3)(x – 1) / (-3(x – 3)) = -(x – 1)/3 = -x/3 + 1/3.

    Здесь мы использовали прием разложения на множители, сокращения и приведения к линейной функции.

    Ответ: рисунок 3.

    Пример 6.

    Построить график функции y = (x 2 – 1)/(x 2 + 1).

    Решение.

    Область определения D(y) = R. Так как функция четная, то график симметричен относительно оси ординат. Прежде чем строить график, опять преобразуем выражение, выделив целую часть:

    y = (x 2 – 1)/(x 2 + 1) = 1 – 2/(x 2 + 1).

    Заметим, что выделение целой части в формуле дробно-рациональной функции является одним из основных при построении графиков.

    Если x → ±∞, то y → 1, т.е. прямая y = 1 является горизонтальной асимптотой.

    Ответ: рисунок 4.

    Пример 7.

    Рассмотрим функцию y = x/(x 2 + 1) и попробуем точно найти наибольшее ее значение, т.е. самую высокую точку правой половины графика. Чтобы точно построить этот график, сегодняшних знаний недостаточно. Очевидно, что наша кривая не может «подняться» очень высоко, т.к. знаменатель довольно быстро начинает «обгонять» числитель. Посмотрим, может ли значение функции равняться 1. Для этого нужно решить уравнение x 2 + 1 = x, x 2 – x + 1 = 0. Это уравнение не имеет действительных корней. Значит, наше предположение не верно. Чтобы найти самое большое значение функции, надо узнать, при каком самом большом А уравнение А = x/(x 2 + 1) будет иметь решение. Заменим исходное уравнение квадратным: Аx 2 – x + А = 0. Это уравнение имеет решение, когда 1 – 4А 2 ≥ 0. Отсюда находим наибольшее значение А = 1/2.

    Ответ: рисунок 5, max y(x) = ½.

    Остались вопросы? Не знаете, как строить графики функций?
    Чтобы получить помощь репетитора – зарегистрируйтесь .
    Первый урок – бесплатно!

    сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

    Определение : Числовой функцией называется соответствие, которое каждому числу х из некоторого заданного множества сопоставляет единственное число y.

    Обозначение:

    где x – независимая переменная (аргумент), y – зависимая переменная (функция). Множество значений x называется областью определения функции (обозначается D(f)). Множество значений y называется областью значений функции (обозначается E(f)). Графиком функции называется множество точек плоскости с координатами (x, f(x))

    Способы задания функции.

    1. аналитический способ (с помощью математической формулы);
    2. табличный способ (с помощью таблицы);
    3. описательный способ (с помощью словесного описания);
    4. графический способ (с помощью графика).

    Основные свойства функции.

    1. Четность и нечетность

    Функция называется четной, если
    – область определения функции симметрична относительно нуля
    f(-x) = f(x)

    График четной функции симметричен относительно оси 0y

    Функция называется нечетной, если
    – область определения функции симметрична относительно нуля
    – для любого х из области определения f(-x) = –f(x)

    График нечетной функции симметричен относительно начала координат.

    2.Периодичность

    Функция f(x) называется периодической с периодом , если для любого х из области определения f(x) = f(x+Т) = f(x-Т) .

    График периодической функции состоит из неограниченно повторяющихся одинаковых фрагментов.

    3. Монотонность (возрастание, убывание)

    Функция f(x) возрастает на множестве Р, если для любых x 1 и x 2 из этого множества, таких, что x 1

    Функция f(x) убывает на множестве Р, если для любых x 1 и x 2 из этого множества, таких, что x 1 f(x 2) .

    4. Экстремумы

    Точка Х max называется точкой максимума функции f(x) , если для всех х из некоторой окрестности Х max , выполнено неравенство f(х) f(X max).

    Значение Y max =f(X max) называется максимумом этой функции.

    Х max – точка максимума
    У max – максимум

    Точка Х min называется точкой минимума функции f(x) , если для всех х из некоторой окрестности Х min , выполнено неравенство f(х) f(X min).

    Значение Y min =f(X min) называется минимумом этой функции.

    X min – точка минимума
    Y min – минимум

    X min , Х max – точки экстремума
    Y min , У max – экстремумы.

    5. Нули функции

    Нулем функции y = f(x) называется такое значение аргумента х, при котором функция обращается в нуль: f(x) = 0.

    Х 1 ,Х 2 ,Х 3 – нули функции y = f(x).

    Задачи и тесты по теме "Основные свойства функции"

    • Свойства функций - Числовые функции 9 класс

      Уроков: 2 Заданий: 11 Тестов: 1

    • Свойства логарифмов - Показательная и логарифмическая функции 11 класс

      Уроков: 2 Заданий: 14 Тестов: 1

    • Функция квадратного корня, его свойства и график - Функция квадратного корня. Свойства квадратного корня 8 класс

      Уроков: 1 Заданий: 9 Тестов: 1

    • Функции - Важные темы для повторения ЕГЭ по математике

      Заданий: 24

    • Степенные функции, их свойства и графики - Степени и корни. Степенные функции 11 класс

      Уроков: 4 Заданий: 14 Тестов: 1

    Изучив эту тему, Вы должны уметь находить область определения различных функций, определять с помощью графиков промежутки монотонности функции, исследовать функции на четность и нечетность. Рассмотрим решение подобных задач на следующих примерах.

    Примеры.

    1. Найти область определения функции.

    Решение: область определения функции находится из условия

    следовательно, функция f(x) – четная.

    Ответ: четная.

    D(f) = [-1; 1] – симметрична относительно нуля.

    2)

    следовательно, функция не является ни четной, ни нечетной.

    Ответ : ни четная, ни не четная.