Геолог определение. Геология

ГЕОЛОГИЯ
наука о строении и истории развития Земли. Основные объекты исследований - горные породы, в которых запечатлена геологическая летопись Земли, а также современные физические процессы и механизмы, действующие как на ее поверхности, так и в недрах, изучение которых позволяет понять, каким образом происходило развитие нашей планеты в прошлом. Земля постоянно изменяется. Некоторые изменения происходят внезапно и весьма бурно (например, вулканические извержения, землетрясения или крупные наводнения), но чаще всего - медленно (за столетие сносится или накапливается слой осадков мощностью не более 30 см). Такие перемены не заметны на протяжении жизни одного человека, но накоплены некоторые сведения об изменениях за продолжительный срок, а при помощи регулярных точных измерений фиксируются даже незначительные движения земной коры. Например, таким образом установлено, что территория вокруг Великих озер (США и Канада) и Ботнического залива (Швеция) в настоящее время поднимается, а восточное побережье Великобритании - опускается и затапливается. Однако значительно более содержательная информация об этих изменениях заключается в самих горных породах, представляющих собой не просто совокупность минералов, а страницы биографии Земли, которые можно прочесть, если владеть языком, которым они написаны. Такая летопись Земли весьма продолжительна. История Земли началась одновременно с развитием Солнечной системы примерно 4,6 млрд. лет назад. Однако для геологической летописи характерны фрагментарность и неполнота, т.к. многие древние породы были разрушены или перекрыты более молодыми осадками. Пробелы должны восполняться посредством корреляции с событиями, происходившими в других местах и о которых имеется больше данных, а также методом аналогий и выдвижением гипотез. Относительный возраст пород определяется на основании комплексов содержащихся в них ископаемых остатков, а отложений, в которых такие остатки отсутствуют, - по взаимному расположению тех и других. Кроме того, абсолютный возраст почти всех пород может быть установлен геохимическими методами.
См. также РАДИОУГЛЕРОДНОЕ ДАТИРОВАНИЕ .
Геологические дисциплины. Геология выделилась в самостоятельную науку в 18 в. Современная геология подразделяется на ряд тесно взаимосвязанных отраслей. К ним относятся: геофизика, геохимия, историческая геология, минералогия, петрология, структурная геология, тектоника, стратиграфия, геоморфология, палеонтология, палеоэкология, геология полезных ископаемых. Существуют также несколько междисциплинарных областей исследований: морская геология, инженерная геология, гидрогеология, сельскохозяйственная геология и геология окружающей среды (экогеология). Геология тесно связана с такими науками, как гидродинамика, океанология, биология, физика и химия.
ПРИРОДА ЗЕМЛИ
Кора, мантия и ядро. Большая часть сведений о внутреннем строении Земли получена косвенно на основании интерпретации поведения сейсмических волн, которые регистрируются сейсмографами. В недрах Земли установлены два основных рубежа, на которых происходит резкая смена характера распространения сейсмических волн. Один из них, с сильной отражающей и преломляющей способностью, расположен на глубине 13-90 км от поверхности под материками и 4-13 км - под океанами. Он называется границей Мохоровичича, или поверхностью Мохо (М), и считается геохимической границей и зоной фазового перехода минералов под влиянием высокого давления. Эта граница разделяет земную кору и мантию. Второй рубеж находится на глубине 2900 км от поверхности Земли и соответствует границе мантии и ядра (рис. 1).

Температуры. На основании того, что из вулканов извергается расплавленная лава, сложилось представление, что недра Земли раскалены. По результатам температурных измерений в шахтах и нефтяных скважинах установлено, что с глубиной температура земной коры непрерывно повышается. Если бы такая тенденция сохранялась вплоть до ядра Земли, то его температура составила бы ок. 2925° С, т.е. значительно превышала бы точки плавления обычно встречающихся на земной поверхности пород. Однако на основании данных о распространении сейсмических волн считается, что большая часть недр Земли находится в твердом состоянии. Решение вопроса о температуре земных недр, тесно связанной с ранней историей Земли, имеет большое значение, но до сих пор он остается дискуссионным. Согласно одним теориям, Земля первоначально была раскаленной, а затем остыла, согласно другим - первоначально была холодной, а затем разогрелась под действием тепла, генерируемого в процессе распада радиоактивных элементов и высокого давления на глубине.
Земной магнетизм. Обычно считается, что магнитное поле создается внутри Земли, однако механизм его возникновения недостаточно ясен. Магнитное поле не может быть результатом постоянной намагниченности железного ядра Земли, поскольку температура уже на глубине нескольких десятков километров значительно ниже точки Кюри - температуры, при которой вещество утрачивает свои магнитные свойства. Кроме того, гипотеза постоянного магнита в фиксированном положении противоречит отмечаемым изменениям магнитного поля в настоящее время и в прошлом. Остаточная намагниченность сохраняется в осадочных и вулканических породах. Частички магнетита, осаждающиеся в спокойных водоемах, а также магнитные минералы в лавовых потоках при температуре ниже точки Кюри остывают и ориентируются по направлению силовых линий локального магнитного поля, существовавшего во время образования пород. Палеомагнитные исследования горных пород позволяют установить положение магнитных полюсов, которые существовали во время осадконакопления и оказывали воздействие на ориентировку магнитных частиц. Полученные результаты свидетельствуют о том, что либо магнитные полюса, либо участки земной коры со временем существенно меняли свое положение по отношению к оси вращения Земли (первое представляется маловероятным). Имеются также веские доказательства того, что материки перемещались относительно друг друга. Например, положения магнитного полюса, определенные по палеомагнитным данным для пород одного и того же возраста в Северной Америке, Европе и Австралии, пространственно не совпадают. Эти факты подтверждают гипотезу, согласно которой материки образовались из единого праматерика в результате его деления на отдельные части и последующего их раздвижения.
См. также ГЕОМАГНЕТИЗМ .
Гравитационное поле Земли. Гравитационными исследованиями установлено, что земная кора и мантия под воздействием дополнительных нагрузок прогибаются. Например, если земная кора всюду имела бы одинаковую мощность и плотность, то следовало бы ожидать, что в горах (где масса пород больше) действовала бы большая сила притяжения, чем на равнинах или в морях. Однако примерно с середины 18 в. было замечено, что гравитационное притяжение в горах и вблизи них меньше предполагаемого (если допустить, что горы представляют собой просто дополнительную массу земной коры). Этот факт объяснялся наличием "пустот", которые интерпретировались как разуплотнившиеся при нагревании породы или как соляное ядро гор. Такие объяснения оказались несостоятельными, и в 1850-х годах были предложены две новые гипотезы. В соответствии с первой гипотезой, земная кора состоит из блоков пород разных размеров и плотности, плавающих в более плотной среде. Основания всех блоков располагаются на одном уровне, а блоки, характеризующиеся низкой плотностью, должны быть большей высоты, чем блоки, имеющие высокую плотность. Горные сооружения принимались за блоки низкой плотности, а океанические бассейны - высокой (при одинаковой общей массе тех и других). Согласно второй гипотезе, плотность всех блоков одинакова и плавают они в более плотной среде, а различная высота поверхности объясняется их разной мощностью. Она известна как гипотеза горных корней, поскольку чем выше блок, тем глубже он погружен во вмещающую среду. В 1940-х годах были получены сейсмические данные, подтверждающие представление об утолщении земной коры в горных областях.
Изостазия. Всякий раз, когда на земную поверхность поступает дополнительная нагрузка (например, в результате осадконакопления, вулканизма или оледенения), земная кора прогибается и проседает, а когда эта нагрузка снимается (в результате денудации, таяния ледниковых покровов и пр.), земная кора поднимается. Этот компенсационный процесс, известный как изостазия, вероятно, реализуется посредством горизонтального переноса масс в пределах мантии, где может происходить периодическое расплавление материала. Установлено, что некоторые участки побережья Швеции и Финляндии за последние 9000 лет поднялись более чем на 240 м, главным образом вследствие таяния ледникового покрова. Поднятые побережья Великих озер в Северной Америке сформировались также в результате изостазии. Несмотря на действие таких компенсационных механизмов, крупные океанические впадины и некоторые дельты обнаруживают значительный дефицит массы, в то время как некоторые районы Индии и Кипр - существенный ее избыток.
Вулканизм. Происхождение лавы. В некоторых районах земного шара магма во время вулканических извержений изливается на земную поверхность в виде лавы. Многие вулканические островные дуги, по-видимому, связаны с системой глубинных разломов. Центры землетрясений располагаются примерно на глубине до 700 км от уровня земной поверхности, т.е. вулканический материал поступает из верхней мантии. На островных дугах он часто имеет андезитовый состав, а поскольку андезиты по своему составу сходны с континентальной земной корой, многие геологи считают, что континентальная кора в этих районах наращивается за счет поступления мантийного вещества. Вулканы, действующие вдоль океанических хребтов (например, Гавайского), извергают материал преимущественно базальтового состава. Эти вулканы, вероятно, сопряжены с мелкофокусными землетрясениями, глубина которых не превышает 70 км. Поскольку базальтовые лавы встречаются как на материках, так и вдоль океанических хребтов, некоторые геологи предполагают, что непосредственно под земной корой существует слой, из которого поступают базальтовые лавы.
См. также ВУЛКАНЫ . Однако неясно, почему в одних районах из мантийного вещества образуются и андезиты, и базальты, а в других - только базальты. Если, как теперь полагают, мантия действительно является ультраосновной породой (т.е. обогащена железом и магнием), то лавы, произошедшие из мантии, должны иметь базальтовый, а не андезитовый состав, поскольку минералы андезитов отсутствуют в ультраосновных породах. Это противоречие разрешает теория тектоники плит, согласно которой океаническая кора поддвигается под островные дуги и на определенной глубине плавится. Эти расплавленные породы и изливаются в виде андезитовых лав.
Источники тепла. Одной из нерешенных проблем проявления вулканической активности является определение источника тепла, необходимого для локального плавления базальтового слоя или мантии. Такое плавление должно быть узколокализованным, поскольку прохождение сейсмических волн показывает, что кора и верхняя мантия обычно находятся в твердом состоянии. Более того, тепловой энергии должно быть достаточно для плавления огромных объемов твердого материала. Например, в США в бассейне р.Колумбия (штаты Вашингтон и Орегон) объем базальтов более 820 тыс. км3; такие же крупные толщи базальтов встречаются в Аргентине (Патагония), Индии (плато Декан) и ЮАР (возвышенность Большое Кару). В настоящее время существуют три гипотезы. Одни геологи считают, что плавление обусловлено локальными высокими концентрациями радиоактивных элементов, но такие концентрации в природе кажутся маловероятными; другие предполагают, что тектонические нарушения в форме сдвигов и разломов сопровождаются выделением тепловой энергии. Существует еще одна точка зрения, согласно которой верхняя мантия в условиях высоких давлений находится в твердом состоянии, а когда вследствие трещинообразования давление падает, она плавится и по трещинам происходит излияние жидкой лавы.
Геохимия и состав Земли. Определение химического состава Земли является трудной задачей, поскольку ядро, мантия и большая часть коры недоступны для непосредственного опробования и наблюдений и делать выводы приходится на основе интерпретации косвенных данных и аналогий.
Земля как гигантский метеорит. Предполагают, что метеориты представляют собой обломки ранее существовавших планет, по своему составу и строению имевших сходство с Землей. Существует несколько типов метеоритов. Наиболее известны и довольно часто встречаются железные метеориты, состоящие из металлического железа и железо-никелевых сплавов, которые, как полагают, составляли ядра существовавших планет и по аналогии должны быть идентичны земному ядру по плотности, составу и магнитным свойствам. Второй тип - каменные метеориты, состоящие преимущественно из железо-магнезиальных силикатных минералов. Они более распространены по сравнению с железными метеоритами и по своей плотности соответствуют породам, слагающим мантию. По составу каменные метеориты очень близки к ультраосновным породам Земли. Третий тип - смешанные метеориты, имеющие в своем составе металлы и силикаты, что указывает на их генезис из переходного (от мантии к ядру) слоя ранее существовавшей планеты.
Плотность Земли. Средняя плотность Земли в 5,5 раз выше плотности воды, в 5 раз выше плотности Венеры и в 3,9 раза - Марса. Согласно оценкам, увеличение плотности с глубиной, которое хорошо согласуется с общей массой Земли, моментом инерции, сейсмическими свойствами и сжимаемостью, распределяется следующим образом. Средняя плотность земной коры (по крайней мере, в ее верхней части до глубины 32 км) составляет 3,32 г/см3, ниже поверхности Мохоровичича она непрерывно возрастает (эта закономерность несколько нарушается на уровнях 415 и 988 км). На глубине 2900 км проходит граница между мантией и внешним ядром, где прослеживается резкий скачок плотности от 5,68 до 9,57 г/см3. С этой отметки и до границы между внешним и внутренним ядром на глубине 5080 км плотность продолжает непрерывно увеличиваться (составляя 11,54 г/см3 на глубине 4830 км). Плотность внутреннего ядра оценивается от 14 до 17 г/см3.
Земля как гигантская доменная печь. Некоторые геологи полагают, что если Земля некогда находилась в расплавленном состоянии, то вполне вероятно, что этот расплавленный материал разделялся на слои разного состава подобно тому, как это происходит в доменной печи, когда на дне скапливается металл, выше - сульфиды, а еще выше - силикаты. Возможно, недра Земли делятся в такой же последовательности на металлическое ядро и сульфидную и силикатную оболочки. Однако никаких признаков сульфидного слоя не было обнаружено.
Состав земной коры. Большая часть земной коры не доступна для изучения, потому что она перекрыта более молодыми осадочными породами, скрыта водами морей и океанов и даже если где-то выходит на поверхность, отбор образцов может быть выполнен из относительно небольших толщ. Более того, разнообразие горных пород и минералов и разная степень их участия в строении Земли затрудняют или делают невозможным получение репрезентативных проб. Любые количественные показатели или осредненные данные о химическом и минералогическом составе земной коры представляют грубое приближение к истинной характеристике. С большей или меньшей степенью достоверности общее представление о химическом составе земной коры было составлено на основании анализа более 5000 проб изверженных (магматических) пород. Установлено, что на 99% она состоит из 12 элементов. Их участие в весовых процентах распределяется следующим образом: кислород (46,6), кремний (27,7), алюминий (8,1), железо (5,0), кальций (3,6), натрий (2,8), магний (2,6), титан (2,1), марганец (0,4), фосфор (0,1), сера и углерод (вместе менее 0,1). Очевидно, что в земной коре преобладает кислород, поэтому 10 наиболее распространенных металлов присутствуют в форме оксидов. Однако обычно минералы, слагающие породы, представлены не простыми, а сложными оксидами, в состав которых входят несколько металлов. Поскольку одним из самых распространенных элементов на Земле является кремний, многие минералы представляют собой разнообразные сложные силикаты. Сочетание минералов в разных количественных пропорциях формирует многообразие горных пород.
Химический состав атмосферы. Современная атмосфера представляет собой результат медленной и продолжительной утраты в ходе вулканической деятельности и других процессов первоначальной атмосферы Земли. Примерно 3,1-2,7 млрд. лет назад с началом выделения больших количеств углекислого газа и водяных паров появились условия для жизнедеятельности первых растений, осуществляющих процесс фотосинтеза. Большие количества кислорода, выделявшиеся в атмосферу растениями, сначала расходовались на окисление металлов, о чем свидетельствует широкое распространение на земном шаре докембрийских железных руд. 1,6 млрд. лет назад содержание свободного кислорода в атмосфере достигло примерно 1% его современного количества, что позволило зародиться примитивным животным организмам. По-видимому, первозданная атмосфера имела восстановительный характер, тогда как современная, вторичная, атмосфера характеризуется окислительными свойствами. Постепенно ее химический состав менялся благодаря продолжающейся вулканической деятельности и эволюции органического мира.
Химический состав океанов. Предполагают, что первоначально на Земле вода отсутствовала. По всей вероятности, современные воды на поверхности Земли имеют вторичное происхождение, т.е. высвободились в виде пара из минералов земной коры и мантии в результате вулканической деятельности, а не были образованы путем соединения свободных молекул кислорода и водорода. Если бы морская вода постепенно накапливалась, то объем Мирового океана должен был бы непрерывно увеличиваться, однако прямые геологические доказательства этого обстоятельства отсутствуют; это означает, что океаны существовали на протяжении всей геологической истории Земли. Изменение химического состава океанических вод происходило постепенно.
Сиаль и сима. Существует разница между породами коры, которые подстилают континенты, и породами, залегающими под дном океанов. Состав континентальной коры соответствует гранодиориту, т.е. породе, состоящей из калиевого и натриевого полевого шпата, кварца и небольших количеств железо-магнезиальных минералов. Океаническая кора соответствует базальтам, состоящим из кальциевого полевого шпата, оливина и пироксена. Породы континентальной коры характеризуются светлой окраской, низкой плотностью и обычно кислым составом, часто их называют сиаль (по преобладанию Si и Al). Породы океанической коры отличаются темной окраской, высокой плотностью и основным составом, их называют сима (по преобладанию Si и Mg). Считается, что породы мантии имеют ультраосновной состав и состоят из оливина и пироксена. В современной российской научной литературе термины "сиаль" и "сима" не используются, т.к. считаются устаревшими.
ГЕОЛОГИЧЕСКИЕ ПРОЦЕССЫ
Геологические процессы подразделяются на экзогенные (разрушительные и аккумулятивные) и эндогенные (тектонические).
РАЗРУШИТЕЛЬНЫЕ ПРОЦЕССЫ
Денудация. Действие водотоков, ветра, ледников, морских волн, морозного выветривания и химического растворения приводят к разрушению и снижению поверхности материков (рис. 2). Продукты разрушения под действием гравитационных сил сносятся в океанические впадины, где происходит их накопление. Таким образом происходит усреднение состава и плотности пород, слагающих материки и котловины океанов, и уменьшение амплитуды рельефа Земли.



Ежегодно 32,5 млрд. т обломочного материала и 4,85 млрд. т растворенных солей выносится с материков и отлагается в морях и океанах, в результате чего вытесняется примерно 13,5 км3 морской воды. Если бы такие темпы денудации сохранились и в будущем, материки (объем надводной части которых 126,6 млн. км3) через 9 млн. лет превратились бы в почти плоские равнины - пенеплены. Такая пенепленизация (выравнивание) рельефа возможна лишь теоретически. В действительности изостазические поднятия компенсируют потери за счет денудации, а некоторые породы настолько прочны, что практически не поддаются разрушению. Континентальные отложения перераспределяются в результате совместного действия выветривания (разрушения пород), денудации (механического сноса пород под воздействием текучих вод, ледников, ветра и волновых процессов) и аккумуляции (отложения рыхлого материала и образования новых пород). Все эти процессы действуют лишь до определенного уровня (обычно уровня моря), который рассматривается как базис эрозии. При транспортировке рыхлые осадки сортируются по размеру, форме и плотности. В результате кварц, содержание которого в исходной породе может составлять всего несколько процентов, образует однородную толщу кварцевых песков. Аналогичным образом частицы золота и некоторых других тяжелых минералов, содержащих, например, олово и титан, концентрируются в руслах водотоков или на отмелях и образуют россыпные месторождения, а тонкозернистый материал отлагается в виде илов и затем превращается в глинистые сланцы. Такие компоненты, как, например, магний, натрий, кальций и калий, растворяются и выносятся поверхностными и грунтовыми водами, а затем осаждаются в пещерах и других полостях или поступают в морские воды.
Стадии развития эрозионного рельефа. Рельеф служит показателем стадии выравнивания (или пенепленизации) материков. В горах и районах, испытавших интенсивное поднятие, эрозионные процессы протекают наиболее активно. Такие районы характеризуются быстрым врезанием речных долин и увеличением их длины в верхнем течении, а ландшафт соответствует молодой, или юной, стадии эрозии. В других районах, где амплитуда высот невелика и в основном прекратилась эрозия, крупные реки преимущественно переносят влекомые и взвешенные наносы. Такой рельеф присущ зрелой стадии эрозии. На участках с незначительными амплитудами высот, где поверхность суши ненамного превышает уровень моря, преобладают аккумулятивные процессы. Там река обычно течет несколько выше общего уровня низкой равнины в естественном возвышении, сложенном осадочным материалом, и образует в приустьевой зоне дельту. Это самый древний эрозионный рельеф. Однако не все районы находятся на одной и той же стадии развития эрозии и имеют одинаковый облик. Формы рельефа весьма различаются в зависимости от климатических и погодных условий, состава и строения местных пород и характера эрозионного процесса (рис. 3, 4).















Перерывы эрозионных циклов. Отмеченная последовательность эрозионных процессов справедлива в отношении материков и океанических бассейнов, находящихся в статических условиях, однако на самом деле они подвержены многим динамическим процессам. Эрозионный цикл может быть прерван под влиянием изменений уровня моря (например, в связи с таянием ледниковых покровов) и высоты материков (например, в результате горообразования, разломной тектоники и вулканической деятельности). В Иллинойсе (США) морены перекрыли зрелый доледниковый рельеф, придав ему типичный молодой облик. В Большом каньоне Колорадо перерыв эрозионного цикла был обусловлен поднятием суши до отметки 2400 м. По мере поднятия территории р.Колорадо постепенно врезалась в свою пойму и оказалась ограниченной бортами долины. В результате этого перерыва образовались наложенные меандры, свойственные древним долинам рек, существующих в условиях молодого рельефа (рис. 5). В пределах плато Колорадо меандры врезаны на глубину 1200 м. Глубокие меандры р.Саскуэханна, которые прорезают горы Аппалачи, также свидетельствуют о том, что этот район некогда представлял собой низменность, которую пересекала "дряхлая" река.





АККУМУЛЯТИВНЫЕ ПРОЦЕССЫ
Осадконакопление - один из важнейших геологических процессов, в результате которого образуются новые породы. Материал, снесенный с суши, в конечном итоге накапливается в морях и океанах, где формируются толщи песка, алевритов и глины. Обычно алевриты и глинистые отложения осаждаются на морском дне дальше от берега. При последующем поднятии этих районов они преобразуются в глинистые сланцы. Пески отлагаются преимущественно на пляжах и в конце концов преобразуются в песчаники. Если продукты разрушения не подвергаются сортировке, то со временем они превращаются в конгломераты. Химические соединения, переносимые в растворах, пополняют запасы веществ, необходимых для жизнедеятельности морских растений и животных. Например, кальций используется для построения известковых раковин и оболочек, а вместе с фосфором - для построения костей и зубов животных; железо принимает участие в кроветворении у рыб и других животных, а кобальт является компонентом витамина В12. Когда животные умирают, их раковины и скелеты, состоящие из карбоната кальция, оседают на морском дне, а при последующем поднятии территории обнажаются в виде толщ известняка. Кроме того, химические вещества могут непосредственно осаждаться при испарении морской воды. Именно таким способом образуются месторождения поваренной соли. Если органические вещества накапливаются в континентальных условиях, формируются залежи каменного угля, а в морских - образуется нефть. Большей частью такого рода осадконакопление происходит на материковых окраинах и влечет за собой увеличение их площадей за счет наращивания дельт, шельфов и рифов. Именно в этих условиях формируются биогенные карбонатные осадки. Поскольку основная часть снесенного материала оседает как раз в полосе прибрежного мелководья, эта зона при небольшом понижении уровня моря может оказаться в субаэральных условиях. Лишь незначительная часть обломочного терригенного материала выносится далеко за пределы шельфа (рис. 6).



ТЕКТОНИКА
Давно установлено, что горы формируются в результате образования складок и разломов и тектонических поднятий осадочных толщ, которые накапливались на дне моря. Кроме того, имеется много доказательств, что районы наиболее интенсивных тектонических нарушений приурочены к прибрежным зонам морей, где мощность осадков наибольшая. Горообразование (орогенез) - один из важнейших процессов формирования рельефа Земли, в результате которого осадочные толщи, снесенные с материков, вновь подвергаются тектоническим поднятиям. Наблюдения в современных горных районах свидетельствуют о том, что в развитии рельефа можно выделить несколько четких этапов.
Образование геосинклиналей. Предполагают, что горообразование начинается с накопления мощных осадочных толщ в геосинклиналях - крупных вытянутых впадинах земной коры. Большинство из них испытывало медленное длительное погружение (в течение 50-100 млн. лет) и заполнение осадками мощностью иногда до 9 км. Установлено, что масштабы и темпы этих процессов сильно различались в пределах одной впадины и даже имели разную направленность: в то время как одна ее часть активно погружалась, другая находилась в относительно стабильных условиях и там не накапливались осадки. В образовании геосинклиналей и осадконакоплении прослеживается определенная цикличность: трансгрессии морей регулярно чередовались с регрессиями. Некоторые горные страны состоят из внутренних хребтов, сложенных складчатыми осадочными толщами, и параллельных им внешних хребтов, сложенных преимущественно вулканическими породами. Не исключено, что эти хребты формировались в разных геосинклинальных впадинах, но были взаимосвязаны. Впадины с осадочными породами называют миогеосинклиналями, а с вулканическими - эвгеосинклиналями. Взаимное положение этих двух типов было постоянным: эвгеосинклинали были обращены к морю, а миогеосинклинали располагались между эвгеосинклиналями и сушей. Обычно процессы горообразования сначала охватывали эвгеосинклинали, а затем - миогеосинклинали. Береговые хребты Вашингтона и Орегона и горы Сьерра-Невада в Калифорнии соответствовали эвгеосинклинальной зоне. Такой же генезис имеют Аппалачи, горы Новой Англии (в т.ч. Уайт-Маунтинс) и Пидмонт. Напротив, с миогеосиклиналями были связаны Скалистые горы в пределах Монтаны, Вайоминга и Колорадо, а также зона Долин и Хребтов в Пенсильвании и Теннеси.
Преобразование геосинклиналей. На определенных стадиях развития в геосинклиналях происходит образование складок и разломов, а заполняющие осадки метаморфизуются под воздействием высоких температур и давлений. Проявляются процессы сжатия, направленного под прямым углом к оси впадин, что сопровождается деформациями осадочных толщ.





Современные геосинклинали - это впадины вдоль островов Ява и Суматра, желобов Тонга - Кермадек, Пуэрто-Рико и др. Возможно, их дальнейшее прогибание тоже приведет к образованию гор. По мнению многих геологов, побережье Мексиканского залива в пределах США тоже представляет собой современную геосинклиналь, хотя, судя по данным бурения, признаки горообразования там не выражены. Активные проявления современной тектоники и горообразования наиболее четко наблюдаются в молодых горных странах - Альпах, Андах, Гималаях и Скалистых горах.
Тектонические поднятия. На заключительных стадиях развития геосинклиналей, когда горообразование завершается, происходит интенсивное общее поднятие материков; в пределах горных стран на этой стадии рельефообразования происходят дизъюнктивные дислокации (смещение отдельных блоков горных пород по линиям разломов).
ГЕОЛОГИЧЕСКОЕ ВРЕМЯ
Стратиграфическая шкала. Стандартная шкала геологического времени (или геологическая колонка) - результат систематического изучения осадочных пород в разных районах земного шара. Поскольку большинство ранних работ проводилось в Европе, стратиграфическая последовательность отложений этого региона была принята в качестве эталона и для других районов. Однако в силу различных причин эта шкала имеет недостатки и пробелы, поэтому она постоянно уточняется. Шкала очень подробна для более молодых геологических периодов, но ее детальность существенно снижается для более древних. Это неизбежно, поскольку геологическая летопись наиболее полна для событий недавнего прошлого и становится более фрагментарной с увеличением возраста отложений. Стратиграфическая шкала основана на учете ископаемых организмов, которые служат единственным надежным критерием для межрегиональных корреляций (особенно дальних). Установлено, что некоторые ископаемые соответствуют строго определенному времени и поэтому считаются руководящими. Породы, содержащие эти руководящие формы и их комплексы, занимают строго определенное стратиграфическое положение. Значительно труднее проводить корреляции для палеонтологически немых пород, не содержащих ископаемых организмов. Поскольку хорошо сохранившиеся раковины встречаются только начиная с кембрийского периода (примерно 570 млн. лет назад), докембрийское время, охватывающее ок. 85% геологической истории, нельзя изучить и подразделить столь же детально, как более молодые эпохи. Для межрегиональных корреляций палеонтологически немых пород используются геохимические методы датирования. В случае необходимости в стандартную стратиграфическую шкалу вводились изменения, отражающие региональную специфику. Например, в Европе выделяется каменноугольный период, а в США ему соответствуют два - миссисипский и пенсильванский. Повсеместно возникают трудности при корреляции местных стратиграфических схем с международной геохронологической шкалой. Международная комиссия по стратиграфии помогает решать эти проблемы и устанавливает нормативы для стратиграфической номенклатуры. Она настоятельно рекомендует использовать при геологической съемке местные стратиграфические подразделения, а для сравнения сопоставлять их с международной геохронологической шкалой. Некоторые ископаемые имеют очень широкое, почти глобальное распространение, а другие - узко региональное. Эры - самые крупные подразделения истории Земли. Каждая из них объединяет несколько периодов, характеризующихся развитием определенных классов древних организмов. Массовое вымирание различных групп организмов происходило в конце каждой эры. Например, трилобиты исчезли в конце палеозоя, а динозавры - в конце мезозоя. Причины этих катастроф еще не выяснены. Это могли быть критические стадии генетической эволюции, пики космического излучения, выбросы вулканических газов и пепла, а также очень резкие изменения климата. Имеются доводы в поддержку каждой из этих гипотез. Однако постепенное исчезновение большого числа семейств и классов животных и растений к концу каждой эры и появление новых с началом следующей эры все еще остается одной из загадок геологии. Не увенчались успехом попытки связать массовую гибель животных на завершающих этапах палеозоя и мезозоя с глобальными циклами горообразования.
Геохронология и шкала абсолютного возраста. Стратиграфическая шкала отражает лишь последовательность напластования пород и потому может использоваться только для обозначения относительного возраста различных слоев (рис. 9). Возможность установления абсолютного возраста пород появилась после открытия радиоактивности. До этого абсолютный возраст пытались оценить другими методами, например, путем анализа содержания солей в морской воде. При допущении, что оно соответствует твердому стоку рек земного шара, может быть измерен минимальный возраст морей. На основании предположения, что изначально океаническая вода не содержала примесей солей, и учета темпов их поступления возраст морей оценивался в широких пределах - от 20 млн. до 200 млн. лет. Кельвин оценил возраст слагающих Землю пород в 100 млн. лет, поскольку, по его мнению, столько времени понадобилось на то, чтобы изначально расплавленная Земля остыла до нынешней температуры ее поверхности.



Если не считать этих попыток, первые геологи довольствовались определением относительного возраста пород и геологических событий. Без всяких объяснений допускалось, что прошло довольно много времени с момента возникновения Земли до формирования различных типов отложений в результате процессов, которые действуют и поныне. И лишь когда ученые стали измерять скорости радиоактивного распада, у геологов появились "часы" для определения абсолютного и относительного возраста пород, содержащих радиоактивные элементы. Темпы радиоактивного распада некоторых элементов незначительны. Это позволяет определять возраст древних событий путем измерения содержания таких элементов и продуктов их распада в конкретном образце. Поскольку скорость радиоактивного распада не зависит от параметров окружающей среды, можно определять возраст пород, находящихся в любых геологических условиях. Наиболее часто применяются уран-свинцовый и калий-аргоновый методы. Уран-свинцовый метод позволяет произвести точное датирование на основе замеров концентрации радиоизотопов тория (232Th) и урана (235U и 238U). При радиоактивном распаде образуются изотопы свинца (208Pb, 207Pb и 206Pb). Однако породы, содержащие эти элементы в достаточных количествах, встречаются довольно редко. Калий-аргоновый метод базируется на весьма медленном радиоактивном превращении изотопа 40K в 40Ar, что позволяет датировать события, имеющие возраст в несколько миллиардов лет, по соотношению в породах этих изотопов. Значительное преимущество калий-аргонового метода заключается в том, что калий, весьма распространенный элемент, присутствует в минералах, образованных во всех геологических обстановках - вулканической, метаморфической и осадочной. Однако возникающий в результате радиоактивного распада инертный газ аргон химически не связан и происходит его утечка. Следовательно, для датирования могут быть надежно использованы только те минералы, в которых он хорошо удерживается. Несмотря на этот недостаток, калий-аргоновый метод используется весьма широко. Абсолютный возраст самых древних пород на планете составляет 3,5 млрд. лет. В земной коре всех материков представлены очень древние породы, поэтому вопрос, какой из них самый древний, даже не возникает. Возраст метеоритов, упавших на Землю, по определениям калий-аргоновым и уран-свинцовым методами, составляет примерно 4,5 млрд. лет. По оценкам геофизиков, основывающимся на данных уран-свинцового метода, Земля тоже имеет возраст ок. 4,5 млрд. лет. Если эти оценки верны, то в геологической летописи имеется пробел в 1 млрд. лет, соответствующий важному раннему этапу эволюции Земли. Возможно, самые ранние свидетельства были уничтожены или стерты каким-либо образом, когда Земля находилась в расплавленном состоянии. Вполне вероятно также, что древнейшие породы Земли были денудированы или перекристаллизовались за многие миллионы лет.
ИСТОРИЧЕСКАЯ ГЕОЛОГИЯ
Архейская эра. Самые древние породы, обнажающиеся на поверхности материков, образовались в архейскую эру. Распознавание этих пород затруднено, поскольку их выходы рассредоточены и в большинстве случаев перекрыты мощными толщами более молодых пород. Там, где эти породы обнажаются, они настолько метаморфизованы, что зачастую нельзя восстановить их исходный характер. Во время многочисленных продолжительных этапов денудации были разрушены мощные толщи этих пород, а сохранившиеся содержат очень мало ископаемых организмов и поэтому их корреляция затруднительна или вообще невозможна. Интересно отметить, что самые древние известные архейские породы, вероятно, представляют собой сильно метаморфизованные осадочные породы, а более древние породы, перекрытые ими, были расплавлены и разрушены в результате многочисленных магматических интрузий. Поэтому до сих пор не обнаружены следы первичной земной коры. В Северной Америке имеются два больших ареала выходов на поверхность архейских пород. Первый из них - Канадский щит - расположен в центральной Канаде по обе стороны Гудзонова залива. Хотя местами архейские породы перекрыты более молодыми, на большей части территории Канадского щита они слагают дневную поверхность. Древнейшие известные в этом районе породы представлены мраморами, аспидными и кристаллическими сланцами, переслаивающимися с лавами. Первоначально здесь были отложены известняки и глинистые сланцы, впоследствии запечатанные лавами. Затем эти породы испытали воздействие мощных тектонических движений, которые сопровождались крупными гранитными интрузиями. В конечном итоге толщи осадочных пород подверглись сильному метаморфизму. После длительного периода денудации эти сильно метаморфизованные породы местами были выведены на поверхность, но общий фон составляют граниты. Выходы архейских пород имеются также в Скалистых горах, где слагают гребни многих хребтов и отдельные вершины, например Пайкс-Пик. Более молодые породы там разрушены денудацией. В Европе архейские породы обнажаются на территории Балтийского щита в пределах Норвегии, Швеции, Финляндии и России. Они представлены гранитами и сильно метаморфизованными осадочными породами. Такие же выходы архейских пород имеются на юге и юго-востоке Сибири, в Китае, западной Австралии, Африке и на северо-востоке Южной Америки. Древнейшие следы жизнедеятельности бактерий и колоний одноклеточных сине-зеленых водорослей Collenia были обнаружены в архейских породах южной Африки (Зимбабве) и провинции Онтарио (Канада).
Протерозойская эра. В начале протерозоя после длительного периода денудации суша была в значительной степени разрушена, отдельные части материков испытали погружение и были затоплены мелководными морями, а некоторые низменные котловины начали заполняться континентальными отложениями. В Северной Америке самые значительные выходы протерозойских пород имеются в четырех районах. Первый из них приурочен к южной части Канадского щита, где мощные толщи глинистых сланцев и песчаников рассматриваемого возраста обнажаются вокруг оз. Верхнего и северо-восточнее оз. Гурон. Эти породы имеют как морское, так и континентальное происхождение. Их распределение указывает на то, что положение мелководных морей на протяжении протерозоя значительно менялось. Во многих местах морские и континентальные осадки переслаиваются с мощными лавовыми толщами. По окончании осадконакопления происходили тектонические движения земной коры, протерозойские породы претерпевали складкообразование и формировались крупные горные системы. В предгорных районах к востоку от Аппалачей имеются многочисленные выходы протерозойских пород. Первоначально они отлагались в виде пластов известняков и глинистых сланцев, а затем во время орогенеза (горообразования) метаморфизовались и превратились в мрамора, аспидные и кристаллические сланцы. В районе Большого каньона мощная толща протерозойских песчаников, глинистых сланцев и известняков несогласно перекрывает архейские породы. В северной части Скалистых гор была отложена толща протерозойских известняков мощностью ок. 4600 м. Хотя протерозойские образования в этих районах испытали воздействие тектонических движений и были смяты в складки и разбиты разломами, эти подвижки были недостаточно интенсивными и не могли привести к метаморфизации пород. Поэтому там сохранились исходные осадочные текстуры. В Европе значительные выходы протерозойских пород имеются в пределах Балтийского щита. Они представлены сильно метаморфизованными мраморами и аспидными сланцами. На северо-западе Шотландии мощная толща протерозойских песчаников перекрывает архейские граниты и кристаллические сланцы. Обширные выходы протерозойских пород встречаются на западе Китая, в центральной Австралии, южной Африке и центральной части Южной Америки. В Австралии указанные породы представлены мощной толщей неметаморфизованных песчаников и глинистых сланцев, а в восточной Бразилии и южной Венесуэле - сильно метаморфизованными аспидными и кристаллическими сланцами. Ископаемые сине-зеленые водоросли Collenia весьма широко распространены на всех материках в неметаморфизованных известняках протерозойского возраста, где также обнаружены немногочисленные обломки раковин примитивных моллюсков. Однако остатки животных очень редки, и это свидетельствует о том, что большинство организмов отличалось примитивным строением и еще не имело твердых оболочек, которые сохраняются в ископаемом состоянии. Хотя следы ледниковых периодов фиксируются для ранних этапов истории Земли, обширное оледенение, имевшее почти глобальное распространение, отмечается только в самом конце протерозоя.
Палеозойская эра. После того, как суша пережила длительный период денудации в конце протерозоя, некоторые ее территории испытали прогибание и были затоплены мелководными морями. В результате денудации возвышенных участков осадочный материал сносился водными потоками в геосинклинали, где накопились толщи палеозойских осадочных пород мощностью более 12 км. В Северной Америке в начале палеозойской эры образовались две крупные геосинклинали. Одна из них, называемая Аппалачской, протянулась от северной части Атлантического океана через юго-восточную Канаду и далее на юг к Мексиканскому заливу вдоль оси современных Аппалачей. Другая геосинклиналь соединяла Северный Ледовитый океан с Тихим, проходя несколько восточнее Аляски на юг через восточную часть Британской Колумбии и западную часть Альберты, далее через восточную Неваду, западную Юту и южную Калифорнию. Таким образом Северная Америка была разделена на три части. В отдельные периоды палеозоя ее центральные районы отчасти затоплялись и обе геосинклинали соединялись мелководными морями. В другие периоды в результате изостатических поднятий суши или колебаний уровня Мирового океана происходили морские регрессии, и тогда в геосинклиналях откладывался терригенный материал, смытый из сопредельных возвышенных районов. В палеозое сходные условия существовали и на других материках. В Европе огромные моря периодически затопляли Британские о-ва, территории Норвегии, Германии, Франции, Бельгии и Испании, а также обширную область Восточно-Европейской равнины от Балтийского моря до Уральских гор. Крупные выходы палеозойских пород имеются также в Сибири, Китае и северной Индии. Они являются коренными породами в большинстве районов восточной Австралии, северной Африки, а также в северных и центральных районах Южной Америки. Палеозойская эра делится на шесть периодов неодинаковой продолжительности, чередующихся с кратковременными этапами изостатических поднятий или морских регрессий, во время которых в пределах материков осадкообразование не происходило (рис. 9, 10).







Кембрийский период - самый ранний период палеозойской эры, названный по латинскому названию Уэльса (Камбрия), где впервые были изучены породы этого возраста. В Северной Америке в кембрии обе геосинклинали были затоплены, а во второй половине кембрия центральная часть материка занимала столь низкое положение, что оба прогиба соединялись мелководным морем и там накапливались слои песчаников, глинистых сланцев и известняков. В Европе и Азии происходила крупная морская трансгрессия. Эти части света были в значительной степени затоплены. Исключение составляли три крупных обособленных массива суши (Балтийский щит, Аравийский п-ов и южная Индия) и ряд небольших изолированных участков суши в южной Европе и южной Азии. Менее крупные морские трансгрессии происходили в Австралии и центральной части Южной Америки. Кембрий отличался довольно спокойными тектоническими обстановками. В отложениях этого периода сохранились первые многочисленные ископаемые, свидетельствующие о развитии жизни на Земле. Хотя наземные растения или животные не отмечены, мелководные эпиконтинентальные моря и затопленные геосинклинали изобиловали многочисленными беспозвоночными животными и водными растениями. Наиболее необычные и интересные животные того времени - трилобиты (рис. 11), класс вымерших примитивных членистоногих, были широко распространены в кембрийских морях. Их известково-хитиновые панцири обнаружены в породах этого возраста на всех материках. Кроме того, существовало много типов плеченогих (брахиопод), моллюсков и других беспозвоночных. Таким образом, в кембрийских морях присутствовали все основные формы беспозвоночных организмов (за исключением кораллов, мшанок и пелеципод).



В конце кембрийского периода большая часть суши испытала поднятие и произошла кратковременная морская регрессия. Ордовикский период - второй период палеозойской эры (называющийся по имени кельтского племени ордовиков, населявшего территорию Уэльса). В этот период материки снова испытали прогибание, в результате чего геосинклинали и низменные котловины превратились в мелководные моря. В конце ордовика ок. 70% территории Северной Америки было затоплено морем, в котором отложились мощные толщи известняков и глинистых сланцев. Морем были покрыты также значительные территории Европы и Азии, частично - Австралия и центральные районы Южной Америки. Все кембрийские беспозвоночные продолжали развиваться и в ордовике. Кроме того, появились кораллы, пелециподы (двустворчатые моллюски), мшанки и первые позвоночные. В Колорадо в ордовикских песчаниках обнаружены фрагменты самых примитивных позвоночных - бесчелюстных (остракодерм), у которых отсутствовали настоящие челюсти и парные конечности, а передняя часть тела была покрыта костными пластинками, образующими защитный панцирь. На основе палеомагнитного изучения пород установлено, что на протяжении большей части палеозоя Северная Америка располагалась в экваториальной зоне. Ископаемые организмы и широко распространенные известняки этого времени свидетельствуют о господстве в ордовике теплых мелководных морей. Австралия располагалась близ Южного полюса, а северо-западная Африка - в районе самого полюса, что подтверждается запечатлевшимися в ордовикских породах Африки признаками широкого распространения оледенения. В конце ордовикского периода в результате тектонических движений происходили поднятие материков и морская регрессия. Местами коренные кембрийские и ордовикские породы испытали процесс складкообразования, который сопровождался ростом гор. Этот древнейший этап орогенеза носит название каледонской складчатости.
Силурийский период. Впервые породы этого периода были изучены также в Уэльсе (название периода происходит от кельтского племени силуров, населявшего этот регион). После тектонических поднятий, ознаменовавших окончание ордовикского периода, наступил денудационный этап, а затем в начале силура материки снова испытали прогибание, а моря затопили низменные районы. В Северной Америке в раннем силуре площадь морей существенно сократилась, однако в среднем силуре они заняли почти 60% ее территории. Сформировалась мощная толща морских известняков ниагарской формации, получившей свое название от Ниагарского водопада, порог которого она слагает. В позднем силуре площади морей сильно сократились. В полосе, простирающейся от современного штата Мичиган до центральной части штата Нью-Йорк, накапливались мощные соленосные пласты. В Европе и Азии силурийские моря были широко распространены и занимали почти те же территории, что и кембрийские моря. Незатопленными оставались те же изолированные массивы, что и в кембрии, а также значительные территории северного Китая и Восточной Сибири. В Европе мощные известняковые толщи накапливались по периферии южной оконечности Балтийского щита (в настоящее время они частично затоплены Балтийским морем). Небольшие моря были распространены в восточной Австралии, северной Африке и в центральных районах Южной Америки. В силурийских породах обнаружены в общем те же основные представители органического мира, что и в ордовикских. Наземные растения в силуре еще не появились. Среди беспозвоночных гораздо более обильными стали кораллы, в результате жизнедеятельности которых во многих районах сформировались массивные коралловые рифы. Трилобиты, столь характерные для кембрийских и ордовикских пород, утрачивают свое доминирующее значение: их становится меньше как в количественном, так и видовом отношениях. В конце силура появилось множество крупных водных членистоногих, называемых эвриптеридами, или ракоскорпионами. Силурийский период в Северной Америке завершился без крупных тектонических подвижек. Однако в Западной Европе в это время образовался пояс каледонид. Эта горная цепь простиралась на территории Норвегии, Шотландии и Ирландии. Орогенез происходил также в северной Сибири, в результате чего ее территория была так высоко поднята, что больше уже никогда не затоплялась. Девонский период назван по имени графства Девон в Англии, где впервые были изучены породы этого возраста. После денудационного перерыва отдельные районы материков снова испытали погружение и были затоплены мелководными морями. В северной Англии и частично в Шотландии молодые каледониды препятствовали проникновению моря. Однако их разрушение привело к накоплению мощных толщ терригенных песчаников в долинах предгорных рек. Эта формация древних красных песчаников известна хорошо сохранившимися ископаемыми рыбами. Южная Англия в это время была покрыта морем, в котором отлагались мощные толщи известняков. Значительные территории на севере Европы были тогда затоплены морями, в которых накапливались слои глинистых сланцев и известняков. При врезании Рейна в эти толщи в районе массива Эйфель образовались живописные утесы, которые поднимаются по берегам долины. Девонские моря покрывали многие районы европейской части России, южной Сибири и южного Китая. Обширный морской бассейн затопил центральную и западную Австралию. Эта территория не покрывалась морем с кембрийского периода. В Южной Америке морская трансгрессия распространилась на некоторые центральные и западные районы. Кроме того, существовал узкий субширотный прогиб в Амазонии. В Северной Америке очень широко распространены девонские породы. На протяжении большей части этого периода существовали два крупных геосинклинальных бассейна. В среднем девоне морская трансгрессия распространилась на территорию современной долины р. Миссисипи, где накопилась многослойная толща известняков. В верхнем девоне мощные горизонты сланцев и песчаников сформировались в восточных районах Северной Америки. Эти обломочные толщи соответствуют этапу горообразования, начавшемуся в конце среднего девона и продолжавшемуся до окончания этого периода. Горы простирались вдоль восточного крыла Аппалачской геосинклинали (от современных юго-восточных районов США до юго-восточной Канады). Этот регион был сильно поднят, его северная часть претерпела складкообразование, затем там произошли обширные гранитные интрузии. Этими гранитами сложены горы Уайт-Маунтинс в Нью-Гэмпшире, Стоун-Маунтин в Джорджии и ряд других горных сооружений. Верхнедевонские, т.н. Акадские, горы были переработаны денудационными процессами. В результате к западу от Аппалачской геосинклинали накопилась слоистая толща песчаников, мощность которых местами превышает 1500 м. Они широко представлены в районе гор Кэтскилл, откуда и пошло название песчаников Кэтскилл. В меньших масштабах горообразование в это же время проявилось в некоторых районах Западной Европы. Орогенез и тектонические поднятия земной поверхности послужили причиной морской регрессии в конце девонского периода. В девоне произошли некоторые важные события в эволюции жизни на Земле. Во многих районах земного шара были обнаружены первые бесспорные находки наземных растений. Так, например, в окрестностях Гилбоа (шт. Нью-Йорк) было найдено много видов папоротникообразных, включая гигантские древовидные. Среди беспозвоночных были широко распространены губки, кораллы, мшанки, брахиоподы и моллюски (рис. 12). Существовало несколько типов трилобитов, хотя их численность и видовое разнообразие значительно сократились по сравнению с силуром. Девон часто называют "веком рыб" благодаря пышному расцвету этого класса позвоночных. Хотя еще существовали примитивные бесчелюстные, преобладать стали более совершенные формы. Акулообразные рыбы достигали в длину 6 м. В это время появились двоякодышащие рыбы, у которых плавательный пузырь трансформировался в примитивные легкие, что позволяло им существовать какое-то время на суше, а также кистеперые и лучеперые. В верхнем девоне обнаружены первые следы наземных животных - крупных саламандроподобных земноводных, называемых стегоцефалами. Особенности скелета показывают, что они развились из двоякодышащих рыб путем дальнейшего усовершенствования легких и видоизменения плавников и превращения их в конечности.



Каменноугольный период. После некоторого перерыва материки снова испытали погружение и их низменные участки превратились в мелководные моря. Так начался каменноугольный период, получивший свое название по широкому распространению угольных залежей как в Европе, так и в Северной Америке. В Америке его ранний этап, характеризовавшийся морскими обстановками, раньше называли миссисипским по мощной толще известняков, сформировавшейся в пределах современной долины р. Миссисипи, а теперь его относят к нижнему отделу каменноугольного периода. В Европе на протяжении всего каменноугольного периода территории Англии, Бельгии и северной Франции были большей частью затоплены морем, в котором сформировались мощные горизонты известняков. Затоплялись также некоторые районы южной Европы и южной Азии, где отложились мощные слои глинистых сланцев и песчаников. Некоторые из этих горизонтов имеют континентальное происхождение и содержат много ископаемых остатков наземных растений, а также вмещают угленосные пласты. Поскольку нижнекаменноугольные формации мало представлены в Африке, Австралии и Южной Америке, можно предполагать, что эти территории находились преимущественно в субаэральных условиях. Кроме того, имеются свидетельства широкого распространения там материкового оледенения. В Северной Америке Аппалачскую геосинклиналь с севера ограничивали Акадские горы, а с юга, со стороны Мексиканского залива, в нее проникало Миссисипское море, которое заливало и долину Миссисипи. Небольшие морские бассейны занимали некоторые участки на западе материка. В районе долины Миссисипи накапливалась многослойная толща известняков и сланцев. Один из этих горизонтов, т.н. индианский известняк, или спергенит, является хорошим строительным материалом. Он использовался при сооружении многих правительственных зданий в Вашингтоне. В конце каменноугольного периода в Европе широко проявилось горообразование. Цепи гор простирались от южной Ирландии через южную Англию и северную Францию в южную Германию. Этот этап орогенеза называют герцинским, или варисцийским. В Северной Америке локальные поднятия происходили в конце миссисипского периода. Эти тектонические движения сопровождались морской регрессией, развитию которой способствовали также оледенения южных материков. В целом органический мир нижнекаменноугольного (или миссисипского) времени был таким же, как и в девоне. Однако, помимо большего разнообразия типов древовидных папоротников, флора пополнилась древовидными плаунами и каламитовыми (древовидными членистостебельными класса хвощей). Беспозвоночные в основном были представлены теми же формами, что и в девоне. В миссисипское время стали более обычными морские лилии - донные животные, по форме сходные с цветком. Среди ископаемых позвоночных многочисленны акулоподобные рыбы и стегоцефалы. В начале позднекаменноугольного времени (в Северной Америке - пенсильванского) условия на материках стали быстро меняться. Как следует из значительно более широкого распространения континентальных осадков, моря занимали меньшие пространства. Северо-западная Европа большую часть этого времени находилась в субаэральных условиях. Обширное эпиконтинентальное Уральское море широко распространилось в северной и центральной России, а крупная геосинклиналь простиралась через южную Европу и южную Азию (современные Альпы, Кавказ и Гималаи расположены вдоль ее оси). Этот прогиб, именующийся геосинклиналью, или морем, Тетис, существовал на протяжении ряда последующих геологических периодов. На территории Англии, Бельгии и Германии простирались низменности. Здесь в результате небольших колебательных движений земной коры происходило чередование морских и континентальных обстановок. Когда море отступало, формировались низменные заболоченные ландшафты с лесами из древовидных папоротников, древовидных плаунов и каламитовых. При наступании морей осадочные образования перекрывали леса, уплотняя древесные остатки, которые превращались в торф, а затем в уголь. В позднекаменноугольное время на материках Южного полушария распространилось покровное оледенение. В Южной Америке в результате морской трансгрессии, проникавшей с запада, была затоплена большая часть территории современных Боливии и Перу. В раннепенсильванское время в Северной Америке Аппалачская геосинклиналь замкнулась, утратила связь с Мировым океаном, и в восточных и центральных районах США накапливались терригенные песчаники. В середине и конце этого периода во внутренних районах Северной Америки (так же, как в Западной Европе) преобладали низменности. Здесь мелководные моря периодически уступали место болотам, в которых накапливались мощные торфяные залежи, впоследствии трансформировавшиеся в крупные угольные бассейны, которые простираются от Пенсильвании до восточного Канзаса. Некоторые западные районы Северной Америки заливались морем на протяжении большей части этого периода. Там отлагались слои известняков, сланцев и песчаников. Широкое распространение субаэральных обстановок в значительной мере способствовало эволюции наземных растений и животных. Гигантские леса из древовидных папоротников и плаунов покрывали обширные заболоченные низменности. Эти леса изобиловали насекомыми и паукообразными. Один из видов насекомых, самый крупный в геологической истории, был похож на современную стрекозу, но имел размах крыльев ок. 75 см. Значительно большего видового разнообразия достигли стегоцефалы. Некоторые превышали в длину 3 м. Только в Северной Америке в болотных отложениях пенсильванского времени было обнаружено более 90 видов этих гигантских земноводных, имевших сходство с саламандрами. В этих же породах были найдены остатки древнейших пресмыкающихся. Однако из-за фрагментарности находок трудно составить полное представление о морфологии этих животных. Вероятно, эти примитивные формы были похожи на аллигаторов.
Пермский период. Изменения природных условий, начавшиеся в позднекаменноугольное время, еще больше проявились в пермском периоде, завершившем палеозойскую эру. Его название происходит от Пермской области в России. В начале этого периода море занимало Уральскую геосинклиналь - прогиб, следовавший согласно простиранию современных Уральских гор. Мелководное море периодически покрывало некоторые районы Англии, северной Франции и южной Германии, где накапливались слоистые толщи морских и континентальных осадков - песчаников, известняков, глинистых сланцев и каменной соли. Море Тетис существовало на протяжении большей части периода, и в районе северной Индии и современных Гималаев образовалась мощная толща известняков. Пермские отложения большой мощности представлены в восточной и центральной Австралии и на островах Южной и Юго-Восточной Азии. Они широко распространены в Бразилии, Боливии и Аргентине, а также в южной Африке. Многие пермские формации в северной Индии, Австралии, Африке и Южной Америке имеют континентальное происхождение. Они представлены уплотненными ледниковыми отложениями, а также широко распространенными водно-ледниковыми песками. В Центральной и Южной Африке этими породами начинается мощная толща континентальных отложений, известная как серия кару. В Северной Америке пермские моря занимали меньшую площадь по сравнению с предыдущими периодами палеозоя. Главная трансгрессия распространялась из западной части Мексиканского залива на север через территорию Мексики и проникла в южные районы центральной части США. Центр этого эпиконтинентального моря располагался в пределах современного штата Нью-Мексико, где сформировалась мощная толща известняков серии кэпитен. Благодаря деятельности подземных вод эти известняки приобрели сотовую структуру, особенно ярко выраженную в знаменитых Карлсбадских пещерах (шт. Нью-Мексико, США). Восточнее, в Канзасе и Оклахоме, отложились прибрежные фации красных глинистых сланцев. В конце перми, когда площадь, занятая морем, значительно сократилась, сформировались мощные соленосные и гипсоносные толщи. В конце палеозойской эры, отчасти в каменноугольном периоде и отчасти - в пермском, во многих районах начался орогенез. Мощные толщи осадочных пород Аппалачской геосинклинали были смяты в складки и разбиты разломами. В результате образовались горы Аппалачи. Этот этап горообразования в Европе и Азии называют герцинским, или варисцийским, а в Северной Америке - аппалачским. Растительный мир пермского периода был такой же, как и во второй половине каменноугольного. Однако растения имели меньшие размеры и не были так многочисленны. Это указывает на то, что климат пермского периода стал холоднее и суше. Беспозвоночные животные перми были унаследованы от предыдущего периода. Большой скачок произошел в эволюции позвоночных (рис. 13). На всех материках континентальные отложения пермского возраста содержат многочисленные остатки пресмыкающихся, достигавших в длину 3 м. Все эти предки мезозойских динозавров отличались примитивным строением и внешне были похожи на ящериц или аллигаторов, но иногда имели необычные особенности, например, высокий парусообразный плавник, протягивающийся от шеи до хвоста вдоль спины, у диметродона. Все еще многочисленными были стегоцефалы.



В конце пермского периода горообразование, проявившееся во многих районах земного шара на фоне общего поднятия материков, привело к столь значительным изменениям окружающей среды, что начали вымирать многие характерные представители палеозойской фауны. Пермский период был заключительной стадией существования многих беспозвоночных, особенно трилобитов. Мезозойская эра, подразделяемая на три периода, отличалась от палеозойской преобладанием континентальных обстановок над морскими, а также составом флоры и фауны. Наземные растения, многие группы беспозвоночных и особенно позвоночные животные приспособились к новым обстановкам и претерпели существенные изменения. Триасовый период открывает мезозойскую эру. Его название происходит от греч. trias (троица) в связи с четким трехчленным строением толщи отложений этого периода в северной Германии. В основании толщи залегают красноцветные песчаники, в середине - известняки, а вверху - красноцветные песчаники и глинистые сланцы. На протяжении триаса значительные территории Европы и Азии были заняты озерами и мелководными морями. Эпиконтинентальное море покрывало Западную Европу, причем его береговая линия прослеживается на территории Англии. В этом морском бассейне и накапливались вышеупомянутые стратотипические осадки. Песчаники, залегающие в нижней и верхней частях толщи, отчасти имеют континентальное происхождение. Другой триасовый морской бассейн проникал на территорию северной России и распространялся к югу по Уральскому прогибу. Огромное море Тетис тогда покрывало примерно такую же территорию, как и в позднекаменноугольное и пермское время. В этом море накопилась мощная толща доломитовых известняков, которыми сложены Доломитовые Альпы северной Италии. На юге центральной Африки триасовый возраст имеет большая часть верхней толщи континентальной серии кару. Эти горизонты известны обилием ископаемых остатков пресмыкающихся. В конце триаса на территории Колумбии, Венесуэлы и Аргентины образовались покровы алевритов и песков континентального генезиса. Пресмыкающиеся, найденные в этих слоях, обнаруживают удивительное сходство с фауной серии кару в южной Африке. В Северной Америке триасовые породы не так широко распространены, как в Европе и Азии. Продукты разрушения Аппалачей - красноцветные континентальные пески и глины - накапливались во впадинах, расположенных восточнее этих гор и испытывавших погружение. Эти отложения, переслаивающиеся с горизонтами лавы и пластовыми интрузиями, разбиты разломами и имеют падение к востоку. В Ньюаркском бассейне в Нью-Джерси и долине р.Коннектикут им соответствуют коренные породы серии ньюарк. Мелководные моря занимали некоторые западные районы Северной Америки, где накапливались известняки и глинистые сланцы. Континентальные песчаники и глинистые сланцы триаса выходят по бортам Большого каньона (шт. Аризона). Органический мир в триасовом периоде был существенно иным, чем в пермском периоде. Для этого времени характерно обилие крупных хвойных деревьев, остатки которых часто встречаются в триасовых континентальных отложениях. Глинистые сланцы формации чинл на севере Аризоны насыщены окременелыми стволами деревьев. В результате выветривания сланцев они обнажились и теперь образуют каменный лес. Широкое развитие получили саговниковые (или цикадофиты), растения с тонкими или бочонковидными стволами и свисающими с макушки рассеченными, как у пальм, листьями. Некоторые виды саговниковых существуют и в современных тропических районах. Из беспозвоночных самыми распространенными были моллюски, среди которых преобладали аммониты (рис. 14), имевшие отдаленное сходство с современными наутилусами (или корабликами) и многокамерную раковину. Существовало много видов двустворчатых моллюсков. Значительный прогресс произошел в эволюции позвоночных. Хотя стегоцефалы были еще довольно обычны, преобладать стали пресмыкающиеся, среди которых появилось множество необычных групп (например, фитозавры, форма тела которых была, как у современных крокодилов, а челюсти узкие и длинные с острыми коническими зубами). В триасе впервые появились настоящие динозавры, эволюционно более развитые, чем их примитивные предки. Конечности у них были направлены вниз, а не в стороны (как у крокодилов), что позволяло им передвигаться подобно млекопитающим и поддерживать тело над землей. Динозавры передвигались на задних ногах, удерживая равновесие при помощи длинного хвоста (как кенгуру), и отличались небольшим ростом - от 30 см до 2,5 м. Некоторые пресмыкающиеся приспособились к жизни в морской среде, например ихтиозавры, туловище которых походило на акулье, а конечности трансформировались в нечто среднее между ластами и плавниками, и плезиозавры, туловище которых стало уплощенным, шея вытянулась, а конечности превратились в ласты. Обе эти группы животных стали более многочисленными в последующие этапы мезозойской эры.



Юрский период получил свое название от гор Юра (в северо-западной Швейцарии), сложенных многослойной толщей известняков, глинистых сланцев и песчаников. В юре произошла одна из крупнейших морских трансгрессий в Западной Европе. Огромное эпиконтинентальное море распространялось на большей части Англии, Франции, Германии и проникало в некоторые западные районы европейской России. В Германии известны многочисленные выходы верхнеюрских лагунных мелкозернистых известняков, в которых были обнаружены необычные ископаемые. В Баварии, в знаменитом местечке Золенхофен, найдены остатки крылатых пресмыкающихся и оба из известных видов первых птиц. Море Тетис простиралось от Атлантики через южную часть Пиренейского п-ова вдоль Средиземного моря и через Южную и Юго-Восточную Азию выходило к Тихому океану. Большая часть северной Азии в этот период располагалась выше уровня моря, хотя эпиконтинентальные моря с севера проникали в Сибирь. Континентальные отложения юрского возраста известны в южной Сибири и северном Китае. Небольшие эпиконтинентальные моря занимали ограниченные площади вдоль побережья западной Австралии. Во внутренних районах Австралии имеются выходы юрских континентальных отложений. Большая часть Африки в юрский период располагалась выше уровня моря. Исключение составляла ее северная окраина, заливавшаяся морем Тетис. В Южной Америке вытянутое узкое море заполняло геосинклиналь, размещавшуюся примерно на месте современных Анд. В Северной Америке юрские моря занимали весьма ограниченные территории на западе материка. Мощные толщи континентальных песчаников и кроющих глинистых сланцев накопились в районе плато Колорадо, особенно к северу и востоку от Большого каньона. Песчаники образовались из песков, слагавших пустынные дюнные ландшафты котловин. В результате процессов выветривания песчаники приобрели необычные формы (как, например, живописные остроконечные пики в национальном парке Зайон или национальный памятник Рейнбоу-Бридж, представляющий собой возвышающуюся на 94 м над дном каньона арку с пролетом 85 м; эти достопримечательности находятся в штате Юта). Отложения глинистых сланцев формации моррисон знамениты находками 69 видов ископаемых динозавров. Тонкодисперсные осадки в этом районе, вероятно, накапливались в условиях заболоченной низины. Растительный мир юрского периода в общих чертах был сходен с существовавшим в триасе. Во флоре доминировали саговниковые и хвойные древесные породы. Впервые появились гинкговые - голосеменные широколиственные древесные растения с опадающей осенью листвой (вероятно, это связующее звено между голосеменными и покрытосеменными растениями). Единственный вид этого семейства - гинкго двулопастный - сохранился до настоящего времени и считается самым древним представителем древесных, поистине живым ископаемым. Юрская фауна беспозвоночных весьма сходна с триасовой. Однако более многочисленными стали кораллы-рифостроители, широко распространились морские ежи и моллюски. Появились многие двустворчатые моллюски, родственные современным устрицам. Все еще были многочисленны аммониты. Позвоночные были представлены преимущественно пресмыкающимися, поскольку стегоцефалы вымерли в конце триаса. Динозавры достигли кульминации своего развития. Такие травоядные формы, как апатозавры и диплодоки, стали передвигаться на четырех конечностях; многие имели длинные шею и хвост. Эти животные приобрели гигантские размеры (до 27 м в длину), а некоторые весили до 40 т. У отдельных представителей травоядных динозавров меньших размеров, например стегозавров, развился защитный панцирь, состоявший из пластин и шипов. У плотоядных динозавров, в частности аллозавров, сформировались крупные головы с мощными челюстями и острыми зубами, в длину они достигали 11 м и передвигались на двух конечностях. Другие группы пресмыкающихся тоже были весьма многочисленны. В юрских морях обитали плезиозавры и ихтиозавры. Впервые появились летающие пресмыкающиеся - птерозавры, у которых развились перепончатые крылья, как у летучих мышей, а масса уменьшилась за счет трубчатых костей. Появление птиц в юре - важный этап в развитии животного мира. В лагунных известняках Золенхофена были обнаружены два птичьих скелета и отпечатки перьев. Однако эти примитивные птицы еще имели много черт, общих с пресмыкающимися, включая острые зубы конической формы и длинные хвосты. Юрский период завершился интенсивной складчатостью, в результате которой на западе США сформировались горы Сьерра-Невада, которые простирались дальше на север в пределы современной западной Канады. Впоследствии южная часть этого складчатого пояса снова испытала поднятие, которое предопределило строение современных гор. На других материках проявления орогенеза в юре были незначительны.
Меловой период. В это время накапливались мощные слоистые толщи мягкого слабо уплотненного белого известняка - мела, от которого произошло название периода. Впервые такие слои были изучены в обнажениях по берегам пролива Па-де-Кале близ Дувра (Великобритания) и Кале (Франция). В других частях света отложения соответствующего возраста тоже называют меловыми, хотя там встречаются и другие типы пород. В меловой период морские трансгрессии охватывали значительные части Европы и Азии. В центральной Европе моря заливали два субширотных геосинклинальных прогиба. Один из них располагался в пределах юго-восточной Англии, северной Германии, Польши и западных районов России и на крайнем востоке достигал субмеридионального Уральского прогиба. Другая геосинклиналь, Тетис, сохраняла свое прежнее простирание в южной Европе и северной Африке и соединялась с южной оконечностью Уральского прогиба. Далее море Тетис продолжалось в Южной Азии и восточнее Индийского щита соединялось с Индийским океаном. За исключением северной и восточной окраин, территория Азии на протяжении всего мелового периода не заливалась морем, поэтому там широко распространены континентальные отложения этого времени. Мощные слои меловых известняков представлены во многих районах Западной Европы. В северных районах Африки, куда заходило море Тетис, накопились большие толщи песчаников. Пески пустыни Сахара образовались в основном за счет продуктов их разрушения. Австралия покрывалась меловыми эпиконтинентальными морями. В Южной Америке на протяжении большей части мелового периода Андский прогиб заливался морем. Восточнее его на значительной территории Бразилии отложились терригенные алевриты и пески с многочисленными остатками динозавров. В Северной Америке окраинные моря занимали береговые равнины Атлантического океана и Мексиканского залива, где накапливались пески, глины и меловые известняки. Другое окраинное море располагалось на западном побережье материка в пределах Калифорнии и доходило до южных подножий возрожденных гор Сьерра-Невада. Однако последняя самая крупная морская трансгрессия охватила западные районы центральной части Северной Америки. В это время сформировался обширный геосинклинальный прогиб Скалистых гор, и огромное море распространялось от Мексиканского залива через современные Великие равнины и Скалистые горы на север (западнее Канадского щита) вплоть до Северного Ледовитого океана. Во время этой трансгрессии была отложена мощная многослойная толща песчаников, известняков и глинистых сланцев. В конце мелового периода происходил интенсивный орогенез в Южной и Северной Америке и Восточной Азии. В Южной Америке осадочные породы, накопившиеся в Андской геосинклинали за несколько периодов, были уплотнены и смяты в складки, что привело к образованию Анд. Аналогичным образом в Северной Америке на месте геосинклинали сформировались Скалистые горы. Во многих районах мира усилилась вулканическая деятельность. Лавовые потоки покрыли всю южную часть п-ова Индостан (таким образом сформировалось обширное плато Декан), а небольшие излияния лавы имели место в Аравии и Восточной Африке. Все материки испытали значительные поднятия, и произошла регрессия всех геосинклинальных, эпиконтинентальных и окраинных морей. Меловой период ознаменовался несколькими крупными событиями в развитии органического мира. Появились первые цветковые растения. Их ископаемые остатки представлены листьями и древесиной пород, многие из которых растут и в настоящее время (например, ива, дуб, клен и вяз). Меловая фауна беспозвоночных в целом аналогична юрской. Среди позвоночных животных наступила кульминация видового разнообразия пресмыкающихся. Существовали три основные группы динозавров. Хищные с хорошо развитыми массивными задними конечностями были представлены тираннозаврами, которые в длину достигали 14 м, а в высоту - 5 м. Получила развитие группа двуногих травоядных динозавров (или траходонтов) с широкими уплощенными челюстями, напоминающими утиный клюв. Многочисленные скелеты этих животных встречаются в меловых континентальных отложениях Северной Америки. К третьей группе относятся рогатые динозавры с развитым костяным щитом, защищавшим голову и шею. Типичный представитель этой группы - трицератопс с коротким носовым и двумя длинными надглазными рогами. В меловых морях обитали плезиозавры и ихтиозавры, появились морские ящерицы мозазавры с вытянутым туловищем и сравнительно небольшими ластовидными конечностями. Птерозавры (летающие ящеры) утратили зубы и лучше передвигались в воздушном пространстве, чем их юрские предки. У одного из видов птерозавров - птеранодона - размах крыльев достигал 8 м. Известны два вида птиц мелового периода, сохранившие некоторые морфологические особенности рептилий, например размещенные в альвеолах зубы конической формы. Один из них - гесперорнис (ныряющая птица) - приспособился к жизни в море. Хотя переходные формы, больше похожие на рептилий, чем на млекопитающих, известны с триаса и юры, впервые многочисленные остатки настоящих млекопитающих были обнаружены в континентальных верхнемеловых отложениях. Примитивные млекопитающие мелового периода отличались небольшими размерами и чем-то напоминали современных землероек. Широко развитые на Земле процессы горообразования и тектонические поднятия материков в конце мелового периода привели к столь значительным изменениям природы и климата, что многие растения и животные вымерли. Из беспозвоночных исчезли господствовавшие в мезозойских морях аммониты, а из позвоночных - все динозавры, ихтиозавры, плезиозавры, мозазавры и птерозавры. Кайнозойская эра, охватывавшая последние 65 млн. лет, подразделяется на третичный (в России принято выделять два периода - палеогеновый и неогеновый) и четвертичный периоды. Хотя последний отличался малой продолжительностью (возрастные оценки его нижней границы колеблются от 1 до 2,8 млн. лет), он сыграл большое значение в истории Земли, поскольку с ним связаны неоднократные материковые оледенения и появление человека.
Третичный период. В это время многие районы Европы, Азии и Северной Африки были покрыты мелководными эпиконтинентальными и глубоководными геосинклинальными морями. В начале этого периода (в неогене) море занимало юго-восточную Англию, северо-западную Францию и Бельгию и там накопилась мощная толща песков и глин. Все еще продолжало существовать море Тетис, простиравшееся от Атлантического до Индийского океана. Его воды заливали Пиренейский и Апеннинский полуострова, северные районы Африки, юго-западную Азию и север Индостана. В этом бассейне отлагались мощные горизонты известняков. Большая часть северного Египта сложена нуммулитовыми известняками, которые использовались в качестве строительного материала при возведении пирамид. В это время почти вся юго-восточная Азия была занята морскими бассейнами и небольшое эпиконтинентальное море распространялось на юго-востоке Австралии. Третичные морские бассейны покрывали северную и южную оконечности Южной Америки, а эпиконтинентальное море проникало на территорию восточной Колумбии, северной Венесуэлы и южной Патагонии. Мощные толщи континентальных песков и алевритов накапливались в бассейне Амазонки. Окраинные моря располагались на месте современных Береговых равнин, прилегающих к Атлантическому океану и Мексиканскому заливу, а также вдоль западного побережья Северной Америки. Мощные толщи континентальных осадочных пород, образовавшихся в результате денудации возрожденных Скалистых гор, накапливались на Великих равнинах и в межгорных впадинах. Во многих районах земного шара в середине третичного периода происходил активный орогенез. В Европе образовались Альпы, Карпаты и Кавказ. В Северной Америке на заключительных этапах третичного периода сформировались Береговые хребты (в пределах современных штатов Калифорния и Орегон) и Каскадные горы (в пределах Орегона и Вашингтона). Третичный период ознаменовался существенным прогрессом в развитии органического мира. Современные растения возникли еще в меловом периоде. Большинство третичных беспозвоночных были непосредственно унаследованы от меловых форм. Многочисленнее стали современные костистые рыбы, уменьшились численность и видовое разнообразие земноводных и пресмыкающихся. Произошел скачок в развитии млекопитающих. От примитивных форм, похожих на землероек и впервые появившихся в меловом периоде, берут начало многие формы, относящиеся уже к началу третичного периода. Самые древние ископаемые остатки лошадей и слонов обнаружены в нижнетретичных породах. Появились плотоядные и парнокопытные животные. Видовое разнообразие животных сильно возросло, однако многие из них вымерли уже к концу третичного периода, а другие (подобно некоторым мезозойским пресмыкающимся) вернулись к морскому образу жизни, как, например, китообразные и морские свиньи, у которых плавники представляют собой трансформированные конечности. Летучие мыши смогли летать благодаря перепонке, соединяющей их длинные пальцы. Динозавры, вымершие в конце мезозоя, уступили место млекопитающим, которые стали доминирующим классом животных на суше в начале третичного периода. Четвертичный период подразделяется на эоплейстоцен, плейстоцен и голоцен. Последний начался всего 10 000 лет назад. Современный рельеф и ландшафты Земли в основном оформились в четвертичный период. Горообразование, которое происходило в конце третичного периода, предопределило значительное поднятие материков и регрессию морей. Четвертичный период ознаменовался существенным похолоданием климата и широким развитием покровного оледенения в Антарктиде, Гренландии, Европе и Северной Америке. В Европе центром оледенения был Балтийский щит, откуда ледниковый покров распространялся до южной Англии, средней Германии и центральных районов Восточной Европы. В Сибири покровное оледенение имело меньшие размеры, в основном ограничиваясь предгорными районами. В Северной Америке ледниковые покровы занимали громадную территорию, включая большую часть Канады и северные районы США вплоть до южного Иллинойса. В Южном полушарии четвертичный ледниковый покров характерен не только для Антарктиды, но и для Патагонии. Кроме того, на всех материках было широко распространено горное оледенение. В плейстоцене выделяют четыре основных этапа активизации оледенения, чередовавшиеся с межледниковьями, во время которых природные условия были близки современным или даже более теплыми. Последний ледниковый покров на территории Европы и Северной Америки достигал наибольших размеров 18-20 тыс. лет назад и окончательно растаял в начале голоцена. В четвертичный период вымерли многие третичные формы животных и появились новые, приспособившиеся к более холодным условиям. Особо следует отметить мамонта и шерстистого носорога, которые населяли северные области в плейстоцене. В более южных районах Северного полушария встречались мастодонты, саблезубые тигры и др. Когда ледниковые покровы растаяли, представители плейстоценовой фауны вымерли и их место заняли современные животные. Первобытные люди, в частности неандертальцы, вероятно, существовали уже во время последнего межледниковья, но человек современного типа - человек разумный (Homo sapiens) - появился лишь в последнюю ледниковую эпоху плейстоцена, а в голоцене расселился по всему земному шару.
Большой Энциклопедический словарь

  • Исследованием Земли занимается геология и науки взаимосвязаны друг с другом. Геофизика изучает мантию, кору, внешнее жидкое и внутреннее твердое ядро. В рамках дисциплины исследуются океаны, поверхностные и подземные воды. Также эта наука изучает физику атмосферы. В частности, аэрономию, климатологию, метеорологию. Что такое геология? В рамках этой дисциплины осуществляются несколько иные исследования. Далее выясним, что изучает геология.

    Общие сведения

    Общая геология - это дисциплина, в рамках которой исследуется строение и закономерности развития Земли, а также других планет, относящихся к Солнечной системе. Кроме того, это применимо и к их естественным спутникам. Общая геология представляет собой комплекс наук. Исследование осуществляется с помощью физических методов.

    Основные направления

    Всего их три: историческая, динамическая и описательная геология. Каждое направление отличается своими основными принципами, а также методами исследования. Далее рассмотрим их подробнее.

    Описательное направление

    Оно изучает размещение и состав соответствующих тел. В частности, это относится к их формам, размерам, взаимоотношению и последовательности залегания. Кроме того, данное направление занимается описанием горных пород и различных минералов.

    Исследование эволюции процессов

    Этим занимается динамическое направление. В частности, исследуются процессы разрушения горных пород, их перемещения ветром, подземными или наземными волнами, ледниками. Также данная наука рассматривает внутренние извержения вулканов, землетрясения, движение земной коры и накопление осадков.

    Хронологический порядок

    Говоря о том, что изучает геология, следует сказать, что исследования распространяются не только на явления, имеющие место на Земле. Одно из направлений дисциплины анализирует и описывает хронологический порядок процессов на Земле. Эти исследования осуществляются в рамках исторической геологии. Хронологический порядок организован в специальную таблицу. Она больше известна как Она, в свою очередь, разбита на четыре интервала. Это было сделано в соответствии со стратиграфическим анализом. Первый интервал охватывает следующий период: формирование Земли - настоящее время. Последующие шкалы отражают последние сегменты предыдущих. Они отмечаются при помощи звездочек в увеличенном масштабе.

    Особенности абсолютного и относительного возраста

    Изучение геологии Земли имеет важнейшее значение для человечества. Благодаря исследованиям стал известен например. Геологическим событиям присваивается точная дата, относящаяся к конкретному моменту времени. В данном случае речь идет об абсолютном возрасте. Также события могут быть отнесены к определенным интервалам шкалы. Это и есть относительный возраст. Говоря о том, что такое геология, следует сказать, что в первую очередь это целый комплекс научных исследований. В рамках дисциплины применяются различные способы определения периодов, к которым привязаны конкретные события.

    Метод радиоизотопного датирования

    Он был открыт в начале XX века. Этот метод предоставляет возможность для определения абсолютного возраста. До его открытия геологи были сильно ограничены. В частности, использовались только относительные методы датирования для того, чтобы определить возраст соответствующих событий. Подобная система способна устанавливать только последовательный порядок последних изменений, а не дату их совершения. Тем не менее, данный метод по-прежнему остается весьма эффективным. Это относится к случаю, когда материалы, лишенные радиоактивных изотопов, имеются в наличии.

    Комплексное исследование

    Сопоставление определенной стратиграфической единицы с другой происходит за счет пластов. Они состоят из осадочных и горных пород, окаменелостей и поверхностных отложений. В большинстве случаев относительный возраст определяется с помощью палеонтологического метода. В то же в основном базируется на химических и физических свойствах горных пород. Как правило, данный возраст определяется радиоизотопным датированием. Имеется в виду накопление продуктов распада соответствующих элементов, которые входят в состав материала. На основе полученных данных устанавливается примерная дата возникновения каждого события. Они размещаются в определенных точках общей геологической шкалы. Для построения точной последовательности этот фактор является очень важным.

    Основные разделы

    Коротко ответить на вопрос о том, что такое геология, достаточно сложно. Здесь надо отметить, что наука включает в себя не только приведенные выше направления, но и различные группы дисциплин. При этом и сегодня продолжается развитие геологии: появляются новые ветви научной системы. Существовавшие ранее и формирующиеся новые группы дисциплин связаны со всеми тремя направлениями науки. Таким образом, точных границ между ними нет. То, что изучает геология, в той или иной степени исследуется и другими науками. В результате происходит соприкосновение системы с другими сферами знаний. Существует классификация следующих групп наук:


    Минералогия

    Что изучает геология в рамках этого раздела? Исследования касаются минералов, вопросах их генезиса, а также классификации. Литология занимается изучением пород, которые образовались в процессах, связанных с гидросферой, биосферой и атмосферой Земли. Стоит отметить, что они еще неточно называются осадочными. Геокриология занимается изучением ряда характерных особенностей и свойств, которые приобретают многолетнемерзлые горные породы. Кристаллография изначально являлась одним из направлений минералогии. В настоящее время ее можно скорее отнести к физической дисциплине.

    Петрография

    Данный раздел геологии изучает метаморфические и магматические породы в основном с описательной стороны. В данном случае речь идет об их генезисе, составе, текстурных особенностях и классификации.

    Наиболее ранний раздел геотектоники

    Существует направление, которое занимается изучением нарушений земной коры и форм залегания соответствующих тел. Его название - структурная геология. Надо сказать, что как наука геотектоника появилась еще в начале XIX века. Структурная геология исследовала тектонические дислокации среднего и мелкого масштаба. Размер - десятки-сотни километров. Данная наука окончательно сформировалась только к концу столетия. Таким образом, произошел переход к выделению тектонических единиц глобального и континентального масштаба. В дальнейшем учение постепенно переросло в геотектонику.

    Тектоника

    Этот раздел геологии изучает В него также включаются следующие направления:

    1. Экспериментальная тектоника.
    2. Неотектоника.
    3. Геотектоника.

    Узкие разделы

    • Вулканология. Довольно узкий раздел геологии. Он занимается изучением вулканизма.
    • Сейсмология. Данный раздел геологии занимается изучением геологических процессов, которые возникают во время землетрясений. Сюда также включается сейсморайонирование.
    • Геокриология. Этот раздел геологии сосредоточен на изучении многолетнемерзлых пород.
    • Петрология. Данный раздел геологии изучает генезис, а также условия происхождения метаморфических и магматических горных пород.

    Последовательность процессов

    Все, что изучает геология, способствует лучшему пониманию тех или иных процессов на земле. Например, хронология событий является важнейшим предметом. Ведь каждая геологическая наука носит исторический характер в той или иной степени. Они рассматривают существующие образования именно с этой точки зрения. Прежде всего, эти науки выясняют последовательность формирования современных структур.

    Классификация периодов

    Всю истории Земли разделяют на два крупнейших этапа, которые называются эонами. Классификация происходит в соответствии с появлением организмов с твердыми частями, которые оставляют следы в осадочных породах. Согласно данным палеонтологии, они позволяют определить относительный геологический возраст.

    Предметы исследований

    Фанерозой начался с появлением ископаемых на планете. Таким образом, развивалась открытая жизнь. Данному периоду предшествовали докембрий и криптозой. В это время существовала скрытая жизнь. Геология докембрия считается особой дисциплиной. Дело в том, что она изучает специфические, в основном многократно и сильно метаморфозные комплексы. Кроме того, для нее характерны особые методы проведения исследований. Палеонтология сосредоточена на изучении древних форм жизни. Она проводит описание ископаемых остатков и следов жизнедеятельности организмов. Стратиграфия определяет относительный геологический возраст осадочных горных пород и расчленение их толщ. Она также занимается корреляцией различных образований. Палеонтологические определения представляют собой источник данных для стратиграфии.

    Что такое прикладная геология

    Одни направления науки так или иначе взаимодействуют с другими. Однако существуют дисциплины, которые находятся на границе с другими ответвлениями. Например, геология полезных ископаемых. Эта дисциплина занимается методами поиска и разведки пород. Делится на следующие виды: геологию угля, газа, нефти. Также существует металлогения. Гидрогеология сосредоточена на изучении подземных вод. Дисциплин достаточно много. Все они имеют практическое значение. Например, что такое Это раздел, занимающийся исследованием взаимодействия сооружений и окружающей среды. Тесно соприкасается с ним геология грунтов, поскольку от состава почвы зависит, например, выбор материала для строительства зданий.

    Прочие подтипы

    • Геохимия. Этот раздел геологии сосредоточен на изучении физических свойств Земли. Также сюда включается комплекс разведочных методов, среди них электроразведка различных модификаций, магнито- , сейсмо- и гравиразведка.
    • Геобаротермометрия. Данная наука занимается изучением комплекса методов определения температур и давления образования горных пород и минералов.
    • Микроструктурная геология. Этот раздел занимается изучением деформации пород на микроуровне. Подразумевается масштаб агрегатов и зерен минералов.
    • Геодинамика. Данная наука сосредоточена на изучении процессов в планетарных масштабах, которые происходят в результате эволюции планеты. Изучается связь механизмов в земной коре, мантии и ядре.
    • Геохронология. Данный раздел занимается определением возраста минералов и пород.
    • Литология. Она еще называется петрографией осадочных пород. Занимается изучением соответствующих материалов.
    • История геологии. Этот раздел сосредоточен на совокупности полученных сведений и рудном деле.
    • Агрогеология. Данный раздел отвечает за поиск, добычу и использование агроруд для сельскохозяйственных целей. Кроме того, он изучает минералогический состав почв.

    На изучении Солнечной системы сосредоточены следующие геологические разделы:

    1. Космология
    2. Планетология.
    3. Космическая геология.
    4. Космохимия.

    Горная геология

    Она является дифференцированной по видам минерального сырья. Существует подразделение на геологию нерудных и рудных полезных пород. Данный раздел занимается изучением закономерности размещения соответствующих месторождений. Также устанавливается их связь со следующими процессами: метаморфизма, магматизма, тектоники, осадкообразования. Таким образом, появилась самостоятельная отрасль знаний, которая называется металлогенией. Геология нерудных полезных ископаемых также подразделяется на науки о горючих веществах и каустобиолитах. Сюда относятся сланцы, уголь, газ, нефть. Геология негорючих пород включает в себя строительные материалы, соли и многое другое. Также в этот раздел входит гидрогеология. Она посвящена подземным водам.

    Экономическое направление

    Представляет собой довольно специфическую дисциплину. Она появилась на стыке экономики и геологии полезных ископаемых. Данная дисциплина сосредоточена на стоимостных оценках участков недр и месторождений. Термин "полезное ископаемое", учитывая это, можно скорее отнести к экономической сфере, нежели к геологической.

    Особенности разведки

    Геология месторождения представляет собой обширный научный комплекс, в рамках которого проводятся мероприятия, позволяющие определить промышленное значение участков залегания пород, получивших положительную оценку по результатам поисково-оценочных действий. Во время разведки происходит установка геолого-промышленных параметров. Они, в свою очередь, необходимы для соответствующей оценки участков. Это также относится к переработке извлекаемых полезных ископаемых, обеспечению эксплуатационных мероприятий, проектированию строительства горнодобывающих предприятий. Таким образом, происходит определение морфологии тел соответствующих материалов. Это очень важно для выбора системы последующей обработки полезных ископаемых. Происходит установка контуров их тел. При этом учитываются геологические границы. В частности, это относится к поверхности разломов и контактам литологически различных пород. Также происходит учет характера распределения полезных ископаемых, наличия вредных примесей, содержания попутных и основных компонентов.

    Верхние горизонты коры

    Их изучением занимается инженерная геология. Сведения, которые получают в ходе изучения грунтов, предоставляют возможность определения пригодности соответствующих материалов для строительства конкретных объектов. Верхние горизонты земной коры часто называются геологической средой. Предметом изучения данного раздела являются сведения о ее региональных особенностях, динамике и морфологии. Изучается и взаимодействие с инженерными сооружениями. Последние часто именуются элементами техносферы. При этом учитывается планируемая, текущая или осуществленная хозяйственная деятельность человека. Инженерно-геологическая оценка территории предполагает выделение специального элемента, который характеризуется однородными свойствами.

    Несколько основных принципов

    Приведенная выше информация позволяет достаточно ясно понять, что такое геология. При этом необходимо сказать, что наука считается исторической. Она имеет множество важных задач. Прежде всего, это касается определения последовательности геологических событий. Для качественного выполнения этих задач уже давно был разработан ряд интуитивно очередных и простых признаков, относящихся к временному соотношению пород. Интрузивные взаимоотношения представляют собой контакты соответствующих пород и их толщ. Все выводы делаются на основе обнаруженных признаков. Относительный возраст позволяет определить и секущие взаимоотношения. К примеру, если разрывает горные породы, то это позволяет сделать вывод о том, что разлом был образован позже них. Принцип обеспечения непрерывности заключается в том, что строительный материал, из которого образуются слои, может быть растянут по поверхности планеты в том случае, если его не ограничивает какая-то другая масса.

    Исторические сведения

    Первые наблюдения принято относить к динамической геологии. В данном случае имеется в виду информация о перемещении береговых линий, размывании гор, извержении вулканов и землетрясениях. Попытки классифицировать геологические тела и описать минералы были у Авиценны и Аль-Бурини. В настоящее время некоторые ученые предполагают, что современная геология зародилась в средневековом исламском мире. Подобными исследованиями в эпоху Возрождения занимались Джироламо Фракасторо и Леонардо да Винчи. Они первыми выдвинули предположение о том, что ископаемые раковины - это остатки вымерших организмов. Также они считали, что история самой Земли гораздо длиннее, чем библейские представления об этом. В конце XVII века возникла общая теория о планете, которая стала называться дилювианизмом. Ученые того времени считали, что окаменелости и сами осадочные породы были образованы из-за всемирного потопа.

    Потребности в полезных ископаемых очень быстро возросли уже ближе к концу XVIII века. Таким образом, стали изучаться недра. В основном проводилось накопление фактических материалов, описаний свойств и особенностей горных пород, а также исследования условий их залегания. Кроме того, разрабатывались приемы наблюдения. Практически весь XIX век геология всецело занималась вопросом о точном возрасте Земли. Предполагаемые оценки довольно сильно варьировались: от ста тысяч лет до миллиардов. Однако возраст планеты был первоначально определен уже в начале XX века. Во многом этому поспособствовало радиометрическое датирование. Полученная тогда оценка - около 2 миллиардов лет. В настоящее время истинный возраст Земли установлен. Он составляет примерно 4,5 миллиарда лет.

    ГЕОЛОГИЧЕСКИЕ НАУКИ (а. geological sciences; н. geologische Wissenschaften; ф. sciences geologiques; и. ciencias geologicas) — комплекс наук о и более глубоких сферах .

    Объект, цель и основные задачи . Связь со смежными науками. Геологические науки изучают состав, строение, происхождение, развитие Земли и слагающих её геосфер, в первую очередь земную кору, процессы, происходящие в ней, закономерности образования и размещения .

    Научная и практическая цель геологических наук: познание геологического строения и развития Земли в целом; восстановление истории различных геологических процессов, раскрытие закономерностей геологических явлений и разработка теории эволюции планеты; перспективная оценка и прогноз выявления рудных районов, и , месторождений полезных ископаемых, включая ; разработка научных методов их поисков и разведки, обоснование комплексного использования природных минеральных ресурсов; участие в решении проблем и её стабильности; предвидение катастрофических явлений; содействие прогрессу материалистического мировоззрения.

    Непосредственные объекты геологических наук — и их совокупности (стратиграфические подразделения, тела полезных ископаемых и др.), их химический состав и структура, вымершие организмы, газовые и жидкие среды, физические поля.

    В современные геологические науки входят (в т.ч. палеонтология), (включая геологию глубинных зон Земли), (физика "твёрдой" Земли), и др. В изучении геологической формы движения материи наука имеет дело с материально-энергетической саморазвивающейся системой — Землёй, развитие которой создаёт основу для появления более высокой формы существования материи, связанной с . Палеонтология — соединительное звено в изучении двух форм движения материи — геологической и биологической.

    Развитие геологической науки, её теоретических исследований и методов познания во многом обусловливалось потребностями общественного производства. Важнейшие факторы, стимулирующие прогресс геологических наук, — рост горнодобывающего производства, потребности других отраслей народного хозяйства (промышленность, энергетика, строительство, транспорт, военное дело, сельское хозяйство и др.) и уровень общего развития техники. Использование современных технических достижений, прежде всего геофизических и буровой техники, обеспечивает включение в сферу геологической науки всё более глубоких горизонтов Земли, повышение скорости обработки геологических данных и достоверности результатов. В выполнении главной цели и основной задачи геологической науки всё более существенную роль играют ведущие научные концепции, гипотезы и теории.

    Геологические науки используют результаты и методы всего комплекса наук о Земле. Геологические процессы, происходящие на поверхности планеты (или на небольшой глубине), изучаются с привлечением физико-географических наук ( , климатология, гидрология, океанология, и др.); при исследовании глубинных процессов, определении радиологического возраста, при геолого-поисковых и привлекаются методы геохимии и геофизики (физики "твёрдой" Земли, включая ). В проблемах происхождения и ранней истории Земли большое значение имеют данные астрономии и планетологии, в т.ч. полученные при запусках космических аппаратов на Луну и планеты. Изучение полезных ископаемых дополняется экономическими исследованиями и достижениями . Потребность в полезных ископаемых, способы их добычи, технология переработки и планирование рационального размещения горнодобывающей промышленности определяют генеральные направления прогнозно-металлогенических исследований. Связь геологической науки с биологическими науками различна — от использования эволюции органического мира для определения относительного возраста геологических объектов до учёта биологических и биохимических процессов с целью выяснения генезиса горных пород и полезных ископаемых, прежде всего энергетического сырья ( , ). Начиная с 60-х годов 20 века в геологической науке всё более эффективно применяется аппарат математических наук, кибернетики и информатики.

    История развития геологической науки . Истоки геологической науки лежат в наблюдениях и гипотезах философов античного мира и Древнего Востока, касающихся землетрясений, вулканических извержений, деятельности воды и др. К средним векам и эпохе Возрождения относятся первые попытки описания и систематизации камней, металлов и сплавов, что явилось прямым следствием развития (труды cpеднеазиатских естествоиспытателей Ибн Сины и Бируни, немецкого учёного Агриколы). В 16 веке в России были сделаны первые попытки систематизации геологических сведений, доставляемых "рудознатцами".

    Датский учёный Н. Стено (17 в.) впервые сформулировал представление о возрастной последовательности первичной горизонтальной слоистости и о вторичности процессов, нарушающих это залегание, обосновав тем самым первые законы геологической науки. В современном понимании термин "геология" впервые применён норвежским учёным М. П. Эшольтом (1657). К 17 веку относятся умозрительные гипотезы о происхождении Земли из расплавленной массы, при охлаждении которой образовалась твёрдая земная кора (немецкий учёный Г. В. Лейбниц, 1693). В конце 18 века широкое распространение получил термин «геогнозия».

    Основы геологической науки заложены во 2-й половине 18 в. трудами Ж. Л. Бюффона, Ж. Б. Роме де Лиля и Р. Ж. Аюи во Франции, М. В. Ломоносова, И. И. Лепёхина и П. С. Палласа в России, О. Б. де Соссюра в Швейцарии, У. Смита и Дж. Геттона в Великобритании, А. Г. Вернера в Германии, А. Кронштедта в Швеции. В трудах М. В. Ломоносова "О слоях земных" (1763) и "Слово о рождении металлов от трясения Земли" (1757) указывалось на длительность, непрерывность и периодичность геологических процессов, взаимодействие внутренних и внешних сил, формирующих лик Земли, высказывались соображения о происхождении ископаемых углей за счёт растительных остатков, излагались принципы естественной группировки минералов в рудных жилах и использования этих ассоциаций при поисках. Большую роль в становлении геологической науки сыграла идейная борьба между представителями двух научных гипотез — гипотезы нептунизма (А. Г. Вернер), утверждающей осадочное образование всех горных пород, и гипотезы плутонизма (Дж. Геттон), отводившей определяющую роль внутренним вулканическим процессам.

    В конце 18 — начале 19 веков накопление фактов сопровождалось их анализом, заложившим основу различных ветвей геологической науки, развитие которой становится одним из непременных условий прогресса в промышленности. Большое значение для становления геологической науки в России имело создание в Петербурге (1773) высшего горного училища (ныне Ленинградский горный институт).

    Становление геологической науки справедливо связывают с выяснением возможности расчленения слоёв земной коры по возрасту и их корреляции с помощью остатков организмов (У. Смит, 1790), что позволило систематизировать разрозненные минералогические и палеонтологические данные, создало условия для геологических реконструкций. К этому же времени относятся формулировка таких понятий, как " " (А. Г. Вернер), " " (В. М. Севергин), разработка химической классификации минералов (шведский учёный Й. Берцелиус), законов (Р. Ж. Аюи), составление первых геологических карт (восточного Забайкалья — Д. Лебедев и М. Иванов, 1789-94; Англии — У. Смит, 1815; Европейской части России, 1829). Изменения в геологической истории Земли объяснялись в одних случаях (французский учёный Ж. Ламарк и др.) с позиции эволюционной идеи, в других (французский учёный Ж. Кювье и его последователи) — теорией катастроф (периодически повторяющимися катаклизмами, коренным образом менявшими рельеф планеты и уничтожавшими всё живое, которое якобы заново зарождалось после этого).

    Крупным событием в истории геологической науки был выход в свет в 1830-33 2-томного труда английского учёного Ч. Лайеля "Основы геологии", в котором показаны значительная длительность истории Земли и роль постоянно и постепенно действующих геологических процессов, нанесён удар теории катастрофизма, дано обоснование сравнительно-исторического метода и сформулирован принцип актуализма (см. ).

    В 1829 французский геолог Л. Эли де Бомон предложил контракционную гипотезу, объясняющую дислокацию слоёв сжатием остывающей земной коры и уменьшением объёма земного ядра. Теория поддерживалась большинством геологов до 20 в. Важное значение в истории развития геологической науки имели труды немецкого учёного , защищавшие концепцию материальности и единства природы, и английского учёного Ч. Дарвина, разработавшего материалистическую теорию эволюции (исторического развития) органического мира Земли (1859).

    Всё возрастающие потребности в минеральном сырье в странах Западной Европы, в России и странах Северной Америки стимулировали широкое развитие региональных геологических исследований, сопровождаемых составлением , поисками и открытиями месторождений полезных ископаемых. Публиковались монографии с описанием богатых коллекций минералов, горных пород и остатков организмов. В развитых странах во 2-й половине 19 в. создавались геологические службы, которым поручались организация и развитие минерально-сырьевой базы на основе планомерного изучения геологии и полезных ископаемых территории. В конце 19 в. эти работы распространились на некоторые колонии в и .

    Определяющее значение для развития геологической науки в России имело создание в Петербурге в 1817 , а в 1882 первого государственного геологического учреждения — , положившего начало отечественной . В 1878 при активном участии русских геологов в Париже состоялся 1-й Международный геологический конгресс. 7-й конгресс был созван в Петербурге (1897), его полевые экскурсии охватили многие районы Европейской части России.

    2-я половина 19 — начало 20 века характеризуется дифференциацией геологической науки, возникновением новых её направлений. В группе дисциплин, изучающих вещество, успешно развивалась минералогия, получившая принципиально новую основу после работ , создателя учения о симметрии, современной теории и методик кристаллографии. Обособилась петрография, что связано с началом применения поляризационного микроскопа (английский учёный Г. Сорби, Великобритания, 1849; А. А. Иностранцев, Россия, 1858).

    В середине 19 в. зародилась и в дальнейшем развивалась теория дифференциации (немецкий учёный Р. Бунзен, французский — Ж. Дюроше, немецкий — Г. Розенбуш, швейцарский — П. Ниггли). Исследования (литология) привели к формулировке понятия (швейцарский учёный А. Гресли, 1838), развитого во 2-й половине 19 в. Н. А. Головкинским и Н. И. Андрусовым. Успехи в изучении геологических структур были обусловлены геологическим картированием и формированием учения о двух принципиально различных областях — (американские геологи Дж. Холл, 1857-59, и Дж. Дана, 1873; французский геолог Э. Ог, 1900) и ( , 1887; ), а также складчатых областях (). Были выделены разновозрастные эпохи складчатости для территории Европы, новые типы структур — . Оформились в самостоятельные дисциплины структурная геология и .

    После установления всех геологических систем (1822-41) и их подразделений, выделения (Дж. Дана, 1872) и из его состава (американский геолог С. Эммонс, 1888) была разработана общая (международная) . Вместе с достижениями эволюционной палеонтологии (Ч. Дарвин, В. О. Ковалевский), палеогеографии (А. П. Карпинский) и других отраслей геологической науки эта шкала послужила научной основой исторической геологии как комплексной научной дисциплины, изучающей последовательность и закономерности геологических процессов в истории планеты. Вначале эти исследования проводились с целью восстановления развития отдельных структур, бассейнов, органического мира; в дальнейшем в их сферу вошли магматические тела и месторождения полезных ископаемых Подведением итогов классического периода геологической науки явился фундаментальный труд австрийского геолога Э. Зюсса "Лик Земли" (5 книг, 1883-1909).

    Стратиграфия развивалась в двух направлениях: первое из них — детализация любыми методами расчленения местных разрезов и корреляция соответствующих отложений в пределах региона; второе — уточнение и разработка общей стратиграфической шкалы фанерозоя на основе биостратиграфического метода.

    В области петрологии (петрографии) исследования магматических и метаморфических пород и их ассоциаций проводились в связи с общими проблемами изучения внутреннего строения Земли и эволюции её вещества. В изучении магматизма ведущее место принадлежало исследованиям формационного направления. Составлена классификация магматических формаций (Ю. А. Кузнецов, 1964), издана "Карта магматических формаций CCCP" масштаба 1:2 500 000 (Е. Т. Шаталов, 1968), разработаны методы палеовулканических исследований (И. В. Лучицкий, 1971), теория зональности метасоматических пород и руд (Д. С. Коржинский, Ю. В. Казицын). Составлены схемы метаморфических фаций (Ю. И. Половинкина, В. С. Соболев), издана "Карта метаморфических фаций CCCP" масштаба 1:7 500 000 (В. С. Соболев и др., 1966).

    В области рудных полезных ископаемых достигнуты значит

    Геологические науки

    (a. geological sciences; н. geologische Wissenschaften; ф. sciences geologiques; и. ciencias geologicas ) - наук o земной коре и более глубоких сферах Земли.
    Oбъект, цель и основные задачи. Cвязь co смежными науками. Г. н. изучают состав, строение, происхождение, развитие Земли и слагающих её геосфер, в первую очередь земную кору, процессы, происходящие в ней, закономерности образования и размещения м-ний п. и.
    Hауч. и практич. цель Г. н.: познание геол.. строения и развития Земли в целом; истории разл. геол. процессов, раскрытие закономерностей геол. явлений и разработка теории эволюции планеты; перспективная и прогноз выявления рудных p-нов, нефтегазоносных и угольных басс., м-ний п. и., включая ; разработка науч. методов их поисков и разведки, обоснование комплексного использования природных минеральных ресурсов; участие в решении проблем охраны природной среды и её стабильности; предвидение катастрофич. явлений; содействие прогрессу материалистич. мировоззрения.
    Hепосредств. объекты Г. н. - горн. породы и их совокупности (стратиграфич. подразделения, формации, тела п. и. и др.), минералы, их хим. состав и , вымершие организмы, газовые и жидкие среды, физ. поля.
    B совр. Г. н. входят (в т.ч. палеонтология), (включая геологию глубинных зон Земли), Литология, Петрология, Геофизика (физика "твёрдой" Земли), Гидрогеология, и др. B изучении геол. формы движения материи наука имеет дело c материально-энергетич. саморазвивающейся системой - Землёй, развитие к-рой создаёт основу для появления более высокой формы существования материи, связанной c Биосферой. Палеонтология - соединит. звено в изучении двух форм движения материи - геологической и биологической.
    Pазвитие Г. н., её теоретич. исследований и методов познания во многом обусловливалось потребностями обществ. произ-ва. Bажнейшие факторы, стимулирующие прогресс Г. н., - рост горнодоб. произ-ва, потребности др. отраслей нар. x-ва (пром-сть, энергетика, стр-во, транспорт, воен. дело, c. x-во и др.) и общего развития техники. Использование совр. техн. достижений, прежде всего геофиз. и буровой техники, обеспечивает включение в сферу Г. н. всё более глубоких горизонтов Земли, повышение скорости обработки геол. данных и достоверности результатов. B выполнении гл. цели и осн. задач Г. н. всё более существ. роль играют ведущие науч. концепции, гипотезы и теории.
    Г. н. используют результаты и методы всего комплекса наук o Земле. Геол. процессы, происходящие на поверхности планеты (или на небольшой глубине), изучаются c привлечением физико-геогр. наук ( , климатология, океанология, гляциология и др.); при исследовании глубинных процессов, определении радиологич. возраста, при геол.-поисковых и геол.-разведочных работах привлекаются методы геохимии и геофизики (физики "твёрдой" Земли, включая сейсмологию). B проблемах происхождения и ранней истории Земли большое значение имеют данные астрономии и планетологии, в т.ч. полученные при запусках космич. аппаратов на Луну и планеты. Изучение п. и. дополняется экономич. исследованиями и достижениями Горных наук. Потребность в п. и., способы их добычи, технология переработки и планирование рационального размещения горнодоб. пром-сти определяют генеральные направления прогнозно-металлогенич. исследований. Cвязь Г. н. c биол. науками различна - от использования эволюции органич. мира для определения относит. возраста геол. объектов до учёта биол. и биохим. процессов c целью выяснения генезиса горн. пород и полезных ископаемых, прежде всего энергетич. сырья (угли, ). Hачиная c 60-x гг. 20 в. в Г. н. всё более эффективно применяется аппарат матем. наук, кибернетики и информатики.
    История развития Г. н. Истоки Г. н. лежат в наблюдениях и гипотезах философов антич. мира и Дp. Востока, касающихся землетрясений, вулканич. извержений, деятельности воды и др. K cp. векам и эпохе Возрождения относятся первые попытки описания и систематизации камней, руд, металлов и сплавов, что явилось прямым следствием развития горн. дела (труды cp.-азиат. естествоиспытателей Ибн Cины и Бируни, нем. учёного Aгриколы). B 16 в. в Pоссии были сделаны первые попытки систематизации геол. сведений, доставляемых "рудознатцами".
    Дат. учёный H. Cтено (17 в.) впервые сформулировал представление o возрастной последовательности первичной горизонтальной слоистости и o вторичности процессов, нарушающих это залегание, обосновав тем самым первые законы Г. н. B совр. понимании термин " " впервые применён норв. учёным M. П. Эшольтом (1657). K 17 в. относятся умозрительные гипотезы o происхождении Земли из расплавленной массы, при охлаждении к-рой образовалась твёрдая (нем. учёный Г. B. Лейбниц, 1693). B кон. 18 в. широкое распространение получил термин .
    Oсновы Г. н. заложены во 2-й пол. 18 в. трудами Ж. Л. Бюффона, Ж. Б. Pоме де Лиля и P. Ж. Aюи во Франции, M. B. Ломоносова, И. И. Лепёхина и П. C. Палласа в Pоссии, O. Б. де Cоссюра в Швейцарии, У. Cмита и Дж. Геттона в Bеликобритании, A. Г. Bернера в Германии, A. Kронштедта в Швеции. B трудах M. B. Ломоносова "O слоях земных" (1763) и "Cлово o рождении металлов от трясения Земли" (1757) указывалось на длительность, непрерывность и периодичность геол. процессов, взаимодействие внутр. и внеш. сил, формирующих лик Земли, высказывались соображения o происхождении ископаемых углей за счёт растит. остатков, излагались принципы естеств. группировки минералов в рудных жилах и использования этих ассоциаций при поисках. Большую роль в становлении Г. н. сыграла идейная борьба между представителями двух науч. гипотез - гипотезы нептунизма (А. Г. Bернер), утверждающей осадочное образование всех г. п., и гипотезы плутонизма (Дж. Геттон), отводившей определяющую роль внутр., вулканич., процессам.
    B кон. 18 - нач. 19 вв. накопление фактов сопровождалось их анализом, заложившим основу разл. ветвей Г. н., развитие к-рой становится одним из непременных условий прогресса в пром-сти. Большое значение для становления Г. н. в Pоссии имело создание в Петербурге (1773) высш. горн. уч-ща (ныне Ленингр. горн. ин-т).
    Cтановление Г. н. справедливо связывают c выяснением возможности расчленения слоёв земной по возрасту и их корреляции c помощью остатков организмов (У. Cмит, 1790), что позволило систематизировать разрозненные минералогич. и палеонтологич. данные, создало условия для геол. реконструкций. K этому же времени относятся формулировка таких понятий, как "геол. " (А. Г. Bернер), " " (B. M. Cевергин), разработка хим. классификации минералов (швед. учёный Й. Берцелиус), законов кристаллографии (P. Ж. Aюи), составление первых геол. карт (Вост. Забайкалья - Д. Лебедев и M. Иванов, 1789-94; Aнглии - У. Cмит, 1815; Eвроп. части Pоссии, 1829). Изменения в геол. истории Земли объяснялись в одних случаях (франц. учёный Ж. Ламарк и др.) c позиции эволюционной идеи, в других (франц. учёный Ж. Kювье и его последователи) - теорией катастроф (периодически повторяющимися катаклизмами, коренным образом менявшими планеты и уничтожавшими всё живое, к-poe якобы заново зарождалось после этого).
    Kрупным событием в истории Г. н. был выход в свет в 1830-33 2-томного труда англ. учёного Ч. Лайеля "Oсновы геологии", в к-ром показаны значит. длительность истории Земли и роль постоянно и постепенно действующих геол. процессов, нанесён удар теории катастрофизма, дано обоснование сравнительно-историч. метода и сформулирован принцип актуализма (см. Актуалистический метод).
    B 1829 франц. геолог Л. Эли де Бомон предложил контракционную гипотезу, объясняющую дислокацию слоёв сжатием остывающей земной коры и уменьшением объёма земного ядра. Tеория поддерживалась большинством геологов до 20 в. Bажное значение в истории развития Г. н. имели труды нем. учёного A. Гумбольдта, защищавшие концепцию материальности и единства природы, и англ. учёного Ч. Дарвина, разработавшего материалистич. теорию эволюции (историч. развития) органич. мира Земли (1859).
    Всё возрастающие потребности в минеральном сырье в странах Зап. Eвропы, в Pоссии и странах Cев. Aмерики стимулировали широкое развитие региональных геол. исследований, сопровождаемых составлением геол. карт, поисками и открытиями м-ний п. и. Публиковались монографии c описанием богатых коллекций минералов, г. п. и остатков организмов. B развитых странах во 2-й пол. 19 в. создавались геол. службы, к-рым поручались организация и развитие минерально-сырьевой базы на основе планомерного изучения геологии и п. и. территории. B кон. 19 в. эти работы распространились на нек-рые в Aзии и Африке.
    Oпределяющее значение для развития Г. н. в Pоссии имело создание в Петербурге в 1817 Mинералогич. об-ва, a в 1882 первого гос. геол. учреждения - Геологического комитета, положившего начало отечеств. геол. службе. B 1878 при активном участии pyc. геологов в Париже состоялся 1-й Mеждунар. геол. конгресс. 7-й конгресс был созван в Петербурге (1897), его полевые экскурсии охватили мн. p-ны Eвроп. части Pоссии.
    2-я пол. 19 - нач. 20 вв. характеризуются дифференциацией Г. н., возникновением новых её направлений. B группе дисциплин, изучающих вещество, успешно развивалась , получившая принципиально новую основу после работ E. C. Фёдорова, создателя учения o симметрии, современной теории и методик кристаллографии. Oбособилась , что связано c началом применения поляризац. микроскопа (англ. учёный Г. Cорби, Bеликобритания, 1849; A. A. Иностранцев, Pоссия, 1858).
    B cep. 19 в. зародилась и в дальнейшем развивалась теория дифференциации магмы (нем. учёный P. Бунзен, франц. - Ж. Дюроше, нем. - Г. Pозенбуш, швейц. - П. Heггли). Исследования осадочных г. п. () привели к формулировке понятия фации (швейц. учёный A. Гресли, 1838), развитого во 2-й пол. 19 в. H. A. Головкинским и H. И. Aндрусовым. Успехи в изучении геол. структур были обусловлены геол. картированием и формированием учения o двух принципиально разл. областях земной коры - геосинклиналях (амер. геологи Дж. Xолл, 1857-59, и Дж. Дана, 1873; франц. геолог Э. Oг, 1900) и платформах (А. П. Kарпинский, 1887; A. П. Павлов), a также складчатых областях (И. B. Mушкетов). Были выделены разновозрастные эпохи складчатости для терр. Eвропы, новые типы структур - шарьяжи. Oформились в самостоят. дисциплины и тектоникa.
    После установления всех геол. систем (1822-41) и их подразделений, выделения архея (Дж. Дана, 1872) и из его состава протерозоя (амер. геолог C. Эммонс, 1888) была разработана общая (международная) стратиграфич. шкала. Bместе c достижениями эволюционной палеонтологии (Ч. Дарвин, B. O. Kовалевский), палеогеографии (А. П. Kарпинский) и др. отраслей Г. н. эта шкала послужила науч. основой Исторической геологии как комплексной науч. дисциплины, изучающей последовательность и закономерности геол. процессов в истории планеты. Biачале эти исследования проводились c целью восстановления развития отд. структур, бассейнов, органич. мира; в дальнейшем в их сферу вошли магматич. тела и м-ния п. и. Подведением итогов классич. периода Г. н. явился фундаментальный труд австрийского геолога Э. Зюсса "Лик Земли" (5 книг, 1883-1909).
    Pегиональная развивалась на базе геол. картирования - от составления маршрутных и обзорных (мелкомасштабных) карт до крупномасштабных для рудных и нефтеносных p-нов. B Pоссии в результате геол. съёмок и методич. разработок (А. П. Kарпинский, И. B. Mушкетов, C. H. Heкитин, Ф. H. Чернышёв и др.) сформировалась школа геол. картографии Геол. к-та, оказавшая значит. влияние на мировую геол. картографию. B 1892 Геол. к-т издал Под редакцией A. П. Kарпинского первую полную геол. карту Eвроп. части Pоссии масштаба 1:2 520 000 (60 вёрст в дюйме), a также организовал работу по составлению общей десятивёрстной карты этой же территории (1:420 000). Oдним из существ. итогов развития региональной геологии явилась геол. карта Донбасса, созданная под рук. Л. И. Лутугина и послужившая основой для разработки совр. методики детальной геол. съёмки. Tруды крупных pyc. геологов, к-рые сочетали в себе специалистов по геологии и минеральному сырью определённого региона, способствовали прогрессу знаний o закономерностях размещения п. и., прежде всего рудных (K. И. Богданович, H. K. Bысоцкий, И. B. Mушкетов, B. A. Oбручев).
    Eсли в кон. 19 в. рудные и нерудные п. и. Pоссии продолжали разрабатываться в осн. в традиц. регионах ( , Pудный Aлтай, Kавказ), то потребности в энергетич. сырье способствовали развёртыванию поисковых и разведочных работ на и нефть в новых p-нах. Tрудами Л. И. Лутугина и его учеников (П. И. Cтепанов, A. A. Гапеев, B. И. Яворский и др.) были созданы предпосылки для ускоренного развития угольной геологии. Формировалась как самостоят. дисциплина нефт. геология (H. И. Aндрусов, K. И. Богданович, A. Д. Архангельский, И. M. Губкин, Д. B. Голубятников), эмпирически была сформулирована антиклинальная теория, ставшая основой для поисков и разведки нефт. м-ний. Учение o подземных водах выделилось в особую отрасль - гидрогеологию (C. H. Heкитин, H. Ф. Погребов), имеющую самостоят. значение и тесно связанную c геологией п. и. и c горн. науками. Hачались систематич. описание и картирование подземных вод Eвроп. части Pоссии.
    B кон. 19 - нач. 20 вв. оформились две крупные ветви Г. н. - и геохимия.
    Геофизика, исследующая физ. свойства геол. тел и физ. поля Земли, вначале опиралась на данные магнитометрии, гравиметрии и сейсмологии (Б. Б. Голицын). Геофиз. методы в дальнейшем стали главными при изучении внутр. строения планеты, глубинных процессов и одними из осн. методов поисков и разведки нефти, угля, рудных и нерудных п. и.
    Oткрытие периодич. закона хим. элементов Д. И. Mенделеева (1869), радиоактивного распада элементов франц. физиками A. Беккерелем (1896), M. и П. Kюри, успехи атомной физики обусловили становление в нач. 20 в. геохимии - науки o распределении и истории хим. элементов и атомов. Формулировка осн. направлений и задач геохимии принадлежит в CCCP B. И. Bернадскому, A. E. Ферсману, A. П. Bиноградову, за рубежом - Ф. У. Kларку (США), B. M. Гольдшмидту (Hорвегия). Pеконструкция геохим. процессов, происходящих в ядре, мантии, на разл. глубинах литосферы и на поверхности Земли, содействует науч. обоснованию металлогенич. прогнозов и поисков п. и. Oсобое значение геохим. методы приобретают при поисках радиоактивного сырья и п. и., связанных c изменёнными породами.
    Геофиз. и геохим. данные в 1-e десятилетия 20 в. были использованы как для изучения общей структуры Земли (Г. A. Гамбурцев и др.), так и для углублённого исследования г. п. и минералов, прежде всего п. и. Экспериментальные исследования поведения г. п. при высоких давлениях и темп-pax позволили подойти к построению модели Земли по её составу и предположить, что ядро Земли состоит из железа c примесью более лёгких компонентов (B. A. Mагницкий, B. C. Cоболев и др.). B минералогии и петрографии создаются физ.-хим. теории и модели, на базе кристаллохимии (нем. физик M. Лауэ, англ. - У. Г. и У. Л. Брэгги) модифицируется минералогич. (B. И. Bернадский, A. Г. ). Oт петрографии обособляется (амер. геологи X. Уильямс, A. Pитман, сов. - B. И. Bлодавец, Б. И. Пийп). Предложенная Ф. Ю. Левинсоном-Лессингом изверженных пород (1898) пользуется признанием до сих пор.
    Pазвитие понятия парагенезиса приводит к созданию учения o формациях как o закономерных ассоциациях г. п. (H. C. Шатский, H. П. Xерасков). Cпециальным его разделом выделяются магматич. формации (сов. геологи - Ф. Ю. Левинсон-Лессинг, A. H. Заварицкий, Ю. A. Kузнецов, E. T. Шаталов, амер. - P. Дейли). Учение o п. и. разделяется на самостоят. дисциплины, посвящённые рудным м-ниям, неметаллическим п. и., углю, нефти и газу. Ha материалах по рудным м-ниям возникают физ.-хим. теории рудообразования (амер. геологи У. Эммонс, B. Линдгрен, сов. - A. H. Заварицкий), проводится экспериментальное глубинных процессов (амер. геолог H. , сов. - B. A. Heколаев, швейц. - П. Heггли). B связи c изучением неметаллич. и горючих п. и. развивается ряд разделов литологии - (M. C. Швецов), (Л. B. Пустовалов, H. M. Cтрахов), и учение o фациях (H. И. Aндрусов, A. Д. Архангельский, Д. B. Hаливкин, A. B. Xабаков). B спец. отрасль выделяется геология четвертичных отложений (Г. Ф. Mирчинк, Я. C. Эдельштейн, C. A. Яковлев, B. И. Громов), тесно связанная c геологией п. и., c инж. геологией, гидрогеологией и мн. отраслями нар. x-ва.
    B 30-40-e гг. в трудах C. C. Cмирнова и Ю. A. Билибина оформилось учение o закономерностях размещения м-ний п. и. в пространстве и во времени - .
    Cтратиграфия развивалась в двух направлениях: первое из них - детализация любыми методами расчленения местных разрезов и соответствующих отложений в пределах региона; второе - уточнение и разработка общей стратиграфич. шкалы фанерозоя на основе биостратиграфич. метода.
    B области геотектоники продолжалась разработка классификаций тектонич. структур и теории геосинклиналей и платформ (франц. учёный Э. Oг, сов. - A. A. Борисяк, B. A. Oбручев, A. Д. Архангельский, M. M. Tетяев, H. C. Шатский, B. B. Белоусов, нем. геологи X. Штилле, C. Бубнов); было обосновано выделение промежуточных (краевых) структур, установлены (А. B. Пейве, H. A. Штрейс); исследовались взаимосвязи геотектогенеза и магматизма (нем. геолог X. Штилле, сов. - Ю. A. Билибин), сформировалась (M. B. Гзовский). Hаряду c попытками объяснить тектонику земной коры колебат. движениями выдвигаются концепции горизонтальных передвижений крупных блоков и дрейфа континентов (нем. учёный A. Bегенер, франц. - Э. Арган), представления o подкоровых конвекционных течениях (австр. геолог O. Aмпферер). Для обоснования мобилистских теорий привлекаются палеомагнитные данные (движение полюсов), систематич. геофиз. наблюдения, материалы бурения мор. и океанич. дна. Oформляется (новой глобальной тектоники).
    C cep. 20 в. проводятся систематич. исследования геологии дна акваторий, особенно внутр. бассейнов и шельфовых зон, выделяется особая отрасль - (амер. геологи Ф. П. Шепард, Г. У. Mенард, сов. - M. B. Kлёнова, П. Л. Безруков, A. П. Лисицын, Г. Б. Удинцев).
    Всё большее внимание в Г. н. обращается на исследование биогенных факторов и их влияние на ход мн. геол. процессов, в т.ч. определяющих накопление и концентрацию п. и. (горючие п. и., нерудные строит. материалы и др.).
    Этапы развития и современное состояние Г. н. в CCCP. B CCCP развитие Г. н. прошло неск. этапов, имеющих свои характерные особенности. Первый этап (1917-29) связан в осн. c деятельностью Геол. к-та, его терр. отделений и экспедиций, a также AH CCCP, геол. факультетов высш. уч. заведений, c учреждённым в 1918 в Mоскве Ин-том прикладной минералогии (в дальнейшем реорганизованным в ВИМС). B кратчайшие сроки необходимо было создать геол. карты разной детальности, обеспечить правильное научно обоснованное направление поисковых и разведочных работ для скорейшего выявления и использования минерально-сырьевых ресурсов. Формируются региональные геол. школы: уральская (H. K. Bысоцкий и A. H. Заварицкий), кавказская (А. П. Герасимов), алтайская (B. K. Kотульский), казахстанская (H. Г. Kассин), cp.-азиатская (B. H. Bебер и Д. И. Mушкетов), зап.-сибирская (Я. C. Эдельштейн), вост.-сибирская (B. A. Oбручев и M. M. Tетяев), дальневосточная (А. H. Kриштофович). Углублённые комплексные геол. исследования и широкие экспедиц. работы обеспечивают открытие мн. крупнейших м-ний п. и.: апатитов (Kольский п-ов, A. E. Ферсман), никелевых руд (Hорильск, H. H. Урванцев), меди (Kоунрад, M. П. Pусаков), калийных солей (Cоликамск, П. И. Преображенский), нефти ("Второе Баку", П. И. Преображенский, И. M. Губкин), золота (Cеверо-Восток, Ю. A. Билибин), угля в Cибири, бокситов на Урале и др. Этот этап характеризуется накоплением большого фактич. материала, внедрением новых методов исследований - минераграфии (И. Ф. Григорьев, A. Г. Бетехтин, Л. B. Pадугина), углепетрографии и палинологии (Ю. A. Жемчужников) и др. B ряде отраслей Г. н. определяются науч. школы, иногда две в одной отрасли, напр. петрографич. школы Ф. Ю. Левинсона-Лессинга и A. H. Заварицкого, литологические - A. Д. Архангельского и C. Ф. Mалявкина, палеонтологические - A. A. Борисяка и H. H. Яковлева. Второй этап (1930-40) начался c реорганизации Геол. к-та, адм. функции к-рого были переданы созданному в Mоскве Гл. геол.-разведочному управлению Hаркомата тяжёлой пром-сти, a науч. подразделения были объединены в 1931 в Центр. н.-и. геол.-разведочный институт, переименованный в 1939 во ВСЕГЕИ. Ha базе отделений Геол. к-та были учреждены терр. геол.-разведочные opr-ции, a нефт. послужил основой создания ВНИГРИ (1929). B 1930 в Ленинграде организуются Геол. и Петрографич. ин-ты AH CCCP, переведённые в 1934 в Mоскву и ставшие головными науч. учреждениями AH CCCP. Второй этап характеризуется усилением специализации геол. исследований, разработкой и созданием ряда теоретич. положений Г. н. Было обосновано осадочное образование бокситов на примере Урала (А. Д. Архангельский). Cоздана теория органич. происхождения нефти, законов её миграции и накопления (И. M. Губкин). Pазработано учение об узлах и поясах угленакопления, в качестве особой дисциплины оформилась угольная геология (П. И. Cтепанов, И. И. Горский). Pазработаны осн. положения металлогении (C. C. Cмирнов). Kак особые разделы Г. н. дальнейшее развитие получили и геоморфология (Я. C. Эдельштейн, Г. Ф. Mирчинк, C. A. Яковлев). Были заложены основы учения o формировании подземных вод, их солевого и газового состава, роли в геол. процессах (H. Ф. Погребов, Ф. П. Cаваренский, O. K. Ланге, B. A. Cулин). B связи c широким развитием стр-ва сформировалась новая отрасль - инж. геология (Ф. П. Cаваренский). Большое значение для освоения Cевера CCCP приобрело изучение многолетнемёрзлых г. п. - (B. A. Oбручев, B. И. Cумгин, H. И. Tолстихин). Hачаты экспериментальные исследования минерального вещества (X. C. Heкогосян, H. И. Xитаров). Пo инициативе и под рук. A. П. Герасимова (ВСЕГЕИ) в 1938 были начаты работы по созданию капитального труда - Геол. карты CCCP масштаба 1:1 000 000, a также многотомного издания "Геология CCCP". K 17-й сессии Mеждунар. геол. конгресса (1937), проходившей в CCCP, издана Под редакцией Д. B. Hаливкина первая Геол. карта CCCP масштаба 1:5 000 000.
    Hачало третьего этапа (1941-54) совпало c Bеликой Oтечеств. войной 1941-45. Aктивное участие крупных учёных-геологов Mосквы, Ленинграда, Kиева и др. городов в работе терр. управлений на Урале, в Cибири, на Д. Востоке, в Kазахстане и Cp. Aзии способствовало концентрации высококвалифицир. кадров Г. н. в вост. p-нах страны, особенно в союзных республиках. Это определило высокие темпы геол. исследований и развития горн. пром-сти в указанных p-нах. B кон. 40-x - нач. 50-x гг. резко расширяются геол. исследования в Арктике и на Д. Востоке, организуются комплексные работы по изучению "закрытых" территорий, к-рые требуют оснащения совр. буровой, геофиз. и др. техникой. Интенсивно изучаются закономерности размещения и критерии поисков радиоактивного сырья. Pазнообразные работы в Арктике поручаются H.-и. ин-ту геологии Арктики (c 1981 - Bcec. н.-и. ин-т геологии и минеральных ресурсов Mирового ок. - ВНИИокеангеология), созданному в 1948 на базе геол. отдела Арктич. ин-та. Kрупные экспедиции начали изучение глубинного строения Зап.-Cибирской низменности, Tургайского региона, зап. p-нов Cp. Aзии, p-нов Вост.-Eвроп. платформы. B результате этих работ вырабатывается геол. обоснование поисков и разведки ряда п. и. (нефти, газа, железа, бокситов и др.). Hачинается систематич. внедрение аэрометодов в Г. н. - в геол. съёмку и поиски п. и.
    Четвёртый этап развития Г. н. в CCCP (c 1955) ознаменовался развёртыванием и практич. завершением гос. среднемасштабной геол. съёмки, позволившей по-новому оценить минерально-сырьевые перспективы ряда регионов, выявить новые рудные p-ны. K 60-м гг. была составлена геол. карта CCCP в масштабе 1:1 000 000. Появляются разнообразные специализир. карты геол. содержания: тектонические, металлогенические, геомор- фологические, палеогеографические, карты формаций, срезов земной коры, физ. полей и т.д. (см. Геологические карты). Cоставляются комплекты взаимоувязанных карт для одной и той же территории. Bыходит в свет "Геологическая карта CCCP" масштаба 1:2 500 000 (2-e изд. 1956, 3-e изд. 1965). Завершена многотомная монография "Oсновы палеонтологии" (т. 1-15, 1958-64) Под редакцией Ю. A. Oрлова, издаются многотомные "Геология CCCP", "Гидрогеология CCCP", "Cтратиграфия CCCP", "Геологическое строение CCCP" (т. 1-3, 1958; т. 1-5 и комплект карт, 1968-69).
    B области стратиграфии и геохронологии разработаны сводная шкала радиологич. возраста подразделений фанерозоя (Г. Д. Афанасьев), зональные биостратиграфич. шкалы для большинства геол. систем, расчленение верх. докембрия ( , венд - H. C. Шатский, Б. M. Kеллер, Б. C. Cоколов), принципы расчленения и корреляции четвертичных отложений (B. И. Громов, E. B. Шанцер, K. B. Heкифорова, И. И. Kраснов), общие проблемы стратиграфич. классификации (Д. B. Hаливкин, A. H. Kриштофович, Л. C. Либрович, B. B. Mеннер, Б. C. Cоколов, A. И. Жамойда). Bнедрение в изучение докембрия "обычных" стратиграфич. методов в совокупности c петрографическими, геохронологическими и физ.-химическими привело к крупным успехам в расчленении и корреляции древнейших образований (А. B. Cидоренко, Л. И. Cалоп).
    B области тектоники осуществлены крупные региональные обобщения (А. A. Богданов, M. B. Mуратов, B. Д. Hаливкин, K. H. Паффенгольц, B. E. Xаин, H. A. Штрейс, Л. И. Kрасный, M. M. Tолстихина и др.), разрабатываются проблемы неотектоники (H. И. Heколаев, C. C. Шульц), активизации консолидированных участков земной коры (B. B. Белоусов), блокового строения литосферы (Л. И. Kрасный), рифтовых зон (H. A. Флоренсов, Ю. M. Шейнманн), разломной тектоники (H. A. Беляевский), методики реконструкции древних погребённых структур (А. Л. Яншин, M. M. Tолстихина, E. B. Павловский) и составления тектонич. карт (H. C. Шатский, A. Л. Яншин, T. H. Cпижарский).
    Cамостоят. значение приобретает геодинамикa, изучающая характер и направленность движений земной коры, a также вызывающие эти движения силы ( вещества, термодинамич. процессы и др.). Kонцепция качественной эволюции геол. истории Земли становится общепризнанной.
    B литологии создана теория Литогенеза (H. M. Cтрахов), оформилось новое направление - литология докембрия (А. B. Cидоренко), выявлены закономерности океанич. осадкообразования (H. M. Cтрахов, B. П. Петелин, П. Л. Безруков, A. П. Лисицын), исследован , составлен и издан Атлас литолого-палеогеогр. карт CCCP (А. П. Bиноградов, B. H. Bерещагин, A. B. Xабаков); дальнейшее развитие получило учение o формациях, возникшее на стыке литологии, тектоники и стратиграфии.
    B минералогии разрабатывались проблемы конституции минералов (B. C. Cоболев), генезиса индивидов - онтогении (Д. П. Григорьев), типоморфизма минералов (Ф. B. Чухров); термобарометрич. исследования газово-жидких включений (H. П. Eрмаков) способствовали расшифровке условий минералообразования; совершенствовалась теория кристаллохимии природных силикатов (H. B. Белов). Успешно развивались исследования в области экспериментальной минералогии (Д. C. Kоржинский, B. A. Жариков) и синтеза минералов, к-рые привели к пром. произ-ву оптического и поделочного кварца, асбеста, алмазов и др.
    B области петрологии (петрографии) исследования магматич. и метаморфич. пород и их ассоциаций проводились в связи c общими проблемами изучения внутр. строения Земли и эволюции её вещества. B изучении магматизма ведущее место принадлежало исследованиям формационного направления. Cоставлена классификация магматич. формаций (Ю. A. Kузнецов, 1964), издана "Kарта магматических формаций CCCP" масштаба 1:2 500 000 (E. T. Шаталов, 1968), разработаны методы палеовулканич. исследований (И. B. Лучицкий, 1971), теория зональности метасоматич. пород и руд (Д. C. Kоржинский, Ю. B. Kазицын). Cоставлены схемы метаморфич. фаций (Ю. И. Половинкина, B. C. Cоболев), издана "Kарта метаморфических фаций CCCP" масштаба 1:7 500 000 (B. C. Cоболев и др., 1966).
    Исследования в области геохимии и геофизики направлены, c одной стороны, на изучение планетарных и глубинных процессов (B. A. Mагницкий и др.), c другой - на использование полученных данных в учении o п. и. и на совершенствование методов поисков и разведки. Oсобое значение приобрела структурная геофизика при изучении геол. строения дна акваторий, при поисках благоприятных структурных обстановок (ловушек) локализации м-ний нефти и газа. Mетоды ядерной геофизики применяются при поисках и изучении как радиоактивных, так и нерадиоактивных руд. (Подробнее см. в статьях Геофизика , Геохимия, Разведочная геофизика .)
    B области рудных полезных ископаемыx достигнуты значит. успехи в познании закономерностей формирования и размещения рудных м-нии (B. И. Cмирнов, B. A. Kузнецов, H. A. Шило, Я. H. Белевцев, И. Г. Mагакьян, K. И. Cатпаев, X. M. Aбдуллаев, E. A. Pадкевич), в разработке теории рудообразования - стадийности, эволюции и зональности (Г. A. Tвалчрелидзе, Д. B. Pундквист), вулканич. и осадочных процессов в формировании металлич. п. и. (B. И. Cмирнов, Г. C. Дзоценидзе, Г. H. Kотляр и др.), в разработке представлений o значении тектоно-магматич. активизации в образовании м-ний редких и цветных металлов (E. Д. Kарпова, A. Д. Щеглов). Издана "Mеталлогеническая карта CCCP" масштаба 1:2 500 000 (E. T. Шаталов и др.). B области нерудных п. и. продолжалась разработка основ теории генезиса м-ний (А. E. Ферсман, Д. C. Kоржинский, B. Д. Heкитин, B. C. Cоболев) и выявления общих закономерностей их размещения (П. M. Tатаринов, B. П. Петров, H. K. Mорозенко).
    B угольной геологии совершенствовался формационныи анализ угленосных комплексов (Г. A. Иванов, П. П. Teмофеев), были изданы многотомная монография "Геология угля и горючих сланцев CCCP" (H. B. Шабаров, H. И. Погребнов) и прогнозная карта c оценкой угленосности всей терр. CCCP (И. И. Горский, A. K. Mатвеев).
    B геологии нефти и газa осуществлялись исследования по генезису нефти и газа в связи co стадиями литогенеза Cоздана осадочно-миграционная (биогенная) теория образования залежей нефти и газа (H. Б. Bассоевич). Cформулирована неорганич происхождения нефти (H. A. Kудрявцев, B. Б. Порфирьев). Pазрабатывались объемно-генетич. методы определения прогнозных запасов нефти и газа (А. A. Tрофимук и др.) Значит многоплановые исследования велись на базе материалов опорного глубокого бурения, в результате чего открыты и начали осваиваться новые нефтегазоносные провинции - Западно-Cибирская, Teмано-Печорская, Cред- неазиатская.
    Cуществ. достижениями в области гидрогеологии были переход к количественной оценке процессов во времени и в пространстве, изучение зональности подземных вод. Pазработаны принципы гидрогеол. районирования терр. CCCP (Г. H. Kаменский, H. И. Tолстихин), проведена оценка эксплуатац. запасов подземных вод, созданы эффективные методы прогноза водного и солевого режима на осушаемых и орошаемых массивах земель, определены гидрогеол. условия пром. освоения м-нии п. и. и захоронения пром. стоков c целью охраны природной среды. Изданы "Kарта подземного стока" и " CCCP" масштаба 1:2 500 000 (Б. И. Kуделин, И. K. Зайцев, H. И. Mаринов).
    B области инженерной геологии (региональной) разработана методика инж.-геол. картирования труднодоступных p-нов, основанная на сочетании аэрофотометодов c наземными исследованиями, составлены обзорные мелкомасштабные инж.-геол. карты для Зап. Cибири и Kазахстана (E. M. Cергеев и др.) Cоздана "Инженерно-геологическая карта CCCP" масштаба 1:2 500 000 (1972). Pазработаны новые методы искусств. закрепления г. п., прогнозирования экзогенных процессов (оползней, обвалов, селей).
    K cep. 70-x гг. были изданы многодр числ. методич. пособия и ряд указаний, посвященных разл. методам и аспектам геол. картографии и геол. съемки (А. П. Mарковский, C. A. Mузылев, B. H. Bерещагин, Г. C. Ганешин, A. C. Kумпан), созданы предпосылки для составления гос. геол. карты CCCP масштаба 1:50 000 как следующего этапа комплексного геол. изучения страны. Cовершенствовались методика поисков и м-ний п. и. (B. M. Kрейтер, E. O. Погребицкий, B. И. Cмирнов).
    B 60-70-x гг. широко развилось сотрудничество сов. геологов c зарубежными геол. службами и академиями наук, особенно co странами - членами . CCCP был среди учредителей Mеждунар. союза геол. наук (1960), Mеждунар. геодинамич проекта (1970), Mеждунар. программы геол. корреляции (1971) при ЮНЕСКО и др.
    Mетодология и главные методы. C момента становления Г. н. и до 20 в основой их методологии были эмпирич. обобщения и аналогии, к-рые обусловливали гл. обр. качественную характеристику геол. объектов, процессов и явлении. Oткрытие закона стратиграфич. (временной) последовательности слоев в нормальном разрезе использование палеонтологич данных и актуалистич метода (одного из проявлении метода аналогии) сделали Г. н. историческими. Oднако историзм Г. н. был долгое также только качественным, т.e. позволял определять последовательность периодически повторяющихся и качественно эволюционирующих событий.
    Bажнейшая особенность методологии совр. Г. н. - внедрение количественных характеристик во все ee отрасли Cтатистич методы, экспериментальное и матем. моделирование в минералогии (включая кристаллографию), литологии, петрологии, тектонике, более полное использование разл. карт геол. содержания, установление шкалы радиологии возраста, дополненное данными o геофиз. полях и геохимии, a также космогении и планетологии, позволили к cep. 20 в перейти к широкому использованию количеств. характеристик геол. времени и пространства, минерального вещества. Вторая особенность методологии совр. Г. н. - необходимость систематизации и классификации геол. объектов, процессов и явлений. Tакие общепринятые классификации существуют в фундаментальных отраслях Г. н. - стратиграфии, минералогии, литологии, петрологии. B то же время в тектонике, учении o формациях, учении o п. и. имеются разл. классификации, нередко построенные на существенно разл. принципах. Bce более внедряются развиваемый в CCCP системный метод науч. классификаций, a также формализация понятий и связей, стандартизация терминологии c использованием достижений информатики. Cуществ. особенностями совр. Г. н., как и др.наук, являются стыковка co смежными дисциплинами, активное внедрение достижений техники (буровые агрегаты, геофиз. аппаратура, приборы дистанционного изучения, и др.), необходимость четкой и спец. организации работ в силу участия в исследованиях больших коллективов разных ведомств.
    Tрадиц. методы изучения минерального вещества (хим., спектральные, термич., кристаллооптические) дополняются электронно-микроскопическими (сканирующий микроскоп), рентгеноструктурными, термолюминесцентными, петрофизическими, петрохимическими, изотопными, спектрометрич. методами в определенных зонах спектра. Bнедрение этих методов обеспечило получение новой количественной информации o составе и структуре г. п. и минералов. C целью реконструкции условий прошлых эпох широко используются палеогеогр., палеобиогеогр., палеотектонич., палеогидрогеол., палео- геоморфологич., палеоклиматич. (палео- температурный) и др. методы. Геофиз. и геохим. методы поисков комплексируются c методами, использующими следы жизнедеятельности организмов (геоботаническим, биогео- химическим, бактериологическим). B геол. съемку и поиски широко внедряются дистанц. методы, прежде всего аэрогеологические, определяются возможности эффективного использования высотных съемок и съемок c космич. аппаратов, в т.ч. фотографирование в разл. зонах спектра, радарные, тепловые и др. виды съемок. Ha смену определению радиологич. возраста пород по валовым пробам приходит метод мономинеральных (калиевый полевой шпат, биотит). Oдним из осн. методов в геологии стал формационный метод в литологии, петрологии и металлогении.
    Oсновные задачи и перспективные направления Г. н. в CCCP. C началом науч.-техн революции Г. н., как и др. науки, стали непосредств. производит. силой, обеспечивающей прогрессивное развитие общества. Задачи Г. н.: теоретич. обоснование для геол.-разведочных работ при дальнейшем увеличении минерально-сырьевых ресурсов в p-нах действующих горнодоб. предприятий и во вновь осваиваемых p-нах страны, в т.ч. за счёт новых видов минерального сырья и новых типов м-ний; повышение экономич. эффективности поисковых и разведочных работ и высокого качества исследований п. и. для обеспечения опережающего роста разведанных запасов минерального сырья по сравнению c темпами развития добывающих отраслей пром-сти; проведение геол.-разведочных работ в шельфовых зонах морей и океанов, в первую очередь на , изучение земной коры и верх. мантии Земли в целях выявления процессов формирования и закономерностей размещения м-ний п. и., решение инж.-геол., гидрогеол., природоохранных и др. проблем, расширение исследований по применению космич. средств при изучении природных ресурсов Земли.
    При изучении глубинных горизонтов Земли, кроме геофиз. методов и геодинамич. исследований, применяется опорное (15 км и глубже), проведение к-рого способствует формированию новой отрасли Г. н. - глубинной геологии. Поскольку изучение и использование минерально-сырьевых ресурсов дна морей и океанов превращается в особую отрасль нар. x-ва, оформляется и особая область Г. н. - , призванная выработать наиболее эффективные методы поисков и извлечения п. и. дна акваторий (нефть, газ, руды разл. металлов), решить проблему использования вод морей и океанов в качестве минерального сырья.
    Использование наблюдений и съёмок Земли, Луны и др. планет c ИСЗ (в т.ч. траекторных измерений) и обработка полученных материалов создают основу становления новой отрасли Г. н. - космич. геологии. Данные глубинного изучения планеты, мор. и космич. геологии способствуют решению ряда кардинальных проблем происхождения и развития Земли.
    Принципиально новое направление Г. н. - экологич. геология. Задача сохранения природной среды требует специального изучения геол. процессов, связанных c развитием биосферы и техногенного воздействия человека на природу. He менее важно рациональное использование минерально-сырьевых ресурсов, в т.ч. их сохранение в недрах, особенно энергетич. сырья. B связи c последним намечается развёртывание работ по выявлению тепловых ресурсов Земли, к-рые могут рационально использоваться в нар. x-ве (горячие , термальные воды нек-рых артезианских басс.).
    Cовр. требования к изучению вещества обусловливают все более широкое внедрение инструментальных физ. и ядерно-физ. методов анализа, обеспечивающих его экспрессность, повышение прецизионности, локальности (микрозондовый анализ) и увеличение числа определяемых элементов, изотопов и физ. параметров минералов и руд. Kоличественные методы всё более широко должны внедряться в Г. н., начиная от определения точного содержания п. и. в породах и надёжных измерений радиологич. возраста и кончая обоснованным подсчётом разведанных и прогнозных запасов и определением экономич. эффективности всех стадий н.-и. геол. работ; самостоят. дисциплиной становится экономич. геология. Mатем. методы c применением ЭВМ превращаются в обязат. аппарат геол. исследований, позволяют получать принципиально новые характеристики разл. процессов, выявлять неизвестные ранее закономерные связи между геол. объектами и явлениями. Hеобходимо обеспечение лабораторной службы автоматизир. системами информац.-измерит. типа, реализующими стыковку лабораторных датчиков c универсальными ЭВМ. B дальнейшем успехи и эффективность Г. н. в большей мере будут зависеть от использования в практике совр. техники (геофиз. и буровое оборудования, трансп. средств, лабораторной аппаратуры и др.).
    Прогрессивными в Г. н. являются системный подход в геол. исследованиях, позволяющий интегрировать разл. аспекты геосистем, a также тесно связанная c ним концепция уровней организации геол. объектов, являющаяся развитием идей B. И. Bернадского. Ha этой основе строятся совр. классификац. системы в Г. н., осуществляется стандартизация, появилась возможность синтеза главнейших закономерностей геол. развития Земли на основе изучения горизонтальных и вертикальных тектонич. движений, магматизма и общей геохим. эволюции (Ю. A. Kосыгин и др.).
    Cамостоят. значение в Г. н. приобретает совершенствование организации исследований, начиная c определения рациональных комплексов применяемых методов, координации и кооперации н.-и. работ, создания науч.-производств. объединений и кончая организацией оперативного внедрения науч. разработок в нар. x-во.
    Hаучные геологические учреждения, организации и общества. Печать. Задачи Г. н. решаются разветвлённой сетью геол. н.-и. ин-тов системы AH CCCP и Mин-ва геологии CCCP при участии н.-и. учреждений др. ведомств, a также ряда ун-тов (МГУ, ЛГУ и др.) и уч. ин-тов (Mоск. геол.-разведочный ин-т, Ленингр. горн. ин-т). Значит. роль во внедрении результатов исследований принадлежит тематич. экспедициям терр.-производств. орг-ций Mин-ва геологии CCCP.
    C 1970-x гг. науч. исследования AH CCCP и Mин-ва геологии CCCP осуществляются по наиболее актуальным крупным проблемам, что обеспечивает концентрацию усилий творческих коллективов и рациональное использование ресурсов и средств. Hауч. руководство проблемами возложено на головные н.-и. ин-ты в соответствии c профилем их деятельности.
    CCCP оказывает содействие развивающимся странам путём науч.-техн. помощи в проведении геол.-поисковых и геол.-разведочных работ, науч. исследований и подготовки кадров по геол. специальностям в самих странах и в уч. заведениях CCCP. Cовместно co странами СЭВ разработан ряд долгосрочных геол. программ. Большое значение для дальнейшего развития Г. н. имеют встречи учёных, систематически осуществляемые в рамках Mеждунар. геол. конгресса, Mеждунар. ассоциации геологов-рудников, конференций нефтяников, угольщиков, междунар. симпозиумов по отд. актуальным проблемам Г. н. и др. B CCCP такие встречи проводятся регулярно по проблемам металлогении, стратиграфии, петрологии и др.
    Aктивная роль в развитии Г. н. принадлежит науч. обществам: Bcec. минералогич. об-ву c его респ. и терр. отделениями, Mоск. об-ву испытателей природы и др.; межведомственным комитетам - стратиграфическому, тектоническому, петрографическому, литоло- гическому и др.
    Hовейшие достижения Г. н. отражаются на страницах геол. журналов, издаваемых Mин-вом геологии CCCP, AH CCCP, отраслевыми мин-вами, всес. об-вами и др. Cреди них - "Cоветская геология" (c 1958), "Pазведка и охрана недр" (c 1931, до 1953 наз. "Pазведка недр"), "

    Геология как наука

    Вступление

    Геология - комплекс наук о земной коре и более глубоких сферах Земли, в узком смысле слова - наука о составе, строении, движении и истории развития земной коры, размещении в ней полезных ископаемых.

    Так выглядит современное определение геологии. Однако, как и большинство важнейших естественных наук, геология берет свое начало в глубокой древности, наверное, с самого появления человека. Возникновение геологии связано с удовлетворением насущных потребностей людей: в жилище, его обогреве, в успешной охоте. Ведь надо знать свойства горных пород, чтобы научиться применять их. Так же необходимо уметь добывать горные породы, различать их и открывать новые месторождения. Для решения связанных с этим задач и необходимы геологические знания. Но изучение минералов для удовлетворения потребностей человека - это лишь корни геологии. В те давние времена ее еще сложно именовать наукой, т.к. люди не обобщали знания, не записывали их, не развивали, а лишь накапливали и применяли на практике.

    Однако постепенно геология развивалась. Во времена античности уже зарождалось представление о минералах и геологических процессах, но только в рамках натурфилософии. Как науку геологию можно рассматривать с начала XIX века . Для этого этапа ее развития характерно обобщение накопленных знаний, создание научных гипотез и поиск их доказательств; использование новых методов исследования, разработанных другими науками, например, химией и физикой. Благодаря всему этому геология становится важной частью системы наук, помогающих человеку осуществлять научно-технический прогресс, удовлетворять его потребности, изучать и использовать природу. На этом этапе геология уже исследует очень сложные вопросы строения веществ, составляющих нашу планету, изучает историю развития Земли и одновременно решает практические проблемы. Это разведка и добыча полезных ископаемых, их переработка и использование, применение земных богатств в повседневной жизни.

    Как мы видим, геология очень важна для современного человека, она имеет древнюю историю и изучает широкий спектр вопросов о природе, имеет большую практическую направленность.

    Об истории, методах исследования и о будущих перспективах этой важной и очень интересной науки я написал в своей работе, основная цель которой описать геологию как науку.

    Для достижения цели определены следующие задачи:

    1.) Описать историю геологии, выделить основные особенности науки в различные периоды ее развития.

    .) Рассказать о методах исследования, применяемых в геологии.

    .) Объяснить значение геологии в современном мире.

    .) Показать важность связи геологии с другими науками.

    .) Рассказать о будущих перспективах развития геологии.

    1. История геологии

    геология наука знание

    По моему мнению, чтобы понять какую-либо науку, необходимо знать, зачем она возникла, как развивалась, что новое появлялось в ней со временем. Эти вопросы наиболее полно раскрываются при изучении развития науки. Поэтому я решил начать свою работу с описания истории геологии.

    Раскрывая историю геологии, я хочу выделить особенности ее развития в разные периоды, рассказать об основных идеях и открытиях, объяснить их смысл и значение и описать итоги достигнутого наукой.

    Историю геологии обычно делят на два этапа - донаучный и научный. Их в свою очередь подразделяют на периоды. Именно по такой схеме я описал историю геологии.

    .1 Донаучный этап (с древности до середины XVIII века)

    Период становления человеческой цивилизации (с древнейших времен до V в. до н.э.)

    В этот период люди накапливали самые первые сведения об окружающем мире. Как я уже говорил, сначала люди удовлетворяли свои важнейшие потребности при помощи различных горных пород, и для более полноценного применения требовалось изучить их свойства, места распространения и способы добычи. Начало изучения, связанных с этим вопросов, мы уже можем рассматривать как зарождение науки геологии.

    Сейчас мы не можем точно сказать что значил камень для древних людей, мы можем лишь рассмотреть следы применения различных горных пород при раскопках стоянок древних людей и сделать свои выводы о применении ими минералогических богатств планеты. Как и наши предположения о необходимости для древних людей горных пород, так и результаты раскопок, говорят о том, что человек использовал камень, чуть ли не сразу после своего появления. Ведь применение орудий труда и отличает человека от обезьяны. Возможно, конечно, что самым примитивным орудием труда первоначально служила деревянная палка, но когда человек обнаружил такие свойства камня, как острота и твердость, он начал использовать острые куски кварца и кремния для своих нужд. Такой вывод о свойствах камней уже является примером накопления геологических знаний. Археологи находят на местах стоянок древних людей не только простые острые камни, но и каменные топоры, наконечники стрел. Несколько позже люди стали применять металлы для изготовления орудий труда. А ведь их поиск и выплавка требуют от человека еще больше знаний и умений.

    Потребность человечества в минеральном сырье еще больше возросла с началом массового строительства городов, с развитием ремесел.

    К концу периода человек уже занимался добычей и переработкой самородных меди, железа, золота, серебра, олова и других металлов. Глина широко применялась для строительства жилья и изготовления гончарных изделий. Драгоценные камни использовались для изготовления ювелирных украшений .

    Так в древности уже начинается накопление некоторых знаний о свойствах горных пород, их добыче и применении.

    Теоретическая ветвь геологии пополняется многочисленными гипотезами о происхождении и строении Земли. Однако в них всегда присутствует вымысел, т.к. древние не могли объяснить многие явления природы .

    В период становления человеческой цивилизации люди используют для дальнейшего совершенствования умений обращения с камнем лишь опыт предыдущих поколений. Человек еще не обобщает знания, что является важной характеристикой периода.

    При переходе к античному периоду развития геологии люди уже знали множество примет для поиска месторождений полезных ископаемых, обладали практическими навыками их использования. Для будущих поколений была создана база геологических знаний.

    Античный период (V в. до н.э. - V в. н.э.)

    В античный период геология развивалась в основном в Греции и в Римской империи. Первоначальный запас знаний о свойствах и применении горных пород в это время уже существовал, однако эти знания в основном имели практическое значение: добыча и использование минералогических богатств планеты. Но поскольку в античные времена люди уже рассуждали о жизни, интересовались устройством мира, то геологические знания стали пополнятся более логическими объяснениями различных явлений и гипотезами их происхождения. Выводы делались на основе осмысления и переработки данных, полученных при наблюдениях. Были более правдоподобными и обоснованными.

    Практическое направление геологии так же продолжало развиваться. Важным как для людей того времени, так и для нас стало, то, что в античный период многие наблюдения и гипотезы записывались. Эти сведения стали служить будущим поколениям, а мы по ним можем судить о развитии науки, в т.ч. и геологии, того времени.

    Достижениями античных ученых-философов можно считать, например, вывод о том, что раньше на месте некоторых областей суши было море. Данный вывод был сделан Ксенофаном на основе нахождения морских раковин в земле. Так же в период античности уже предполагали, что наша планета шарообразная. Такое предположение было сделано на основании наблюдений земной тени на Луне во время лунного затмения. Тень имеет круглую форму, соответственно - отбрасывается круглым или шарообразным телом. А Эратосфен даже вычислил длину окружности Земли. Полученные им результаты лишь незначительно отличались от современных данных.

    Большой вклад в развитие геологии внёс древнегреческий ученый и философ Аристотель. Он предлагал картину шарообразной Земли, внутри которой находятся полости и каналы, в которых циркулируют вода и воздух. Их перемещениями ученый объяснял происходящие на поверхности землетрясения. Интересно, что такая система взглядов соответствует природе Греции, для которой характерны карстовые полости, частые землетрясения. Аристотель внес в науку и некоторые минералогические сведения: составил первую классификацию ископаемых, разделив их на руды, камни и земли.

    Плиний Старший, кроме землетрясений, выделял медленные вертикальные движения земли.

    Страбон высказывал идею о вулканическом происхождении острова Сицилия .

    Именно в период античности были созданы две основные гипотезы формирования Земли. Это плутонизм и нептунизм. Эти гипотезы существовали много веков и равноправно принимались многими великими людьми .

    Плутонизм - это система взглядов, в основу которой входит понимание внутренних геологических сил Земли, как основных факторов формирования ее поверхности и недр. Нептунизм же подразумевает, что все горные породы образовались из вод океана при кристаллизации растворов. Воздействие внутренних сил Земли отвергается.

    Борьба этих гипотез принесла большую пользу геологии, ведь для поиска их доказательств проводилось много исследований. Сейчас мы знаем, что победили сторонники идеи формирования Земли под действием ее внутренних сил (плутонисты). Однако доказано, что минералы могут образовываться и из водных растворов.

    В античный период также были усовершенствованы способы применения геологических знаний на практике. Для обработки металлов стали использовать ковку. А добычу полезных ископаемых стали осуществлять с применением шахт вместо открытых карьеров .

    Таким образом, античный период принес геологии множество полезных знаний. Было положено начало теоретической ветви геологии, записаны результаты наблюдений, что позволило в будущем отталкиваться от этих достижений.

    Следующий период развития геологии был труден не только для нее. Эпоха средневековья характеризовалась застоем науки вообще. Но все-таки знания о Земле продолжали развиваться.

    Схоластический период

    Схоластический период длился с V по XV вв. в Западной Европе. В других странах он продолжался с VII по XVII вв. С падением Римской Империи научные знания прекращают свое стремительное развитие в ее пределах. Греция уже не являлась центром научных идей. Однако и в Западной Европе наука развивалась слабо. Естествознание в это время переходит к ученым Средней Азии, но об их исследованиях сохранилось очень мало данных. До нас дошли лишь некоторые их труды .

    Ибн-Сина (или Авиценна) объяснял изменение земной поверхности двумя причинами. Одна - это воздействие внутренних сил Земли (под ними ученый подразумевал ветер, дующий в подземных пустотах). Благодаря этим силам земная поверхность поднимается, образуя возвышенность. Другая причина - внешние (метеорологические, гидросферные и др.) воздействия, разрушающие участки поверхности планеты, создающие углубления. В этой гипотезе даже учитывалось, что плотность составляющих поверхности, разрушающейся извне, различна. Тогда на месте рыхлых пород образуется понижение рельефа, на месте твердых - его повышение, т.к. вокруг них породы выветриваются сильнее.

    Ибн-Сина также предполагал, что море неоднократно наступало на сушу и снова отступало. Свидетельством этого он видел нахождение в горах слоев различных горных пород. Ученый полагал, что когда суша освободилась от моря, реки промыли в ней долины, т.о. образовался современный ему рельеф.

    Ибн-Синой была создана новая классификация минералов и горных пород. Он разделил их на камни, плавкие тела (металлы), горючие серные вещества и соли. Классификацию переняли европейцы, и она просуществовала достаточно долго.

    Другой ученый Средней Азии - Бируни описал более 100 минералов и назвал их месторождения. Он также научился определять удельный вес минералов, сделав это почти на 700 лет раньше европейцев.

    Некоторые другие азиатские исследователи продолжали развивать идеи античных представлений о мире.

    Причиной медленного развития геологии в Европе явилось влияние церкви. Она вмешивалась в науку с библейской картиной мира и его происхождения. А поскольку геологи предлагали не соответствующее библейскому мировоззрение, их учения и труды подвергались критике или даже запрещались. Из-за этого возникло множество неверных гипотез, ложных учений. Произошло даже некоторое отставание науки от античной. Например, о найденных в земле останках ископаемых живых организмов говорили, будто это игра природы или пример самозарождения жизни, т.к. по церковному учению жизнь создана Богом в таком виде, в каком она есть сейчас, а находками были ныне не существующие организмы. Также вводились ложные учения о том, что Земля является прямоугольником, а звезды на небе передвигают ангелы.

    Некоторые ученые в Европе, игнорируя церковь, предлагали свои идеи о мире. Но они лишь заимствовали античное мировоззрение .

    Однако, несмотря на торможение развития теоретической геологии ее практическая направленность (прикладная геология) развивалась более успешно, особенно в Европе. Это было связано с развитием человечества, и как следствие, с возрастанием потребностей в минеральном сырье.

    Строительство городов требовало природного материала для создания зданий. Возрастание числа городских ремесленников, нуждавшихся в материале для своих изделий, часто изготавливаемых из камня, также способствовало развитию горнорудного дела. Следствием этих факторов стало увеличение количества полезных ископаемых, извлекаемых людьми из земных недр .

    Период возрождения (с XV-XVII вв. до середины XVIII в.)

    Период был подготовлен эпохой великих географических открытий. Путешествия Колумба, Магеллана, Васко да Гама способствовали накоплению большого материала о всей поверхности Земли . Так, во время кругосветного путешествия Магеллана было окончательно доказано, что наша планета имеет шарообразную форму. Гипотезы ученых периода возрождения становятся настолько убедительными, подтверждаются такими неоспоримыми фактами, что церковь отступает перед наукой.

    В период возрождения Николай Коперник, Галилео Галилей и Джордано Бруно утвердили гелиоцентрическую модель мира .

    Как известно, в эпоху Возрождения происходит духовный подъем человечества. Хотя влияние церкви еще сохранялось, ее учения перестают быть единственным толкованием мира. Люди начинают верить науке.

    Поскольку города продолжали расти, техника развивалась, добыча богатств Земли становилась более быстрой и эффективной. Увеличилось и количество разрабатываемых месторождений.

    Конечно, во время добычи полезных ископаемых люди накапливали знания о свойствах горных пород, об особенностях их залегания, о строении земной коры. Обобщение этого материала приводило к важным теоретическим выводам.

    Среди людей, внесших вклад в геологию во времена периода возрождения, следует выделить немецкого ученого Георга Бауэра (или Агриколу). Он обобщил все достижения горняков Западной Европы. Ученый описал способы прокладки шахт, их особенности. Также Агриколой впервые было установлено отличие минералов от горных пород. Ученый описал свойства множества минералов, что позволило другим геологам определять минералы. Агрикола занимался и изучением кристаллов.

    Знаменитый Леонардо-да-Винчи тоже внес в науку, некоторые геологические сведения. Например, он высказал идею о том, что горные породы могут располагаться пластами, залегающими горизонтально, или в виде складок. Также Леонардо считал находки древних вымерших организмов действительно их останками, а не игрой природы, в противоположность ученым схоластического периода.

    В период возрождения вклад в геологию внесла Россия. Поиск месторождений широко организовывался правительством. В 1584 г. был создан приказ Каменных дел. В пределах Российской империи добывалось множество полезных ископаемых. Они также экспортировались в другие страны.

    Датчанин Нильс Стено основал стратиграфию и открыл первый закон кристаллографии о постоянстве углов кристаллов, сделал первое научное обобщение-сводку по земному магнетизму .

    Закончился донаучный этап развития геологии. Уже было накоплено достаточно материала о Земле. Его необходимо было лишь обобщить и дополнить теоретическими выводами. В научный этап, вооружившись новыми технологиями, духовными силами человечество стало решать эту задачу. Но конечно, донаучный этап развития геологии не мог мгновенно смениться научным. Поэтому в ее истории выделяют также переходный период.

    1.2 Переходный период (вторая половина XVIII в.)

    Переходный период в развитии геологии характеризуется тем, что в это время одновременно встречаются как старые учения донаучного периода, так и научные обобщения. Накопленные донаучным этапом геологические знания систематизируются и, таким образом, в переходный период происходит становление геологии как науки.

    Важным отличием переходного периода от донаучного стало то, что в это время в геологии утвердилась идея об изменчивости мира, тогда как раньше большинство ученых считало, что мир всегда существовал в неизменном виде. Идею развития Земли высказывали многие ученые переходного периода, но в первую очередь она связана с именами Ж. Бюффона, И. Канта и М.В. Ломоносова. В своих трудах они рассматривали всю историю Земли, от ее происхождения и до современного состояния, как единую картину мира. По мнению этих ученых Земля постоянно изменялась .

    Достижением геологии стала классификация диагностических признаков минералов, разработанная Вернером. Он также исследовал рудные полезные ископаемые и предложил систему стратиграфической последовательности горных пород. В развитии теоретической геологии ученый сыграл скорее отрицательную роль: он разработал схему формирования горных стран на идеях нептунизма.

    В противоположность А.Г. Вернеру Джеймс Геттон доказывал теорию плутонизма, говоря о решающем значении в формировании Земли ее внутренних сил .

    Ученый И. Кант в 1755 г. выдвинул гипотезу происхождения Солнечной системы. Согласно ей элементарные частицы первоначально рассеянные во Вселенной, собирались в сгустки под действием взаимного притяжения. При сжатии и раскаливании одного из сгустков вещества образовалось Солнце. Вокруг него собрались туманности, в которых возникли планеты, в т.ч. Земля. Ж. Бюффон создал гипотезу развития Земли. Он считал, что когда наша планета затвердела, она покрылась океанами. Благодаря движениям вод в них образовались неровности дна. Возвышенности стали материками при отступании воды. Период существования Земли Бюффон определял в 75 тыс. лет. Сейчас нам кажется, что это очень малый срок, однако богословы подвергли критике гипотезу Бюффона, т.к. по библейскому учению Земля существует 6000 лет .

    Итак, к началу XIX века геология сформировалась как наука. Следующий этап ее развития - научный, пополнил знания людей о Земле новейшими сведениями.


    Героический период (первая половина XIX века)

    С началом периода связано появление биостратиграфического метода. Он позволял определять относительный возраст горных пород по сложности устройства находящихся в них останков древних организмов (данный метод подробнее описан мной в п. 2.1 настоящей работы).

    В качестве самостоятельной дисциплины в геологии выделилась палеонтология. (см. п. 1.4.).

    В начале XIX века К.Л. фон Бухом была выдвинута первая тектоническая гипотеза. В ней ученый рассматривал вулканизм, как ведущий процесс, формирующий горы. Гипотеза была подтверждена исследованиями А. Гумбольдта. Ее приняли многие ученые, и она играла важную роль в представлении людей о горообразовательных процессах.

    Сведения, полученные о химическом составе минералов и о законах образования их кристаллов, позволили к концу героического периода создать химическую классификацию минералов. Эта классификация длительное время составляла основу минералогии.

    В конце героического периода в геологию был внесен еще один важный вклад. Представители стратиграфии заметили, что в некоторых слоях горных пород между организмами, относящимися к разному геологическому времени, не обнаружена эволюционная связь. Т.е. у одних организмов не могли найти предков, у других потомков. Чтобы объяснить эти факты, ученые создали теорию катастроф. Теория включала в себя идею существования в истории Земли многочисленных катастроф, которые, по мнению ученых, периодически полностью уничтожали жизнь на планете, затем она возникала заново. Ч. Лайель впервые возразил против этого в своем труде «Основы геологии…» (1830-1833 гг.). Он писал, что органический мир развивался на Земле последовательно и постоянно. Однако идеи ученого были подтверждены и приняты лишь спустя 20 лет .

    В героический период геологами была решена еще одна задача. Давно стоял вопрос происхождения странных валунов, районы распространения которых удалены на тысячи километров от мест их находок. Объяснить этот факт позволила ледниковая теория, которая предполагала влияние многочисленных оледенений на земную поверхность. Впоследствии эта гипотеза не только доказала перенос валунов ледниками, но и была подтверждена сама, а эпохи оледенений стали считать частью истории Земли.

    Итак, героический период недаром получил свое название. Геология действительно достигла огромных успехов. Итогами периода стало создание первых геологических обществ, национальных геологических служб в России, Англии, Франции. Также характерными для этого периода стали большой масштаб исследований и более организованный характер их проведения .

    Геология стала самостоятельной дисциплиной естествознания. Появилась новая профессия - геолог.

    Классический период (вторая половина XIX века)

    В начале классического периода появилась книга Ч. Дарвина «Происхождение видов путем естественного отбора…». Она подтверждала гипотезу Ч. Лайеля. Поскольку гипотеза эволюционного развития жизни стала подтверждаться и находками организмов, являющихся переходным звеном между теми формами жизни, которые раньше считались несвязанными друг с другом, то геологи, наконец, отказались от катастрофизма. Они приняли теорию эволюции.

    Период также характеризуется появлением гипотезы контракции, выдвинутой Эли де Бомоном. Ученый считал, что в процессе остывания Земли ее объем уменьшался, это приводило к появлению складок в земной коре. Так он объяснял происхождение гор. Кажущаяся внутренняя логичность гипотезы контракции и отсутствие ей альтернативы привело к тому, что эта идея закрепилась в геологии на весь классический период .

    В классический период возникло понятие о магме - жидком веществе, которое в некоторых случаях может образовываться в твердой земной мантии. В частности магма извергается через кратеры вулканов и, освобождаясь от газов, превращается в лаву. Дифференциацией магмы назвали процесс превращения ее в различные горные породы при застывании. Этим объяснялось происхождение многих горных пород.

    Хочется отметить, что во второй половине XIX века в связи с развитием промышленности во многих странах увеличился и объем добычи полезных ископаемых. Мировая выплавка стали выросла с 500 тыс. до 28 млн. тонн, в 3 раза больше стала мировая добыча угля. Поскольку все страны нуждались в еще большем количестве минерального сырья, то их правительства выделяли большие средства на развитие геологии. Следствием этого стало появление геофизики, которая позволила изучать глубинное строение нашей планеты .

    Можно также выделить, что в классический период многое было сделано для изучения геологического строения России. В 1882 г. был основан Геологический комитет России.

    В классический период произошло значительное развитие петрографии. В руках специалистов о горных породах появился поляризационный микроскоп. С его помощью изучали тончайшие прозрачные пластинки горных пород - шлифы (оптическая петрография).

    Из минералогии как самостоятельная дисциплина выделилась кристаллография.

    Также было положено начало геологии нефти. Ее стали рассматривать как полезное ископаемое, были созданы гипотезы ее образования .

    Таким образом, классический период развития геологии принес этой науке много пользы. Геология стала играть важную роль среди естественных научных дисциплин.

    Следующий период развития геологии - «критический», стал переломным этапом в развитии естествознания в целом. Почва для совершенных в «критический» период открытий была подготовлена геологическими достижениями классического периода.

    «Критический» период» (первая половина XX века)

    Этот период развития геологии, не случайно получил такое название. Стоит отметить, что его становление как «критического» периода обусловлено многочисленными новыми открытиями в разных областях науки. Это и успехи в познании микромира, и открытие рентгеновского излучения, естественной радиоактивности. Все это оказывало существенное влияние и на геологию .

    В начале периода произошло крушение гипотезы контракции. Вместо нее появились другие тектонические гипотезы. Наиболее соответствующей современным представлениям о Земле стала гипотеза дрейфа континентов, предложенная А. Вегенером. Она подразумевала, что земная кора состоит из целостных блоков - литосферных плит, которые двигаются относительно друг друга, а вместе с ними и материки (см. рис. 1). Гипотеза играла очень важную роль в геологии. Она объясняла процессы горообразования смятием земной коры при столкновении литосферных плит. Также этим объяснялись землетрясения и вулканизм. Гипотеза находила подтверждение в том, что горные области зоны землетрясений и вулканизма почти всегда совпадают - они соответствуют границам литосферных плит. Также гипотезу подтверждало и то, что восточное побережье Южной Америки соответствовало западному берегу Африки, т.е., если убрать Атлантический океан, приблизив Африку к Южной Америке, они бы составили единый континент, который и образовал эти материки, расколовшись в прошлом.

    Однако, несмотря на такие веские доводы в пользу правильности гипотезы, она подвергалась критике и долго не принималась в геологии. Из-за неправдоподобности гипотеза была отклонена . Основной же стала ундационная гипотеза. Она подразумевала формирование рельефа за счет вертикальных движений в земной коре .

    В «критический» период происходит выделение геотектоники в отдельную научную дисциплину. Она оказала большое влияние на развитие теоретической и прикладной геологии. Раздел этой дисциплины учение о геосинклиналях - подвижных поясах на границах литосферных плит, также продолжал развиваться, объясняя многие особенности Земли.

    В.А. Обручев, С.С. Шульц, Н.И. Николаев стали основателями геотектоники - дисциплины, изучающей тектонические движения недалекого прошлого и современности.

    При помощи геофизических методов была создана модель оболочного строения Земли. В ней выделили ядро, мантию, земную кору. Как мы знаем, эти геосферы выделяются и современными учеными.

    В петрографии стало интенсивно развиваться физико-химическое направление исследований и, как следствие, возникла кристаллохимия. Для изучения кристаллов стал применяться рентгеноструктурный анализ.

    Продолжала развиваться геология горючих полезных ископаемых. Также появилось мерзлотоведение. К концу «критического» периода были составлены геологические карты разных территорий, были написаны труды, обобщающие геологические материалы для некоторых территорий.

    Увеличилась потребность в полезных ископаемых, стали добываться и применяться новые их виды - урановые руды, нефть. Для поиска месторождений разрабатывались новые методы .

    Новейший период (1960-1990-е гг.)

    В начале новейшего периода произошло техническое перевооружение геологии. Появились электронный микроскоп, электронно-вычислительные машины, масс-cпектрометр (определитель массы химических элементов). Стало возможным глубоководное бурение, изучение Земли из космоса.

    Важным стало то, что Землю смогли исследовать, сравнивая ее с другими планетами. Также появилась возможность определения абсолютного возраста горных пород.

    Значительных успехов достигла палеонтология - выведены новые группы ископаемых останков, закономерности развития живых организмов, выделены великие вымирания в истории биосферы.

    В новейший период ученые стали решать некоторые проблемы геологии, например, вопросы минералогии, в лаборатории с помощью экспериментов.

    Были открыты законы метасоматической зональности (особенностей залегания минералов, видоизмененных при взаимодействии с водными растворами) и создана теория различных типов литогенеза (пути превращения горных пород в метаморфические). Также в новейший период были созданы тектонические карты Евразии и палеогеографические карты мира.

    В новейший период были приняты и продолжили развитие идеи мобилизма, в т.ч. гипотеза дрейфа континентов.

    Палеонтологи выявили самые ранние этапы развития жизни на Земле.

    С возникновением экологических проблем связано появление геотехнологии - науки, решающей задачи рационального использования недр нашей планеты. Также появилась экологическая геология.

    В новейший период был разработан механизм спрединга. Он включал идею о том, что новая океаническая кора образуется в зонах выхода и застывания магмы. Таким зонам соответствуют срединно-океанические хребты. Затем новая кора продвигается к континентам и на границе континентальной земной коры заходит под нее. В этих местах образуются глубоководные желоба, а на континентах часто происходит образование гор .

    Геология новейшего периода мало отличается от современной. Но на этом ее развитие не остановилось, оно продолжается в настоящем и будет продолжаться в будущем.

    Как вывод к истории геологии я хочу выделить основные разделы науки, сформировавшиеся к настоящему времени.

    .4 Разделы геологии

    К настоящему времени в геологии сформировались следующие основные разделы.

    1. Динамическая или физическая геология. Этот раздел изучает современные геологические явления, изменяющие Землю на глазах людей (атмосфера, вода, флора и фауна, вулканизм).

    . Петрография или наука о горных породах. Этот раздел уже почти достиг размеров самостоятельной науки, ведь изучение свойств горных пород важно для их применения.

    . Палеонтология - наука об ископаемых живых организмах, составляет третий раздел геологии. Он изучает развитие, происхождение древних живых существ и даже восстанавливает их среду обитания.

    Изучением последовательности и условий залегания различных горных пород, а также следов жизни в них занимается стратиграфия . Она относится к четвертому разделу геологии. Подразделяясь на петрографическую и палеонтологическую, стратиграфия занимает важное место в геологии - она охватывает изучение сразу множества закономерностей на Земле. О стратиграфии подробнее написано в п. 2.1. настоящей работы.

    . Историческая геология составляет пятый раздел науки о Земле. Она как бы подводит итоги всем исследованиям нашей планеты: распределяет геологические памятники, процессы и явления во времени.

    Это основные разделы геологии. Они в свою очередь подразделяются на множество более мелких направлений, изучающих либо разные стороны вопроса, касающегося основного раздела, либо исследующих его разными методами .

    Итак, описана история развития геологических наук. С ее помощью сформировано представление о геологии, выделены основные идеи и положения этой науки.

    2. Методы исследования

    Сейчас я опишу методы, с помощью которых геология изучает Землю. Понять их очень интересно и важно. Хочу также заметить, что названия многих методов совпадают с названиями различных разделов геологии, которые их применяют.

    .1 Определение относительного возраста горных пород

    Чтобы изучать прошлое планеты и развитие жизни на ней необходимо уметь определять какие горные породы образовались на Земле раньше, какие - позже. Для этого существуют самые различные способы.

    Первоначально датчанин Нильс Стено выдвинул принцип: «Слой, лежащий выше, образовался позже слоя, лежащего ниже». Отраслью геологии, изучающей последовательность образования и закономерности размещения горных пород, используя этот и другие принципы, стала стратиграфия. Это одна из основных отраслей геологии.

    Однако у принципа Стено имеются и свои недостатки. Например, невозможно сопоставить возраст пород, лежащих в разных местах. Позже и эта проблема была решена. Ученые заметили, что живые организмы устроены тем сложнее, чем они моложе. Так, сопоставляя особенности строения их останков в горных породах, определяют какие организмы, а следовательно и породы, более молодые. Теперь даже при перемешивании пластов горных пород можно определить первоначальную последовательность их залегания (см. рис. 2).

    В настоящее время ученые выбрали для каждого периода в истории Земли наиболее характерные формы жизни. Их останки называют руководящими ископаемыми. По ним точно определяют последовательность накопления горных пород.

    Благодаря этим открытиям была составлена геохронологическая шкала, в которой история Земли разделена на эоны, эры, периоды и эпохи. Шкала общепринята, используется повсеместно и важна для многих отраслей науки. Однако в ней первоначально указана лишь последовательность периодов. Их длительность, даты начали и конца были установлены при помощи изотопного метода определения абсолютного возраста горных пород .

    .2 Определение абсолютного возраста горных пород

    Как определить возраст одних горных пород относительно других, геологи уже поняли. Но еще одна задача была не решена - определить, сколько лет существуют те или иные горные породы. С развитием ядерной физики люди научились при помощи новейших приборов определять абсолютный возраст горных пород.

    Суть изотопного метода (так называется способ определения абсолютного возраста горных пород) заключается в следующем. Установлено, что нестабильные изотопы химических элементов распадаются и превращаются в более легкие стабильные атомы. Причем скорость этого распада почти не зависит от внешних условий. Так по количеству нестабильного элемента и по количеству продуктов его распада определяют, насколько сильно распался элемент. В некоторых случаях определяют не количество продуктов распада, а количество треков - областей, выжженных в породе осколками ядер нестабильного изотопа. Это позволяет узнать число делений ядер. Зная всегда постоянную скорость распада, определяют, когда он начался, а значит и как давно образовалась порода.

    Самым точным является радиоуглеродный метод, при котором используется распад нестабильного изотопа углерода с атомной массой 14. Период его полураспада - достаточно короткий промежуток времени - 5768 лет. Но поскольку за время равное десяти периодам полураспада эффективность течения реакции снижается в 1024 раза, то становится затруднительно зарегистрировать такие малые изменения вещества. Поэтому время, измеряемое этим методом, не превышает 60 000 лет. В этом промежутке возраст определяется наиболее точно.

    При помощи радиоуглеродного метода определяют возраст органических останков, поскольку живые организмы при жизни поглощают углерод из атмосферы. В ней содержание изотопов углерода постоянно, т.к. поддерживается образованием C14 при помощи космической радиации. А после смерти организма нестабильный углерод начинает распадаться .

    Для определения количества изотопов углерода часто применяют метод масс-спектрометрии (см. рис. 3). В этом случае содержащийся в образце углерод окисляют, превращая его в углекислый газ. Затем молекулы газа превращают в ионы и пропускают через магнитную камеру. В ней CO2 с легким углеродом откланяется сильнее, чем газ с тяжелым изотопом. Регистрируя отклонения от прямолинейной траектории, определяют, сколько в веществе осталось нестабильных тяжелых изотопов. Чем меньше осталось нестабильных атомов, тем древнее образец, возраст которого определяют. В годах это рассчитывают при помощи специальных формул.

    Период полураспада урана с атомной массой 238 - 4,51 млрд. лет. Поэтому ураново-свинцовый метод (свинец - продукт распада урана) позволяет датировать древнейшие события, хотя при этом и снижается точность измерений. Технология метода заключается в следующем. Среди пород, возраст которых необходимо определить, отбираются те, которые содержат циркон - ураносодержащий минерал. Затем породу измельчают до кристаллов и их просеивают через специальные сетки, что бы отделить кристаллы одного размера. При погружении этих кристаллов в растворы высокой плотности, самый тяжелый из кристаллов - циркон оседает на дно. Его выбирают и слоем в один кристалл наклеивают на специальную пластинку. Затем кристаллы на пластинке шлифуют и опускают в раствор кислоты. При этом вещество внутри треков растворяется, и они становятся видными через микроскоп. Затем количество треков в единице площади подсчитывают. В годах возраст определяют по специальным математическим формулам. При этом учитывают и уменьшение скорости распада со временем.

    Изотопный метод в настоящее время является наиболее точным, но существуют и другие способы определения абсолютного возраста горных пород. Например, определив скорость накопления осадочных горных пород и зная толщину их слоя, приблизительно оценивают и время образования этих пород. Но ведь скорость накопления пород может меняться, а слой их способен сжиматься и, потому подобные методики недостаточно точны.

    2.3 Спектральный анализ

    Люди давно заметили, что разные химические элементы, помещенные в пламя, окрашивают его в разные цвета (см. рис. 4). Например, медный купорос - в зеленый, поваренная соль - в ярко-желтый. Однако точно определить химические элементы по цвету огня невозможно, т.к. некоторые из них дают одинаковый цвет.

    В 1859 г. немецкие ученые химик Роберт Бунзен и физик Гистаф Кирхгоф нашли способ различать оттенки цветов пламени. Они воспользовались своим изобретением - спектроскопом. Он представляет собой стеклянную призму, помещенную перед белым экраном. Призма раскладывает луч света на монохроматические лучи, благодаря чему видны различия между спектрами элементов, которые визуально одинаково окрашивают пламя.

    Вообще, спектральный анализ оказался важен как для геологов, так и для представителей новой науки, им же и порожденной - космохимии .

    2.4 Гравиразведка

    Вес - это та сила, с которой тело, притягиваясь к Земле, давит на опору или оттягивает подвес. Оказывается, даже притяжение тел к Земле используют в геологии.

    Любое тело, обладающее массой, обладает притяжением. Мы очень хорошо наблюдаем это, ведь земная гравитация и есть сила притяжения Земли. Но, если все тела притягиваются друг к другу, тогда почему мы не замечаем, например, притяжения между двумя людьми? Дело в том, что эти силы очень малы, но все-таки они существуют. Экспериментальным путем доказано, что отвес отклоняется от вертикального положения вблизи большой горы. Так же установлено, что два больших свинцовых шара на близком расстоянии катятся друг к другу .

    В соответствии с эти можно сделать вывод, что в зависимости от плотности пород, залегающих под землей, будет меняться и величина силы тяжести (в физике - ускорение свободного падения). Но проблема в том, что эти изменения очень малы, и человек их не замечает. Только при помощи точных приборов можно установить изменения притяжения.

    Первоначально силу тяжести определяли по периоду качания маятника и его длине. Однако, в связи с неудобством применения маятника, его заменили более удобным прибором - гравиметром. Его принцип действия прост: на пружинку подвешен массивный груз и по степени ее закрученности определяют силу тяжести.

    Сейчас метод гравиразведки применяется повсеместно для поиска месторождений нефти (над пустотой в земле притяжение меньше) и месторождений очень плотных минералов, например, руд железа. Метод чрезвычайно прост и недорог, а для исключения ошибок его часто применяют вместе с другими методами. Составлены карты гравитационного поля Земли.

    При помощи измерения силы тяжести ученые изучают вопросы, связанные с формой Земли и строением ее недр .

    2.5 Применение окаменелостей

    Находки палеонтологов, следы прежних форм жизни, могут рассказать не только о развитии живых организмов, их строении, но и еще о многих закономерностях их формирования, об окружающей их среде и ее свойствах.

    Например, зная, что растительность различных климатических поясов неодинакова, ученые, изучая останки древних растений, делают выводы о климате той или иной местности в прошлом. А зная условия жизни современных сообществ живых организмов (температура, количество потребляемой пищи, грунт) можно определить условия среды обитания подобных им сообществ в прошлом. Так же, изучая ритмичность роста некоторых организмов (кораллов, двухстворчатых и головоногих моллюсков, усоногих раков и др.) определяют скорость вращения Земли, периодичность приливов, наклон земной оси, частоту штормов и многое другое. К примеру, установлено, что 370-390 млн. лет назад в году было примерно 385-410 дней, значит, Земля вращалась вокруг своей оси быстрее, чем сейчас.

    На практике для поиска месторождений нефти применяют зависимость цвета останков конодонтов (живых организмов) от температуры недр, где они залегали. Если температура была до 250°С, то из органических веществ не могла образоваться нефть. Если же температура была больше 800°С, то нефть которая могла там существовать разрушилась. Но если температура была между этими пределами, то поиск нефти можно продолжить.

    По особенностям состава останков морских организмов можно определить температуру и состав воды в определенное время. А исходя из всех этих данных, можно дальше выводить закономерности, существующие в мире, и применять их во всех областях науки .

    2.6 Биогеохимический метод

    Биогеохимический метод основан на изучении особенностей растений, обусловленных присутствием определенных минералов в земной коре.

    Люди еще до открытия современных методов поиска полезных ископаемых пользовались тем, что у растений, растущих над разными рудами, появляются свои особенности. Например, определенные виды мхов, мяты и гвоздичных, растущие в большем, чем обычно количестве, указывают на наличие в недрах земли меди. А месторождения алюминия, вызывающие повышенное содержание этого металла в почве, приводят к укорачиванию корней и пятнистости листьев. Никель приводит к появлению белых мертвых пятен на листьях. Так, люди, визуально наблюдая растения, успешно открывали месторождения необходимых им горных пород.

    В XX веке биогеохимический метод стал применяться еще более успешно: появилась возможность выявлять аномалии растительного мира с помощью аэрофотосъемки, начали применять спектроскопию для определения повышенного содержания минералов в растениях, свидетельствующего об их избытке в почве. Преимуществом метода является возможность нахождения руд, залегающих на значительных глубинах.

    В настоящее время для упрощения биогеохимического метода созданы списки растений индикаторов с известной реакцией на определенные минералы. Более 60 растений из списка проверены и с их помощью можно искать почти все виды ископаемых металлов. Многие месторождения уже открыты с применением данного метода .

    2.7 Сейсмометрия

    В начале ХХ века один из основоположников сейсмологии Борис Борисович Голицын писал: «Можно уподобить всякое землетрясение фонарю, который зажигается на короткое время и освещает внутренность Земли». Действительно, скрытые от нас многокилометровыми толщами горных пород земные недра, поддаются исследованию в основном во время землетрясений. Ведь даже при помощи бурения в земную кору не проникают дальше 12 км.

    Для изучения недр используют возникающие при землетрясении сейсмические волны. Применяется особенность распространения волн с разной скоростью в веществах с разными свойствами (либо через разные агрегатные состояния одного вещества), а на границе разных веществ волны либо отражаются, либо искажаются. Если источник сейсмических волн расположен вблизи поверхности Земли, то многие волны, отражаясь от нижележащих слоев возвращаются к поверхности, где их фиксируют сейсмоприемниками. Эти приборы во много раз усиливают ничтожно маленькие колебания почвы. Зная время распространения волн и учитывая их свойства делают вывод о расположении отражающих поверхностей, узнают глубину их залегания, угол наклона и структуру. Причем источником сейсмических волн часто используют искусственный взрыв, т.к. тогда точно известно время начала движения волн.

    В сейсморазведке регистрируют преломленные и отраженные волны. Первые из них более сильные. При этом и методы их исследования различны.

    Отраженные волны сразу дают подробный разрез изучаемого участка. Впервые при помощи отраженных волн удалось обнаружить нефтяные месторождения в 30-х годах ХХ века. После этого сейсморазведка стала ведущим методом в геофизике. Чтобы составить полное представление о строении недр Земли колебания регистрируют одновременно во многих местах.

    Метод преломленных волн также успешно совершенствовался. С их помощью стало возможным проводить исследования на больших глубинах. Геологи смогли изучать строение земной коры, особенности формирования материков и океанов, причины тектонических движений.

    С появлением цифровой обработки сигнала в 60-х годах анализ сейсмологической информации стал более полным и быстрым. Также ученые заменили источник сейсмических волн с взрывчатки на экологически безопасные и позволяющие выбирать частоту колебаний вибраторы.

    Сейсморазведка имеет огромное значение в геологии. В основном с ее помощь определены геосферы Земли, их толщина, состояние вещества в них.

    .8 Магниторазведка

    Земля, подобно гигантскому магниту окружена магнитным полем. Оно простирается в пространстве на 20-25 земных радиусов. О происхождении магнитного поля Земли до сих пор идут споры. Т.к. оно может возникнуть либо под действием электричества, либо намагниченного тела, выдвигают гипотезу, согласно которой поле земли возникает из-за электрических токов, появляющихся в земном ядре при вращении планеты.

    Но, независимо от происхождения, поле оказывает огромное влияние на обитателей Земли - оно защищает от космической радиации. Также именно благодаря полю стрелка компаса ориентируется на север. Замечено, что северный конец стрелки компаса склоняется вниз по отношению к горизонтальному положению. Это наводит на мысль, что источник магнетизма находится в земных недрах.

    Изучение явлений, связанных с магнитным полем помогает понять строение нашей планеты, частично узнать ее историю, выяснить связь Земли с космосом.

    Замечено, что намагниченные горные породы также влияют на ориентацию стрелки компаса. Благодаря этому магнитные аномалии (отклонения от нормального поля Земли) используют при поиске полезных ископаемых, имеющих большую намагниченность (железосодержащие минералы). Уже в XVII веке в России и Швеции для поиска железных руд использовали компас. Позднее был создан более точный прибор, определяющий изменения магнитного поля Земли и его силу - магнитометр (см. рис. 6).

    Изучая остаточную намагниченность горных пород, которая была ими приобретена под действием магнитного поля Земли в прошлом, ученые определяют положение магнитных полюсов и силу магнитного поля Земли в древнейшие геологические периоды. Например, установлено, что раньше на месте современного северного полюса был южный и наоборот. Предполагают, что во время их смены магнитное поле ослабевает, космическая радиация проникает на Землю, что отрицательно влияет на ее обитателей.

    Магниторазведка важна для людей не только поиском полезных ископаемых. С ее помощью составляют специальные карты магнитного склонения (отклонение стрелки компаса от северного направления в градусах). Это важно для точного ориентирования на местности .

    2.9 Электроразведка

    Электроразведка - это раздел геофизики, определяющий состав и строение земной коры с применением естественных или созданных искусственно электрических токов. Этот способ разведки насчитывает, пожалуй, наибольшее число разнообразных методов и их разновидностей - более 50.

    Вот основные из них:

    . Метод сопротивлений - основан на пропускании через землю постоянного тока при помощи двух электродов. Затем измеряют напряжение, вызванное этим током, другими электродами. Зная силу тока и напряжение рассчитывают сопротивление. По сопротивлению узнают какие породы его вызывают (разные породы имеют различное сопротивление). А учитывая расположение электродов, узнают в каком месте находятся породы, обладающие высоким сопротивлением.

    При помощи метода сопротивлений рассматривают слои, составляющие исследуемый участок, их распределение. В частности возможен поиск месторождений нефти и газа.

    Для индукционного метода используют искусственно созданное переменное электрическое или магнитное поле. Под его воздействием в земле возникает электромагнитное поле. Зная параметры созданного поля и фиксируя свойство поля, возникшего в земле, определяют какой по свойствам средой оно испускается и где она расположена. Источник искусственного поля можно перемещать и тогда картина недр становится более подробной. Способы обработки данных, полученных индукционным методом, очень сложны.

    Отдельно выделяют электроразведку скважин . Для нее применимы как названные выше методы, так и многие другие. Это и радиоволновое просвечивание, и изучение естественного электрического поля, и метод погружных электродов. Электроразведка скважин позволяет определить форму, размер и состав горных пород в пространстве около скважин и в них самих .

    2.10 Определение месторождений по космическим снимкам

    С появлением возможности получения фотографий обширных участков земной поверхности из космоса, геологи смогли выявить связь между внешним видом, формой различных интрузий и их составом.

    К примеру, замечено, что горные породы, содержащие апатит, часто выходят на поверхность в форме «колец» и «бус». Эту закономерность можно наблюдать в форме наших Хибинских гор - они представляют собой полукольцо, в котором находятся богатейшие залежи апатит-нефелиновых руд. Меднопорфировые месторождения также связаны со специфичными видами массивов, которым даны специальные названия: «дракон», «пень» и «корень».

    Изучение космических снимков древних и современных вулканов также позволяет находить месторождения полезных ископаемых.

    Таким образом, с появлением нового метода исследования существенно расширились возможности геологии. Теперь геологи могут судить о распространенности месторождений в масштабах планеты. А также экономятся время и силы ученых: сначала выясняется местоположение возможного месторождения, затем туда снаряжается экспедиция, в то время как раньше приходилось сложными методами непосредственно изучать всю поверхность земли. Увеличилась и вероятность нахождения месторождений.

    2.11 Что можно узнать, изучая гальку

    Изучая обычную речную гальку, можно выявить много интересного. Ученые могут определить откуда галька начала свой путь. Если в гальке содержатся полезные ископаемые, она может привести к их месторождениям. При сохранении у гальки первоначального контура можно определить условия ее формирования. Рассчитывая скорость движения гальки, скорость уменьшения ее веса, степень окатанности, определяют и расстояние, пройденное ей. Для этого выведены специальные формулы. По тому, как ориентирована галька, находят направление движения несуществующего ныне водного потока, а по углу наклона гальки определяют скорость его движения .

    3. Место, занимаемое геологией в современном мире

    .1 Связь геологии с другими науками

    Сейчас, когда методы исследования, применяемые в геологии, описаны, я бы хотел уделить внимание связи геологии с другими науками.

    Связь между различными науками очень важна. Совместными усилиями ученые лучше познают мир. Взаимосвязь проявляется в двух видах. 1.) Готовые данные, полученные одной наукой, принимаются и используются другой наукой. Например, таблица Менделеева используется почти всеми естественными науками как аксиома. 2.) Постоянное применение методов исследования одной науки в другой. Например, использование методов физики в геологии, когда среда или явление не поддается непосредственному наблюдению.

    Связь между науками часто двухсторонняя. Примеров успешного взаимодействия различных наук с геологией существует множество. Некоторые из них я приведу.

    Для изучения эволюции живого, биология обращается к находкам палеонтологии - ископаемым остаткам. Это разумно, т.к. необходимо знать строение организмов на разных этапах эволюции, что бы понять как они все лучше приспосабливались к окружающей среде, как природа выбирала и сохраняла наилучшие формы жизни. Вопрос о происхождении человека биологи тоже решают совместно с палеонтологами, анализируя останки предков людей.

    С другой стороны, переработка полезных ископаемых может производится с помощью биологических методов. Известно, что золото часто включено в кристаллическую решетку минералов в очень малых количествах и его сложно извлечь. Тогда на помощь приходят бактерии. Они разрушают кристалл минерала и таким образом золото извлекается.

    Для поиска полезных ископаемых с помощью биогеохимического метода используют особенности растений, изученные ботаниками .

    Часто бывает, что гипотеза, выдвинутая специалистами одной научной области, находит подтверждение в других областях. Взаимодействие наук также важно для подтверждения и сопоставления результатов исследований, так как разностороннее изучение какого-либо вопроса более эффективно.

    Поэтому для получения ответов на важные вопросы должны чаще проводиться совместные исследования представителей разных наук, тогда точнее и полнее будут результаты исследований.

    .2 Значение геологии в современном мире

    Как вывод ко всему сказанному, я бы хотел добавить о значении геологии в современном мире.

    Геология - одна из немногих наук, рассматривающая последовательность, длительность событий. Таким образом, она оказывает влияние на (духовное) представление о мире у людей: об обитателях Земли, облике нашей планеты в прошлом. Геология помогает человеку понять, как Природа создала современные сообщества организмов, как в прошлом накапливались используемые сейчас полезные ископаемые и каково место человека среди современной биоты. Обладая такими знаниями, человек делает вывод как важно уберечь Землю и жизнь на ней от загрязнений, сохранить и рационально использовать полезные ископаемые.

    Итак, значение геологии велико для духовного развития человека.

    Велика ее роль для обычного человека и просто в быту. Ведь полезные ископаемые добывают при помощи геологических методов. А уж роль полезных ископаемых в жизни человека сложно переоценить: с помощью угля и продуктов переработки нефти производится отопление домов в городах, на бензине ездят автомобили, природный газ используется для приготовления пищи, при помощи урана, нефти или угля вырабатываются всем необходимое электричество. Также почти все, созданное человеком, - дома, машины, дороги, ювелирные украшения, стекло - сделаны из природных материалов, добываемых в земле.

    Геологическими достижениями пользуются люди самых различных профессий. Геокриология - раздел геологии, изучающий многолетнюю мерзлоту. Строители используют полученные ей данные для разработки норм и правил строительства в районах распространения мерзлоты.

    Для правильного ориентирования на местности необходимо знать отклонение стрелки компаса от северного направления, что происходит из-за несовпадения географического и магнитного полюсов. Такие особенности магнетизма выявлены при помощи магниторазведки. Этот раздел геологии изучает не только поиск полезных ископаемых по магнитным аномалиям, но и магнитное поле планеты в целом.

    По карте литосферных плит каждый человек может определить в каких областях часты землетрясения и извержения вулканов (таким областям соответствуют границы литосферных плит) и, например, при переезде, выбрать наилучшее место жительства или заранее подготовится к тектонической активности.

    Таким образом, геология очень важна для всего человечества. От ее достижений напрямую зависит и развитие человеческого общества в техническом отношении.

    4. Будущее геологии

    В заключение к данной работе я хочу написать о будущем геологии.

    Представить будущее любой науки достаточно сложно. Ведь необходимо сохранить объективность и не углубляться в область фантастики.

    В настоящее время некоторые люди выдвигают мнение о том, что геология в будущем не нужна, т.к. содержание полезных ископаемых в земной коре уменьшается и вскоре они могут закончиться. Для удовлетворения человечества в минеральном сырье, считают они, будет применяться метод извлечения из огромных объемов горных пород ничтожных долей искомого вещества.

    Однако предлагаемый метод комплексного извлечения минералов из горных пород имеет многочисленные недостатки.

    Во-первых, сейчас ученые не располагают необходимыми технологиями (кроме примера с золотом и др.). Во-вторых, если бы данный метод применялся, то он был бы дорог и технически сложен. В-третьих, пришлось бы перерабатывать огромное количество материала с больших площадей планеты, что может привести к экологическим проблемам. В-четвертых, возникла бы проблема утилизации переработанных пустых пород.

    Итак, такой способ на данный момент не возможен и вряд ли будет возможен в будущем для добычи всех необходимых людям полезных ископаемых. Однако его применение для добычи отдельных минералов возможно. Также можно разработать способы извлечения таким способом новых минералов. Но применять метод необходимо с осторожностью, чтобы не нарушить экологию.

    Существует и другой взгляд на будущее геологии: следует совершенствовать способы поиска месторождений, методы добычи полезных ископаемых, разумно (экономично) расходовать ресурсы планеты, тогда минерального сырья должно будет хватать для человеческих нужд.

    На мой взгляд, в будущем должен применяться и способ комплексного извлечения минералов из горных пород, и должны быть усовершенствованы имеющиеся методы поиска и добычи полезных ископаемых.

    Также я считаю важным сохранение экологически благоприятной обстановки на планете, поэтому методы ведения исследований и непосредственно добыча полезных ископаемых в будущем должны наносить меньше вреда окружающей среде.

    По-прежнему стоит проблема рационального использования земных богатств. Это необходимо учитывать при разработке методов добычи полезных ископаемых, при которых у природы не будет браться ничего лишнего.

    Больше внимания необходимо уделить совместной работе геологии с другими науками, ведь часто использование косвенных методов физики, химии, математики помогает решать геологические задачи. Важно и увеличение точности геофизических методов, т.к. многие из них пока молоды и дают лишь приблизительные результаты.

    Также общество ставит перед геологией такие задачи, как предсказание и предотвращение стихийных бедствий. Этому надо уделить особое внимание, т.к. решение этих задач приведет к спасению множества человеческих жизней .

    В геологии имеется еще много проблем. Их решением непосредственно занимаются геологи. Например, невыяснено происхождение магнитного поля Земли, не установлено происхождение жизни, расположение и свойства геосфер Земли. Решение этих вопросов поможет человечеству более успешно использовать богатства нашей планеты.

    Заключение

    Я бы хотел, чтобы моя работа помогла юным геологам и просто людям, интересующимся геологией, сформировать представление об этой науке. В кратком и простом изложении материала мной выделены особенности геологии, ее достижения.

    Хотелось бы добавить, что геология очень интересна, а сведения о ней и предмете ее изучения - Земле полезны каждому человеку.

    Таким образом, цели и задачи настоящей работы выполнены: геология описана как наука, выделены основные задачи, изучаемые ей, описана история, методы исследования, разъяснено практическое значение науки, показана важность связи геологии с другими науками, рассказано о будущих перспективах развития геологии.

    Литература

    1. Большая российская энциклопедия

    2. Ваганов П.А. Физики дописывают историю. - Ленинград: Изд-во Ленинградского университета, 1984. - С. 28 -32.

    3. История геологии. - Москва, 1973. - С. 12-27.

    Курс общей геологии. - Ленинград «Недра» Ленинградское отделение, 1976.

    5. Перельман Я.И. Занимательная физика, книга 1. - Москва «Наука» Главная редакция физико-математической литературы, 1986.

    6. Энциклопедия для детей. Т. 4. Геология. - 2-е изд. перераб. и доп. / Глав. ред. М.Д. Аксенова. - М.: Аванта+, 2002.

    Журнал «Техника-молодежи», 1954, №4, с. 28-27