Каково направление электрического тока по оси отведения. Методы анализа проведения возбуждения в сердце. Электрокардиография. Трансформатор для преобразования частоты

Электрические явления в сердечной мышце

На поверхности мышечного волокна, находящегося в состоянии покоя, разности потенциалов нет (ток покоя можно зарегистрировать только с помощью внутриклеточного электрода). При подключении к противоположным концам клетки гальванометра стрелка его отклоняться не будет, запишется прямая линия - изоэлектрическая линия. При возбуждении, деполяризации, возбужденные участки становятся электроотрицательными, а невозбужденные - сохраняют положительный заряд. Если дифферентный электрод обращен к положительному заряду диполя, то регистрируется отклонение кривой вверх от изолинии. Если дифферентный электрод обращен к отрицательному заряду - отклонение вниз. Амплитуда зубца увеличивается по мере распространения возбуждения в клетке. Когда вся клетка возбудилась, вся ее наружная поверхность приобрела отрицательный заряд, разность потенциалов исчезла, вновь начинает записываться изоэлектрическая линия. При выходе из возбуждения, реполяризации, вновь возникает разность потенциалов между уже вышедшими и заряженными положительно участками и еще возбужденными, отрицательно заряженными участками. Это сопровождается появлением следующего зубца. Направление записи этого зубца зависит от того, какие участки прилежат к электроду: еще возбужденные - отрицательный зубец, уже вышедшие из возбуждения - положительный. Полный выход из состояния возбуждения приводит к поляризации клетки, вся наружная поверхность ее мембраны заряжена положительно, разности потенциалов нет, и вновь записывается изоэлектрическая линия.

Итак, в период распространения возбуждения клетка миокарда имеет два противоположно заряженных полюса и является как бы маленьким генератором электрического тока.

Поверхность желудочков сердца можно рассматривать как обширную поляризованную мембрану, охватывающую единую огромную клетку. Закономерно меняющиеся во время возбуждения сердца величина и направление электрических потенциалов сердца сопровождаются изменением потенциалов и на поверхности тела человека. Ориентация электрических зарядов в тканях тела подчиняется общим законам соответственно сердечного суммарному диполю.

В основном процессе возбуждения электрическая ось сердца направлена влево вниз - от отрицательного полюса к положительному. Поэтому с поверхности тела всегда можно зарегистрировать разность потенциалов от различных пунктов электрического поля сердца.

Формирование элементов ЭКГ

На ЭКГ записывается суммарная разность потенциалов от всех клеток миокарда, или, как ее называют, электродвижущая сила сердца (ЭДС сердца). Электрокардиограф регистрирует напряжение (разность электрических потенциалов) между 2 точками, то есть в каком-то отведении. Другими словами, ЭКГ-аппарат фиксирует на бумаге (экране) величину проекции ЭДС сердца на какое-либо отведение.

Стандартная ЭКГ записывается в 12 отведениях:

3 стандартных (I, II, III);

3 усиленных от конечностей (aVR, aVL, aVF);

6 грудных (V1, V2, V3, V4, V5, V6).

1) Стандартные отведения (предложил Эйнтховен в 1913 году). I - между левой рукой и правой рукой, II - между левой ногой и правой рукой, III - между левой ногой и левой рукой.

2) Усиленные отведения от конечностей (предложены Гольдбергером в 1942 году).

Используются те же самые электроды, что и для записи стандартных отведений, но каждый из электродов по очереди соединяет сразу 2 конечности, и получается объединенный электрод Гольдбергера. На практике запись этих отведений производится простым переключением рукоятки на одноканальном кардиографе (т.е. электроды переставлять не нужно).

aVR - усиленное отведение от правой руки (сокращение от augmented voltage right - усиленный потенциал справа). aVL - усиленное отведение от левой руки (left - левый) aVF - усиленное отведение от левой ноги (foot - нога)

3) Грудные отведения (предложены Вильсоном в 1934 году) записываются между грудным электродом и объединенным электродом от всех 3 конечностей.Точки расположения грудного электрода находятся последовательно по передне-боковой поверхности грудной клетки от средней линии тела к левой руке.

V1 - в IV межреберье по правому краю грудины. V2 V3 V4 - на уровне верхушки сердца. V5 V6 - по левой среднеподмышечной линии на уровне верхушки сердца.

Рис. 1

12 указанных отведений являются стандартными. При необходимости могут регистрироваться и дополнительные отведения.Неслучайно такое большое количество отведений. ЭДС сердца - это вектор ЭДС сердца в трехмерном мире (длина, ширина, высота) с учетом времени. На плоской ЭКГ-пленке мы можем видеть только 2-мерные величины, поэтому кардиограф записывает проекцию ЭДС сердца на одну из плоскостей во времени.

Рис. 2

В каждом отведении записывается своя проекция ЭДС сердца. Первые 6 отведений (3 стандартных и 3 усиленных от конечностей) отражают ЭДС сердца в так называемой фронтальной плоскости (см. рис.) и позволяют вычислять электрическую ось сердца с точностью до 30° (180° / 6 отведений = 30°). Недостающие 6 отведений для формирования круга (360°) получают, продолжая имеющиеся оси отведений через центр на вторую половину круга.

6 грудных отведений отражают ЭДС сердца в горизонтальной (поперечной) плоскости. Это позволяет уточнить локализацию патологического очага (например, инфаркта миокарда): межжелудочковая перегородка, верхушка сердца, боковые отделы левого желудочка и т.д.

При разборе ЭКГ используют проекции вектора ЭДС сердца, поэтому такой анализ ЭКГ называется векторным.

В процессе электрической активности сердца возникают и в определенном порядке взаимодействуют многочисленные и разнонаправленные силы, отражающие множество появляющихся диполей. Если регистрировать этот процесс при условии непосредственного приближения электродов к поверхности сердца, то формирование ЭКГ будет зависеть от того, как ориентирован результирующий вектор всех одномоментных сил по отношению к дифферентному электроду. Представим, что дифферентный электрод располагается слева внизу от массы возбуждающегося миокарда, а индефферентный - справа наверху (такой принцип размещения электродов является самым обычным в электрокардиографии).

Наиболее высоким автоматизмом обладает синусовый узел, поэтому в норме именно он является водителем ритма сердца. Однако, из-за слишком малой величины возникающей разности потенциалов, электрическая активность синусового узла на ЭКГ не регистрируется. Возбуждение миокарда предсердий начинается в области синусового узла и распространяется по поверхности миокарда во все стороны. Разнонаправленные векторы деполяризации, взаимодействуя друг с другом, частично нейтрализуются. Так как синусовый узел находится в верхней части правого предсердия, то большинство векторов ориентированы вниз и влево. Результирующий вектор возбуждения предсердий направлен, благодаря этому, вниз и влево. Такому направлению волны деполяризации способствует и ускоренное проведение импульса вниз и влево по межузловым и межпредсердным специализированным трактам. Находящийся внизу слева дифферентный электрод обращен к положительному заряду диполя во время деполяризации предсердий, поэтому регистрируется положительное отклонение - зубец Р, продолжительность которого в норме достигает 0,1 с. В течение первых 0,02 - 0,03 с своего формирования зубец Р отражает возбуждение только правого предсердия, после этого - суммарную активность обоих предсердий, а последние 0,02 - 0,03 с зубца Р связаны с деполяризацией только левого предсердия, т.к. правое предсердие к этому времени уже полностью возбуждено.

После окончания деполяризации предсердий начинается ихреполяризация, которая происходит в той же последовательности, как происходило возбуждение. Ранее всего положительный потенциал покоя восстанавливается в области синусового узла, поэтому результирующий вектор реполяризации предсердий направлен вверх вправо, от дифферентного электрода. То обусловливает формирование отрицательного зубца Та, отражающего конечную фазу реполяризации предсердий. Он очень мал по амплитуде, а по времени совпадает с желудочковым комплексом ЭКГ, поэтому в обычных условиях не может быть выделен и подвергнут анализу.

Рис. 3

Через 0,02 - 0,04 с от начала деполяризации предсердий волна возбуждения уже достигает области атриовентрикулярного узла. Здесь скорость распространения возбуждения резко снижается, после чего импульс быстро распространяется по пучку Гиса и внутрижелудочковым проводящим путям, достигая миокарда желудочков. На ЭКГ выделяется сегмент Р - Q(R) - отрезок линии записи от конца зубца Р до начала желудочкого комплекса QRS. Интервал P - Q(R) отражает время предсердно-желудочкого проведения импульса и составляет в норме 0,12 - 0,19 с. Нормальные колебания продолжительности P - Q(R) зависят от изменений продолжительности атриовентрикулярной задержки.

Рис. 4

Возбуждение желудочков, в отличие от возбуждения предсердий, распространяется не из одного центра, а из множества очагов, расположенных преимущественно в субэндокардиальных слоях миокарда. Источниками деполяризации являются волокна Пуркинье - конечный разветвления внутрижелудочковых проводящих путей. распространение возбуждения стенки желудочков направлено от множественных очагов в субэндокардиальных отделах к субэпикардиальным отделам, т.е. перпендикулярно к наружной поверхности сердца. Для детального разбора электрических сил, отражающих деполяризацию желудочков, удобно разделить этот непрерывный процесс на три этапа.

Первый - начальный - связан с появлением очагов деполяризации в левой части межжелудочковой перегородки, куда раньше всего приходит волна возбуждения по разветвлениям левой ножки пучка Гиса. Вектор деполяризации направлен от левой к правой поверхности межжелудочковой перегородки. При расположении активного электрода слева начальный этап деполяризации желудочков отражается небольшим отрицательным отклонением (зубцом Q), продолжительность которого составляет 0,02 с. Вслед за деполяризацией левой поверхности межжелудочковой перегородки начинается деполяризация ее правых отделов, куда возбуждение приходит по правой ножке пучка Гиса. Направление вектора этой деполяризации справа налево нейтрализует первоначально возникшее электрическое поле, и поэтому начальный этап возбуждения желудочков отражается небольшим и непродолжительным зубцом.

Следующий - главный - этап отражает распространение возбуждение через миокард свободных стенок желудочка. Суммарный вектор деполяризации левого желудочка ориентирован влево. Равнонаправленность этих векторов приводит к частичной нейтрализации электрических сил. Большая мышечная масса левого желудочка обусловливает его электрического поля над электрическим полем правого желудочка, поэтому результирующий вектор деполяризации желудочков ориентирован влево. При расположении активного электрода слева, этот главный этап деполяризации желудочков, соответствующий 0,03 - 0,05 с, регистрируется в виде положительного отклонения (зубец R).

Заключительный этап деполяризации желудочков отражает возбуждение заднебазальных межжелудочковой перегородки и желудочков. Вектор деполяризации ориентирован вверх и чаще вправо; направление терминальной деполяризации значительно варьирует. При расположении дифферентного электрода слева от сердца терминальных этап деполяризации чаще отражен небольшим отрицательным зубцом (S).

Таким образом, последовательные изменения величины и направления результирующего вектора электрического поля во время возбуждения желудочков приводят к тому, что этот единый процесс отражается комплексом QRS, состоящим их зубцов разной величины и разной полярности. В зависимости от положения электродов зубцы, отражающие начальный, главный и терминальный этапы деполяризации, могут иметь различные направления (и, вследствие этого, различные буквенные обозначения). Зубцом Q обозначают первое отклонение желудочкового комплекса, если оно направлено вниз от изолинии. Отклонение записи вверх от изолинии, независимо от того, когда оно регистрируется (т.е. является ли первым или последующим) называется зубцом R. Отрицательное отклонение, следующее за положительным, обозначают как зубец S. Таким образом, зубец Q может быть лишь один в желудочковом комплексе, а в тех случаях, когда комплекс начинается положительным отклонением, зубец Q отсутствует. Если положительных зубцов несколько, то они именуются зубцами R, но каждый последующий обозначается как R?,R? ?и т.д. Зубцов S тоже может быть несколько, и тогда они обозначаются как S?, S? ?и т.д. общая продолжительность комплекса QRS, отражающая время внутрижелудочковой проводимости составляет 0,06 - 0,10 с.

В отличие от предсердий, миокард желудочков различных слоев и отделов обладает различной продолжительностью электрических процессов. Потенциал действия субэпикардиальных слоев имеет меньшую продолжительность, чем потенциал действия субэндокардиальных слоев; потенциал действия миокардиальных волокон в области верхушки сердца короче, чем в области основания сердца. Это приводит к тому, что в стенке желудочка процессы реполяризации раньше начинаются в субэпикардиальных слоях и в области верхушки, тогда как субэндокардиальные слои и основание желудочков дольше сохраняют отрицательные заряды. Во время реполяризации результирующий вектор направлен поэтому влево, т. е. в ту же сторону, что и главный вектор деполяризации. Наибольшая электродвижущая сила возникает в фазе конечной реполяризации, этот процесс отображается появлением зубца Т. при расположении дифферентного электрода слева, вектор реполяризации желудочков направлен к этому электроду и зубец Т регистрируется положительным. Между концом комплекса QRS и началом зубца Трасполагается сегмент S-T: он соответствует второй фазе реполяризации миокарда желудочков, во время которой потенциал почти не изменяет своей величины. Разность потенциалов почти отсутствует, поэтому сегмент S - Tрасполагается на изолинии. Различная продолжительность потенциала действия в разных отделах миокарда желудочков приводит к небольшому асинхронизму фаз реполяризации и появлению небольшой разности потенциалов, что и сообщает сегменту S-T некоторую кривизну с плавным переходом его в зубец Т. интервал времени от начала комплекса QRS до начала зубца Т отражает весь период электрической активности желудочков (электрическая систола). В норме Q - T составляет 0,36 - 0,44 с и зависит от пола, возраста и частоты ритма. Вслед за зубцом Т обычно регистрируется еще одно положительное отклонение небольшой амплитуды - зубец U. Механизмы его появления точно не установлены и, по-видимому, не всегда однозначны.

Рис. 5

В процессе исследования всех зубцов, сегментов и интервалов, регистрируемых электрокардиограммой, выводится электрокардиографическое заключение, которое должно включать в себя:

1. Источник ритма (синусовый или нет).

2. Регулярность ритма (правильный или нет). Обычно синусовый ритм является правильным, хотя возможна дыхательная аритмия.

4. Положение электрической оси сердца.

5. Наличие 4 синдромов:

нарушение ритма

нарушение проводимости

гипертрофия и/или перегрузка желудочков и предсердий

повреждение миокарда (ишемия, дистрофия, некрозы, рубцы)

Тело как объемный проводник электрических явлений

Ткани и органы, окружающие сердце, играют роль проводников, передающих электрические заряды на поверхность тела.Величина потенциалов по мере удаления от сердца уменьшается. В однородной проводящей среде величина потенциала любой точки обратно пропорциональна величине расстояния от нее до источника разности потенциала. Ткани тела обладают различной электропроводностью, что вносит значительные искажения в распределение и величину потенциалов на поверхности тела. ЭКГ может изменяться под влиянием таких состояний как ожирение, кахексия, отеки тела, скопление жидкости в плевре и перикарде, эмфизема и уплотнение легких и т.п.

Из предыдущих статей о проведении возбуждения по сердцу очевидно, что любое изменение направления и скорости проведения электрических потенциалов в сердечной мышце (и в тканях, окружающих сердце) приводит к изменению картины электрокардиографической кривой, поэтому анализ электрокардиограммы, записанной в различных отведениях, имеет важное значение в диагностике почти всех нарушений деятельности сердца.

Чтобы понять, каким образом нарушения сердечной деятельности отражаются на электрокардиографической кривой, мы должны познакомиться с понятиями вектор и векторный анализ применительно к электрическим потенциалам сердца и окружающих тканей.

В предыдущих статьях мы не раз подчеркивали, что электрические токи распространяются в сердце в определенном направлении в каждый момент сердечного цикла. Вектор представляет собой стрелку, которая характеризует величину и направление разности электрических потенциалов. Стрелка всегда направлена от минуса к плюсу, т.е. в положительную сторону. Кроме того, принято изображать длину стрелки пропорционально величине разности потенциалов.

Результирующий вектор сердца в каждый данный момент. На рисунке выделена красным цветом и отмечена знаками «минус» деполяризация межжелудочковой перегородки и миокарда желудочков, расположенного под эндокардом в области верхушки сердца. В этот момент электрические токи, идущие от возбужденных внутренних структур желудочков к невозбужденным наружным, обозначены на схеме длинными красными стрелками. Красными стрелками показаны токи, идущие внутри сердечных камер непосредственно от электроотрицательных к электроположительным участкам миокарда.

В целом токи . идущие вниз от основания желудочков к верхушке сердца, оказываются более мощными, чем токи, идущие в обратном направлении. Следовательно, суммарный вектор, отражающий разность потенциалов в данный момент, направлен от основания к верхушке сердца. Его называют средним моментным вектором. На схеме средний моментный вектор обозначен длинной черной стрелкой, проходящей через центр желудочков в направлении от основания к верхушке сердца. Поскольку суммарные токи имеют большую величину, а разность потенциалов велика - изображен вектор большой длины.

Направление вектора обозначается в угловых градусах

Если вектор расположен строго горизонтально и указывает налево, его направление соответствует 0°. От этой нулевой точки по часовой стрелке и начинается шкала отсчета. Так, если вектор расположен перпендикулярно вниз, его направление соответствует +90°. Если вектор расположен горизонтально и указывает направо, его направление соответствует +180°. Если вектор расположен перпендикулярно вверх, его направление соответствует -90° (или +270°).

Усредненное направление вектора во время распространения волны деполяризации по миокарду желудочков называют средним QRS-вектором. В норме его направление равно примерно +59°, как показано на рисунке, где изображен вектор А, проходящий через центр окружности под углом +59°. Это значит, что большую часть времени распространения деполяризации верхушка сердца остается электроположительной по отношению к основанию желудочков.

Вектор сердца и его отражение на электрокардиограмме

ЭКГ отражает суммарные электрические токи, возникающие в многочисленных волокнах миокарда по время возбуждения. Так как в процессе побуждения суммарная электродвижущая сила сердца изменяет величину и направление, она является векторной величиной. Вектор сердца схематически изображается стрелкой, указывающей направление электродвижущей силы, длина стрелки соответствует величине этой силы.

Электрокардиографический вектор ориентирован в строну положительного полюса суммарного диполя - сердечной мышцы. Если возбуждение распространяется по направлению к положительному электроду, то на ЭКГ регистрируется положительный (направленный вверх) зубец, если возбуждение направлено от положительного электрода, то регистрируется отрицательный зубец.

Суммарный вектор электродвижущей силы сердца образуется путем суммирования его составных частей по правилу сложения векторов. Если направление суммарного вектора соответствует (параллельно) оси какого-либо отведения ЭКГ, то в данном отведении амплитуда отклонения (зубцов) кривой будет наибольшей. Если результирующий вектор расположен перпендикулярно оси отведения, то вольтаж зубцов будет минимальным.

Вектор сердца движется в грудной клетке в трехмерном пространстве: во фронтальной, горизонтальной и сагиттальной плоскостях. Изменения вектора в указанных плоскостях находят наибольшее отражение при записи ЭКГ в ортогональных отведениях.

По отведениям от конечностей можно проанализировать проекцию вектора сердца на фронтальную плоскость, а по грудным отведениям - на горизонтальную плоскость. Наибольшее практическое значение имеет направление вектора во фронтальной плоскости. Для этого необходимо проанализировать положение вектора сердца по отношению к осям отведений от конечностей в шестиосевой системе координат, когда оси отведений от конечностей проходят через центр треугольника Эйнтговена.

Отведения от конечностей не могут отразить положение вектора сердца в горизонтальной плоскости. Отклонения вектора в этой плоскости регистрируются в грудных отведениях.

Как указывалось выше, импульс возбуждения, зарождаясь в синусовом узле, распространяется на правое, а затем па левое предсердия. Предсердный вектор во фронтальной плоскости в норме ориентирован вниз и влево. Его направление совпадает с осью второго отведения, поэтому зубец Р в этом отведении имеет обычно наибольшую амплитуду.

Наиболее низким зубец Р будет в том отведении, ось которого перпендикулярна оси II отведения, т.е. в aVL. Зубец Р в отведении aVR отрицательный, так как оси отведений II и aVR имеют противоположную полярность. Предсердный вектор направлен почти перпендикулярно горизонтальной плоскости, поэтому амплитуда зубцов Р в грудных отведениях ниже, чем в отведениях от конечностей.

«Практическая электрокардиография», В.Л.Дощицин

Теория формирования электрокардиограмм — Руководство по клинической электрокардиографии детского возраста

Страница 2 из 84

Г л а в а 2 ТЕОРИИ ФОРМИРОВАНИЯ ЭЛЕКТРОКАРДИОГРАММ

ТЕОРИИ ВОЗБУЖДЕНИЯ КЛЕТКИ И ФОРМИРОВАНИЯ БИОПОТЕНЦИАЛА СЕРДЦА

Для понимания электрокардиографии необходимо познание теоретических основ возникновения биопотенциалов в живых тканях.

Электрическая реакция сердечной мышцы, сопровождающая ее сокращение, была известна давно , а первая теория биоэлектрических потенциалов принадлежит Е. Du Bois-Reymond (1848 — 1875). В основу выдвинутой теории автор положил наличие особых «электромоторных молекул» и указал на факт существования электроотрицательности в возбужденных и поврежденных участках ткани. В дальнейшее развитие теории Е. Du Bois-Reymond весомый вклад внес А. А. Соколовский (1858), который поставил вопрос о связи биоэлектрических явлений с обменом веществ. Наиболее приближённой к современным представлениям явилась теория В. Ю. Чаговца (1896). При исследовании влияния различных лекарственных веществ на электромоторные свойства нервов и мышц В. Ю. Чаговец применил теорию электролитической диссоциации Арренеуса для объяснения возникновения электропотенциалов в живых тканях. Таким образом, последнее явление сводилось к общим физико-химическим законам. Было доказано, что при определенных условиях (повреждение, возбуждение) положительные ионы передвигаются внутрь клетки, а отрицательные — на поверхность ее. При этом движении создается диффузионная разность потенциалов, направление и величина которой будут зависеть от подвижности ионов данного электролита и от его концентрации. Величина диффузионного потенциала выражается формулой Нернста:

где Е — разность потенциалов, и и у — подвижность ионов (положительного и отрицательного), п — валентность ионов, Р и Pi — осмотическое давление соприкасающихся растворов; R — газовая постоянная. Т — абсолютная температура, F — число Фарадея.

Почти одновременно родились теории возникновения биоэлектрических потенциалов, повлиявшие на дальнейшее развитие электрофизиологии сердца, авторами которых были W. Ostwald (1890), а затем W. Briinnings (1902) и J. Bernstein (1902). По «классической» мембранной теории, сформулированной J. Bernstein, предполагалось, что поверхность живой клетки покрыта полупроницаемой мембраной, пропускающей положительно заряженные ионы калия и не пропускающей связанные с ним анионы. Ионы калия, концентрация которых в протоплазме клетки велика, проходят через мембрану вдоль концентрационного градиента и таким образом заряжают наружную ее поверхность положительно. Внутренняя же поверхность мембраны оказывается заряженной отрицательно задержанными мембраной анионами.

Электрические явления, развивающиеся при повреждении ткани, J. Bernstein объяснял свободным выходом отрицательно заряженных анионов. При возбуждении ток действия возникает потому, что мембрана на определенном участке становится проницаемой для анионов на очень короткий срок (1—2 мс), и в течение этого срока в данной части ее образуется отрицательный потенциал.

Основное положение «классической» мембранной теории возникновения биопотенциалов: наличие «полупроницаемой» (избирательно проницаемой) мембраны на поверхности живых клеток и постоянная величина разности потенциалов по обе стороны мембраны в период покоя клетки — сохраняет свое научное значение и в настоящее время. Однако существенно изменились взгляды на суть ионных процессов.

В работах A. Hodgkin и сотр. было показано, что мембрана в процессе возбуждения становится проницаемой и для ионов натрия, тогда как покоящаяся мембрана пропускает только ионы калия. Благодаря использованию микроэлектродной техники было доказано, что поперечная (но обе стороны мембраны) разность потенциалов существует постоянно, а меняется лишь заряд поверхности мембраны. Перезарядка мембраны при этом происходит не одновременно по всей ее поверхности, а в одном месте благодаря избирательно повышенной проницаемости данного участка мембраны для ионов натрия. В связи с высокой внеклеточной концентрацией натрия последний начинает быстро диффундировать внутрь клетки, и внутренняя поверхность мембраны становится заряженной положительно. Если клетку окружить безнатриевой средой, то входящий эффект (входящий ток) отсутствует. Таким образом, входящий ток (быстрый) обусловлен движением ионов натрия внутрь клетки, а выходящий, более медленный, с возвратом ионов калия.

Какие же причины лежат в основе первоначального движения ионов натрия? В. Ю. Чаговец для объяснения данного явления, как написано выше, пользовался формулой Нернста. Но это оправдано лишь в условиях свободной диффузии и никак нельзя данной формулой объяснить движения ионов натрия против электрохимического градиента, происходящего после окончания возбуждения при восстановлении исходного химического состава клетки. Согласно представлениям Hodgkin, мембрана располагает транспортной системой, которая переносит ионы натрия из клетки в межклеточную среду против электрохимического градиента. Активный перенос ионов против последнего возможен при наличии достаточной энергии, которая высвобождается в процессе обмена веществ. Еще в 1936 г. крупнейший советский кардиолог Г. Ф. Ланг обратился к различным специалистам с призывом изучать химию миокарда, основным вопросом которой считал исследование источников энергии для непрерывной активности сердечной мышцы. Он же указал на электрокардиографию как на рациональный и единственно пригодный метод изучения биохимических процессов в сердце. Состоянием обмена веществ в настоящее время объясняются многие процессы. связанные с движением ионов через мембрану. Однако ответы на многие вопросы требуют уточнения.

Выражением биоэлектрических потенциалов клетки является трансмембранный потенциал. Он обусловлен различным ионным составом по обе стороны мембраны, а следовательно и различным зарядом. В период электрической диастолы (покоя) клетки вдоль внутренней поверхности мембраны расположены анионы — ионы с зарядом отрицательного знака (из-за диффузии положительных ионов калия из клетки). На наружной поверхности мембраны расположены катионы — ионы с зарядом положительного знака (состояние поляризации мембраны). Если при этом состоянии расположить электроды, соединенные через провода с гальванометром на поверхности клеточной мембраны, как это показано на рис. 5, а, то, естественно, отклонения стрелки гальванометра не произойдет. При расположении электродов с обеих сторон мембраны (рис. 5, б) стрелка гальванометра отклоняется, что указывает на наличие разности потенциалов — трансмембранного потенциала. Величина потенциала покоя равняется — 80 — 95 мВ и обусловлена концентрацией отрицательно заряженных ионов. Потенциал покоя стационарен при нормально протекающем внутриклеточном обмене веществ. Изменение величины потенциала при возникновении возбуждения носит название деполяризации мембраны и соответствует моменту начала диффузии ионов натрия внутрь клетки (нулевая фаза потенциала действия). Затем происходит реверсия, т. е. знак мембранного потенциала меняется на противоположный. Амплитуда потенциала действия (ПД) в зависимости от места положения электродов может быть зарегистрирована в виде моно- или двухфазной кривой. Первоначальный размах амплитуды потенциала действия при монофазном отведении существенно больше потенциала покоя и составляет приблизительно величину, равную 110—120 мВ, а длительность его колеблется в широких пределах — 50 —600 мс. Положительный заряд внутренней поверхности мембраны равен при этом приблизительно 30 мВ (рис. 8).

Как видно из приведенного рисунка, потенциал действия вначале характеризуется резким нарастанием значения («спайк») и переходит за нулевой уровень вверх, что получило название «overshoot» (перелет), или реверсия (перезарядка), мембраны — 0-фаза потенциала действия, затем в течение определенного времени (несколько следующих фаз потенциала действия) мембрана возвращается в состояние поляризации — процесс реполяризации. Следует отметить фазы ПД: деполяризации (фаза 0), начальной быстрой реполяризации (фаза 1), медленной реполяризации «плато» ПД (фаза 2), конечной быстрой реполяризации (фаза 3) и поляризации (фаза 4). Внизу на этом же рисунке схематично показано соответствие по времени фаз потенциала, действия с элементами электрокардиограммы.

Следует отметить, что потенциал действия различных отделов и структур сердца имеет морфологические отличия (степень крутизны фазы деполяризации, быстрой реполяризации и т. д.). Так, например, клетки синусового узла обладают меньшей скоростью деполяризации, а общая продолжительность их потенциала действия меньше, чем в других клетках сердца.

Несмотря на то, что биопотенциал сердечной клетки достаточно высок (— 90 мВ), электрический сигнал на поверхности тела человека имеет несравненно меньшую величину и поэтому для анализа его необходимо существенное усиление аппарата. Причиной резкого падения биопотенциала на поверхности тела является в основном анатомическая разнонаправленность мышечных волокон (этих элементарных генераторов электричества), что и создает условия для взаимного погашения (канцел- ляции) электрической активности составляющих элементов суммарной ЭДС сердца. Некоторые авторы утверждают, что в связи со сказанным теряется около 90 — 95% электрической активности сердца и, естественно, для анализа остается не более 5 — 10%. Оставшийся электросигнал в силу ряда причин, порождающих биоэлектрическую асимметрию (кардиосклероз, гипертрофия, нарушение проводимости и т. д.), может быть изменен, что и обусловливает появление патологической электрокардиографической кривой.

Рис. 8. Трансмембранный потенциал мышечного волокна сердца в течение сердечного цикла:

О — фаза деполяризации, . 1, 2, 3 (б, в, г) — начальная быстрая, медленная и конечная быстрая фазы реполяризации, 4 — фаза поляризации (а) — «overshoot».

Рис. 9. Схема дифференциальной кривой (по А. Ф. Самойлову и Weber).

Вверху — монофазная кривая возбуждения основания сердца или правого желудочка, внизу — монофазная кривая возбуждения верхушки сердца или левого желудочка, посередине — электрокардиограмма как результат алгебраического сложения двух монофазных

Рис. 10. Схема формирования кривой электрокардиограммы согласно теории диполя.

При определенном допущении из монофазной кривой трансмембранного потенциала можно построить электрокардиограмму. Поэтому одной из предложенных теорий происхождения электрокардиограмм является теория дифференциальной кривой, или теория интерференции [Самойлов А. Ф. 1908; Удельнов М. Г. 1955; Schiitz Е. et al. 1936]. Сторонники этой теории утверждают, что электрокардиограмма является алгебраической суммой двух противоположнонаправленных монофазных кривых, получаемых при раздельном отведении. С этой позиции происхождение зубцов и интервалов электрокардиограммы: Q, R, S, Т и S — Т — есть результат взаимодействия двух несколько асинхронных монофазных кривых различных областей сердца (например, правого и левого желудочков или верхушки и основания сердца). В пользу выдвинутой теории говорят такие факты, как совпадение времени длительности желудочкового комплекса электрокардиограммы и монофазной кривой, что колебание трансмембраниого потенциала отдельного мышечного волокна сердца носит монофазный характер. М. Г. Удельнов (1955) экспериментально доказал возможность формирования из двух монофазных кривых не только нормальной, но и патологической электрокардиограммы. Было также показано [Андреев С. В. и др. 1944], что можно получить раздельные монокардиограммы правого и левого желудочков и что они разнонаправленны. Аналогичные данные получил в эксперименте Ю. Д. Бородулин (1964). Большинство сторонников теории дифференциальной кривой придерживаются признания асинхронизма процессов деполяризации миокарда правого и левого желудочков и на основании этих данных предлагают схему формирования электрокардиограммы (рис. 9). Однако исследования последних десятилетий показали, что правый желудочек возбуждается не на 0,02 с, а лишь на 0,002 с раньше левого и что еще до него возбуждается межжелудочковая перегородка. Наибольшим признанием пользуется теория сердечного диполя . Под диполем понимают физическую систему, состоящую из двух равных по величине, но противоположных по знаку зарядов.

В 1927 г. W. Graib доказал, что если в солевой раствор поместить мышечную пластину, то при ее возбуждении образуется симметричное поле диполя. Это фактически и явилось предпосылкой к рассматриваемой теории. В дальнейшем в работах L. Wendt (1946) экспериментально было показано, в какой мере электрические процессы в сердце подчиняются закономерностям диполя.

Если поместить возбужденное мышечное волокно, этот элементарный диполь , в проводящую среду, то изменения разности потенциалов можно зарегистрировать не только в непосредственной близости волокна, но и вдали от него. Это связано с возникновением электрического поля, созданного элементарным диполем (мышечным волокном), являющимся источником ЭДС. Так как сердце (упрощенно) состоит из суммы мышечных волокон (элементарных диполей), то естественно, что электрическое поле сердца представлено суммой элементарных электрических полей. Фронт движения процесса возбуждения ориентирован в определенном направлении, а именно: положительным зарядом диполя в сторону невозбужденной ткани.

Согласно теории диполя формирование кривой электрокардиограммы происходит так, как это показано на рис. 10. При покое вычерчивается прямая горизонтальная (изоэлектрическая) линия, так как нет разности потенциалов между любыми 2 точками поверхности волокна. Затем, с началом периода деполяризации, регистрируется возрастающая волна, направленная вверх от изоэлектрической линии, и с исчезновением разности потенциалов волна опускается вновь до изоэлектрической линии. Так формируется зубец R. Затем регистрируется сегмент ST, что обусловлено определенной экспозицией полностью произошедшего процесса деполяризации и ранней реполяризацией. Следующий этап — формирование волны Т — связан с процессом реполяризации который в миокарде имеет противоположное процессу деполяризации направление.

В сердечной мышце направление зарядов диполя по отношению к оболочкам сердца стационарно и всегда к эндокардиальной поверхности обращены отрицательные, а к эпикардиальной — положительные знаки.

Рис. И. Электрическое поле сердца по A. Waller. Объяснение в тексте.

Рис. 12. Треугольник Einthoven. Объяснение в тексте.

Сердце, по мнению ряда авторов , без большой погрешности можно рассматривать как суммарный, единый диполь и, следовательно, электрокардиограмма, записанная с поверхности тела, не представляет собой результат регистрации ЭДС избранных участков сердца. Положительным полюсом суммарного диполя в средний момент возбуждения является верхушка, а отрицательным — основание сердца. При этом различают (рис. 11) ось диполя — линию, соединяющую отрицательный и положительный полюсы диполя; силовые и изопотенциальные линии. Последние проходят через точки с одинаковыми потенциалами. Вокруг каждого из полюсов (положительного и отрицательного) образуется поле заряда; между ними проходит линия нулевого потенциала. Такое пространственное дипольное описание электрических явлений в теле, вокруг сердца принадлежит A. Waller (1887— 1889 гг.). При этом он ось диполя назвал «электрической». В современном понимании, электрической осью обозначают лишь направление результирующей ЭДС сердца, в отличие от вектора, определяющего направление и величину ЭДС в тот или иной момент его деятельности.

Выдвинутая W. Einthoven концепция равностороннего треугольника (рис. 12) явилась базой утверждения теории сердечного диполя. Как видно из рис. 12, стороны треугольника представляют собой (схематично) оси электрокардиографических отведений, на которые проецируются положительные или отрицательные компоненты диполя, а углы его как бы соответствуют местам наложения электродов на трех конечностях: обеих руках и левой ноге. Электрическая ось сердца представлена жирной линией. Последняя имеет определенное направление и величину и называется результирующим, или сердечным, вектором. Проекция вектора на ось электрокардиографического отведения реализуется с помощью перпендикуляров, опущенных из нулевой точки и свободного конца его. При этом угол треугольника, направленный в сторону правой руки, имеет всегда отрицательное, а угол, соответствующий левой ноге, — положительное значение. Угол левой руки в случае образования оси первого стандартного отведения имеет положительное значение, а при образовании III отведения — отрицательное. Проекция вектора на сторону треугольника осуществляется таким образом, что отклонение от изолинии вверх всегда происходит в сторону угла с положительным значением. Проецируемая величина вектора ЭДС сердца при этом больше в случаях параллельного его (вектора) расположения по отношению к оси отведения. Соотношение в направлении вектора ЭДС сердца и оси I отведения во фронтальной плоскости определяется углом а, как это показано на рис. 12. Если угол а равен нулю, то ось I отведения и проецируемый на нее вектор строго параллельны. При значении угла а, равном +90°, проекция на ось I отведения определяется в виде точки, ибо направления вектора и оси взаимно перпендикулярны.

Вряд ли целесообразно противопоставлять рассмотренные выше теории формирования ЭКГ, доказывать правомерность одной и несостоятельность другой. Лучшее решение — путь рационального синтеза фактов, полученных как сторонниками теории диполя, так и сторонниками теории дифференции. Теория диполя больше удовлетворяет при объяснении процессов возбуждения в целом. Она, хотя и не универсальна, однако имеет больше сторонников из-за ее решающего значения для практической электрокардиографии, основанной на векторных принципах электрокардиографической диагностики. Поэтому темой одного из разделов данного руководства явится векторный метод в электрокардиографии.

ВЕКТОРНЫЙ АНАЛИЗ электрокардиограммы

Первое указание на пространственный характер электрических явлений в сердце принадлежит A. Waller, который пришел к выводу, что верхушка сердца несет на себе положительные заряды, а основание — отрицательные (см. рис. И). В 1913 г. W. Einthoven с сотр. показали направление и величину электропотенциалов с помощью десяти пунктов векторкардиограммы во фронтальной плоскости. Год спустя Н. Williams с помощью двух одновременно регистрирующих отведений объяснил векториальный характер возникновения в сердце электрических сил. В 1915 г. G. Fahr и A. Weber сделали попытку векторного изображения ЭДС сердца.

Более полное определение и понятие электрического вектора сердца введено в 1916 г. Т. Lewis, который изображал ЭДС сердца в виде последовательного ряда радиальных векторов, исходящих из одной изоэлектрической точки в разные стороны. В 1920 г. G. Fhar на основании векторкардиографического анализа доказал ошибочность существовавшей тогда ЭКГ-характеристики локализации блокад ветвей предсердно-желудочкового пучка (Гиса). В этом же году Н. Mann из трех стандартных отведений впервые синтезировал эллипсоидную замкнутую фигуру и назвал ее «монокардиограммой» (рис. 13), что явилось векторным воспроизведением последовательного изменения направления и величины ЭДС сердца.

В настоящее время все соглашаются, что в электрическом поле сердца в силу ряда биофизических явлений создается равнодействующая сила, имеющая определенные полярность, направление в пространстве и величину. Следовательно, всеми признается, что ЭДС сердца — величина векторная. Из этого следует, что электрокардиограмма’ есть проекция вектора ЭДС сердца на ось электрокардиографического отведения, представленная линейной графической формой и выражающая скалярные показатели величины зубцов и длительность фаз сердечного цикла. Таким образом, признавая векториальный характер ЭДС сердца, можно подвергнуть векторному анализу электрокардиограмму. Но прежде чем непосредственно перейти к анализу, представим некоторые положения из теории векторного исчисления.

Векторами называются отрезки, имеющие определенные величину (модуль) и направление. Векторы можно складывать, вычитать и умножать. В зависимости от пространственного положения векторы могут лежать на одной из координатных плоскостей или находиться под различным углом к последним.

Стрелка () — символ вектора. В нем различают нулевую точку (точку приложения), или начало вектора; величину (модуль) — расстояние от нулевой точки до острия стрелки, выражающуюся в сантиметрах, миллиметрах, милливольтах и т. д.; сторону действия — направление стрелки.

Рис. 15. Действие над векторами:

Рис. 13. Монокардиограмма по Н. Mann.

Рис. 14. Проекция вектора на ось отведения (проекция S на ось АБ).

а — сложение векторов по правилу многоугольника, суммарный (равнодействующий) вектор А равен сумме составляющих векторов (a j Н- а2 + а3 + а4 4- а5); б — сложение векторов по правилу параллелограмма; в — сложение векторов по правилу параллелепипеда.

Обычно величина (модуль) вектора обозначается одной или несколькими буквами, заключенными в вертикально расположенные линии: R или S или ST |. Сам же вектор обозначается буквой,-заключенной в фигурные скобки, со стрелкой

или линией вверху: , или. Пространственный вектор еще внизу за скобкой обозначается латинской буквой «s» (от слова «spatial» — что значит пространственный) — s.

Линия действия вектора — прямая, на которой он лежит. Сторона действия — порядок перехода от начала к концу вектора, лежащего на этой прямой. Вместе они дают представление о направлении действия вектора.

Равные вектора обозначаются R = S, неравные R ф S. Если R = S, то и

Проекция вектора на ось отведения или плоскость зависит от угла наклона к ним. Поэтому проекция вектора равна модулю его, умноженному на косинус угла наклона к проецируемой оси (рис. 14).

Сложение векторов можно осуществить по (рис. 15, а, б, в): а) правилу многоугольника;

Рис. 17. Последовательность векторов правого и левого желудочков.

Рис. 16. Векторкардиограмма. Петля QRS — векторная петля распространения возбуждения по желудочкам сердца.

б) правилу параллелограмма (сумма двух векторов равна диагонали параллелограмма, построенного на этих векторах);

в) правилу параллелепипеда.

Последнее правило применимо, если векторы лежат на разных плоскостях.

Моментные векторы одиночного мышечного волокна однонаправленны и расположены параллельно оси его. Однако сердце (миокард) имеет, как уже было описано, сложное анатомо-гистологическое строение, оно расположено пространственно, процесс возбуждения в нем имеет временной и пространственный характер распространения. Кроме того, следует учитывать влияние на сердце нервно-эндокринного аппарата, периодичность и изменчивость электрического поля. Последнее постоянно меняется как по величине, так и по направлению в связи с меняющимися соотношениями между возбужденными и невозбужденными участками миокарда. Изменения этих соотношений происходят в силу того, что в каждый момент в возбуждении и восстановлении участвует различное число разнонаправленных мышечных волокон и сумма их элементарных электрических полей все время меняется. Равные по величине, но противоположные по направлению векторы взаимно погашаются. Оставшиеся после канцелляции и спроецированные на плоскость результирующие моментные векторы можно сложить по правилу параллелограмма и получить результирующий моментный вектор сердца. Во время возбуждения миокарда каждый из моментных результирующих векторов направлен от эндокарда к эпикарду. За весь процесс деполяризации появляется последовательное множество разнонаправленных результирующих векторов, исходящих из одной точки дипольного центра. Если в порядке последовательности соединить стрелки результирующих моментных векторов, то образуется петля, которая, по предложению F. Wilson и R. Johnston (1938), стала называться векторкардиограммой (рис. 16). Последняя дает представление как о направлении, так и о последовательности возбуждения в миокарде. После спонтанной деполяризации клеток синусового узла волна возбуждения распространяется к атриовентрикулярному (А —В) соединению и прилегающим тканям предсердий. Затем через А — В соединение попадает в желудочки, где возбуждает межжелудочковую перегородку (рис. 17) и в течение 0,015 с достигает поверхности эндокарда левого и правого желудочков. В дальнейшем она распространяется трансмурально к эпикарду верхушки правого и левого желудочков.

Вектор QRS 0,01 с (межжелудочковая перегородка ориентирован слева направо вперед, несколько вверх или вниз. На 0,02 волны возбуждения захватывает нижнюю треть межжелудочковой перегородки и затем выходит на эпикардиальную поверхность правого желудочка в облает агеае trabecularis. В дальнейшем возбуждение распространяется радиально во все стороны по свободной стенке правого желудочка. В то же время начиная с 0,015 с возбуждаются внутренняя пластинка путей оттока левого желудочка и передневерхушечная область левого желудочка в наиболее тонкой части его.

Возбуждение областей правого и левого желудочков может быть представлено последовательно двумя парами векторов: вектором 0,015 с или париетальной ножки наджелудочкового гребня и нижней трети межжелудочковой перегородки, ориентированным вправо, вперед и вниз, с одной стороны, и вектором путей оттока левого желудочка, направленным влево и назад, — с другой. В результате их суммации можно наблюдать результирующий моментный вектор 0,02 с, ориентированный слева направо сзади наперед и вниз. Векторы, отражающие возбуждение свободной стенки правого и левого желудочков суммарно дают моментный вектор 0,03 с, направленный вперед влево и вниз. К концу 0,03 с возбуждается значительная часть свободной стенки правого и частично левого желудочков.

К 0,04 с возбуждения большая часть межжелудочковой перегородки и латеральной стенки правого желудочка полностью деполяризованы, исключая ее небольшую заднебазальную часть. Вектор 0,04 с, соответственно отражающий возбуждение правого и левого желудочков, больше других по величине и ориентирован влево, вниз, назад в сторону основной массы миокарда левого желудочка. На 0,05 — 0,06 с происходит возбуждение области основания правого желудочка, расположенной вблизи атриовентрикулярной бороздки и области конуса легочной артерии правого.желудочка. С этого же времени волна возбуждения охватывает полностью переднебоковую область (0,06 — 0,07 с) и заднюю поверхность основания сердца (0,07 — 0,08 с). Терминальные векторы ориентированы, как правило, назад вверх влево — в сторону наиболее толстой части левого желудочка.

Из приведенного рис. 17 видно, что появление вектора q обусловлено возбуждением межжелудочковой перегородки, а векторов R и S — возбуждением миокарда свободных стенок правого и левого желудочков. В зависимости от проекции результирующего моментного вектора на ту или другую ось отведения получаем различной амплитуды зубцы комплекса QRS. Таким образом, суть векторного анализа заключается в воссоздании пространственного направления и величины результирующей ЭДС сердца по структурным элементам электрокардиограммы в любой момент возбуждения. Практическая значимость сказанного очевидна.и поэтому в настоящее время для интерпретации электрокардиограмм используют векторный анализ. Для проведения последнего необходимо знать полярность осей отведений. Другими словами нужно знать и строго придерживаться правила, что любая волна (зубец), направленная вверх от изоэлектрической линии, всегда устремлена в сторону положительного полюса оси отведения и наоборот. О полярности треугольника Эйнтховена было сказано выше. Здесь покажем, как по трем стандартным отведениям можно найти результирующий вектор во фронтальной плоскости, его модуль и полярность.

Естественно, что в зависимости от пространственного соотношения результирующего вектора и осей отведений будет и различная проецируемая величина. Последняя будет наибольшей в случае параллельного расположения вектора по отношению к оси. По стандартным отведениям можно найти положение результирующего вектора во фронтальной плоскости (рис. 18). В практической электрокардиографии это положение используется для определения направления электрической оси (угол а). Аналогичным образом используются оси прекардиальных отведений для изучения векторов ЭДС в горизонтальной плоскости (рис. 19).

Для определения результирующего вектора в пространстве необходимо представить его в трех ортогональных плоскостях (фронтальной, горизонтальной, сагиттальной). Последнее возможно, если использовать прямоугольную систему кобрдинат и в соответствии с ней задать вектор, т. е. обозначить точку приложения, линию действия, сторону действия, модуль.

Рис. 18. Определение (упрощенное) положения результирующего вектора R по амплитуде зубцов R в трех стандартных отведениях (фронтальная плоскость) — проецируются вершины зубца R на оси соответствующих отведений.

Рис. 19. Построение векторной петли QRS в горизонтальной плоскости по комплексам QRS в прекардиальных отведениях. Обозначены шесть моментных векторов.

Рис. 20. Задание вектора Rs в пространственной системе координат по его проекциям (описание в тексте).

Возьмем точку М (рис. 20), расположенную в любом месте вектора, и опустим из нее перпендикуляр к плоскости ХОУ до пересечения с ней в точке N. Между прямыми ОМ и ON образуется угол 8. Этот угол будет4 изменяться от

У до +— (от -90 до +90°). Положение ON в плоскости ХОУ, которая является

проекцией ОМ, определяется утлом v|/, расположенным между осью X и ON. Угол J/ изменяется от 0 до 2я (360е). Как видно, эти два угла четко показывают положение вектора в пространстве, что можно записать следующим образом:

Угол 0 показывает ориентацию назад и вперед по отношению к сидящему человеку, а угол |/ указывает в правую или левую сторону системы координат, а также вниз или вверх. По существу, координатные плоскости делят пространство на восемь октантов (рис. 21). Поэтому для детализации положения вектора целесообразно представлять их в соответствии с указанными октантами. В зависимости от той или иной направленности координатных осей различают правые и левые системы координат.

Рис. 22. Трех- и шестиосевая система координат (осей ЭКГ-отведений) Бейли.

Рис. 23. Смещение результирующего вектора QRS вправо и вперед при гипертрофии миокарда правого желудочка ведет к увеличению зубца RVj (проекция направлена к + Vj) и углублению зубца Sy6.

В электрокардиографии в отличие от векторкардиографии используется косоугольная система координат (определение направления электрической оси сердца во фронтальной плоскости). Эта косоугольная система координат впервые была предложена Эйнгховеном в виде треугольника, построенного на трех осях стандартных электрокардиографических отведений и удовлетворяла уравнению Е2 = Е1 + Е3. Косоугольными являются также трехосевая и шестиосевая системы координат Бейли (рис. 22).

Векторный анализ позволяет выявить и уточнить характер и степень изменений в миокарде. Изменение пространственного положения результирующего вектора может быть обусловлено теми или другими причинами (гипертрофия, некроз и др.). Например, гипертрофия миокарда правого желудочка ведет к смещению результирующего вектора вправо и вперед (рис. 23), что электрокардиографически обозначается увеличением амплитуды RVl и SVe и др.

Таким образом, векторный анализ позволяет выявить истинную биоэлектрическую асимметрию, которая при соответствующих знаниях, клиническом опыте и сопоставлении с историей болезни приближает врача к конкретному диагнозу.

Чтобы понять, как работает электрокардиограф, какие процессы в организме он регистрирует, и что показывает электрокардиограмма - надо описать суть физических процессов, происходящих при сокращении сердечной мышцы.

Восстановим в памяти элементарные знания из курса школьной физики и алгебры.

Работа сердечной мышцы - это электрический процесс, постоянно текущий в организме. Пространство, в котором наблюдается действие электрических сил, называется электрическим полем. Электрическое поле подразумевает существование двух зарядов - положительного и отрицательного. Такой тандем зарядов называется электрическим диполем . На рисунке, с помощью силовых линий, изображено электрическое поле диполя. Между отрицательным и положительным зарядом находится нулевая линия, на которой величина заряда равна нулю. В точке А находящейся на расстоянии R от центра диполя (расстояние R много больше расстояния между зарядами), поле E (направленное по касательной к силовой линии) разложено на две компоненты: E1 - параллельную оси диполя и E2 - перпендикулярную к ней.

Электрический диполь создает разность потенциалов . Вообще, чтобы в любой электрической цепи начал протекать ток, необходима некая внешняя сила неэлектростатической природы. Например, электрический ток, который мы извлекаем в бытовых условиях из электрической розетки - по природе, это энергия падающей воды на ГЭС, или энергия расщепляемого атома на АЭС, или тепловая энергия угля на ТЭЦ. Электрический ток, получаемый в автомобиле - это энергия химических превращений в аккумуляторе, или энергия сжигаемого бензина в двигателе. Электрический ток, заставляющий работать наше сердце, получается в результате биохимических процессов, постоянно текущих в организме. Очень точно это было подмечено в одной из песен некогда популярной рок-группы "Круиз": "Что наша жизнь - обмен веществ в природе".

Но, вернемся к нашим "баранам". Величина, характеризующая источник энергии неэлектростатической природы в электрической цепи, необходимый для поддержания в ней электрического тока называется электродвижущей силой (ЭДС). Вектор ЭДС диполя изображается отрезком прямой, соединяющим оба его полюса, и направлен от отрицательного к положительному заряду.

Вернемся к нашему диполю. ЭДС является векторной величиной, т.к. характеризуется величиной и направлением в пространстве. Изображается ЭДС в виде прямой со стрелкой на конце. Длина этой прямой характеризует величину ЭДС, а местоположение в пространстве - направление.

Нулевая изопотенциальная линия (изопотенциальная - значит соединяющая точки с одинаковым потенциалом) разделяет поле диполя на две половины - положительное и отрицательное поле. Изопотенциальные линии, расположенные в положительном поле, называются положительными; в отрицательном поле - отрицательными. На рисунке изопотенциальные линии изображены в виде концентрических эллипсов, расположенных вокруг положительного и отрицательного зарядов. Наибольший отрицательный заряд находится рядом с нулевой линией со стороны отрицательного поля, наибольший положительный - со стороны положительного поля. Сила заряда убывает обратно пропорционально квадрату расстояния от него.

Основоположник электрокардиографии Вильям Эйнтховен рассматривал сердце, как источник электрического тока (во время возбуждения которого в организме образуется электрическое поле), расположенный в центре треугольника, ограниченного правой и левой рукой, и левой ногой (треугольник Эйнтховена ). Им было сделано допущение, что тело человека - это проводник тока с постоянным электрическим сопротивлением во всех участках. Левая, правая рука, и левая нога принимались им за три равноудаленные друг от друга и от центра (в котором находится сердце) точки, лежащих в одной фронтальной плоскости. Эйнтховен предположил, что, возникающий во время возбуждения сердца, вектор ЭДС смещался также только во фронтальной плоскости. В дальнейшем эта теория была дополнена и переработана, т.к. различные участки тела человека обладают различным сопротивлением, а электрическое поле сердца постоянно меняет величину и направление и меняется не только во фронтальной проекции. Дальнейшие многочисленные исследования подтвердили применимость теории диполя в клинической электрокардиографии.

Для измерения величины потенциала в различных точках поля используют гальванометры - основной узел электрокардиографа. ЭДС измеряется при помощи двух электродов, которые подсоединяются к положительному и отрицательному полюсам гальванометра.

У гальванометра существует два типа электродов: активный (дифферентный) электрод и неактивный (индифферентный) электрод. Неактивный электрод имеет заряд близкий к нулю (можно сказать, что это электрическая "масса", по аналогии с автомобильным аккумулятором) и присоединяется к отрицательному полюсу гальванометра. Активный электрод присоединяется к положительному полюсу гальванометра и показывает потенциал той точки электрического поля, в которой он находится. Если активный электрод находится в области положительного поля, то гальванометр регистрирует подъем кривой от изолинии (положительный зубец); если в области отрицательного поля - записывается снижение кривой (отрицательный зубец).

Следует знать, что гальванометр регистрирует разность потенциалов. Т.е., прибор будет фиксировать изменение кривой, если на оба электрода подан одинаковый по знаку заряд, но разный по величине.

ВНИМАНИЕ! Информация, представленная сайте сайт носит справочный характер. Администрация сайта не несет ответственности за возможные негативные последствия в случае приема каких-либо лекарств или процедур без назначения врача!

Что именно записывает аппарат ЭКГ?

Электрокардиограф фиксирует суммарную электрическую активность сердца , а если точнее - разность электрических потенциалов (напряжение) между 2 точками.

Откуда же в сердце возникает разность потенциалов ? Все просто. В состоянии покоя клетки миокарда заряжены изнутри отрицательно, а снаружи положительно, при этом на ЭКГ-ленте фиксируется прямая линия (= изолиния). Когда в проводящей системе сердца возникает и распространяется электрический импульс (возбуждение), клеточные мембраны переходят из состояния покоя в возбужденное состояние, меняя полярность на противоположную (процесс называется деполяризацией ). При этом изнутри мембрана становится положительной, а снаружи - отрицательной из-за открытия ряда ионных каналов и взаимного перемещения ионов K + и Na + (калия и натрия) из клетки и в клетку. После деполяризации через определенное время клетки переходят в состояние покоя, восстанавливая свою исходную полярность (изнутри минус, снаружи плюс), этот процесс называетсяреполяризацией .

Электрический импульс последовательно распространяется по отделам сердца, вызывая деполяризацию клеток миокарда. Во время деполяризации часть клетки оказывается изнутри заряженной положительно, а часть - отрицательно. Возникает разность потенциалов . Когда вся клетка деполяризована или реполяризована, разность потенциалов отсутствует. Стадии деполяризации соответствует сокращение клетки (миокарда), а стадииреполяризации - расслабление . На ЭКГ записывается суммарная разность потенциалов от всех клеток миокарда, или, как ее называют, электродвижущая сила сердца (ЭДС сердца). ЭДС сердца - хитрая, но важная штука, поэтому вернемся к ней чуть ниже.

Схематическое расположение вектора ЭДС сердца (в центре) в один из моментов времени.

Отведения на ЭКГ

Как указано выше, электрокардиограф регистрирует напряжение (разность электрических потенциалов) между 2 точками , то есть в каком-то отведении . Другими словами, ЭКГ-аппарат фиксирует на бумаге (экране) величину проекции электродвижущей силы сердца (ЭДС сердца) на какое-либо отведение.

Стандартная ЭКГ записывается в 12 отведениях :

    3 стандартных (I, II, III),

    3 усиленных от конечностей (aVR, aVL, aVF),

    и 6 грудных (V1, V2, V3, V4, V5, V6).

1) Стандартные отведения (предложил Эйнтховен в 1913 году). I - между левой рукой и правой рукой, II - между левой ногой и правой рукой, III - между левой ногой и левой рукой.

Простейший (одноканальный, т.е. в любой момент времени записывающий не более 1 отведения) кардиограф имеет 5 электродов: красный (накладывается на правую руку), желтый (левая рука), зеленый (левая нога),черный (правая нога) и грудной (присоска). Если начать с правой руки и двигаться по кругу, можно сказать, что получился светофор. Черный электрод обозначает “землю” и нужен только в целях безопасности для заземления, чтобы человека не ударило током при возможной поломке электрокардиографа.

Многоканальный портативный электрокардиограф . Все электроды и присоски отличаются по цвету и месту наложения.

2) Усиленные отведения от конечностей (предложены Гольдбергером в 1942 году). Используются те же самые электроды, что и для записи стандартных отведений, но каждый из электродов по очереди соединяет сразу 2 конечности, и получается объединенный электрод Гольдбергера. На практике запись этих отведений производится простым переключением рукоятки на одноканальном кардиографе (т.е. электроды переставлять не нужно).

aVR - усиленное отведение от правой руки (сокращение от augmented voltage right - усиленный потенциал справа). aVL - усиленное отведение от левой руки (left - левый) aVF - усиленное отведение от левой ноги (foot - нога)

3) Грудные отведения (предложены Вильсоном в 1934 году) записываются между грудным электродом и объединенным электродом от всех 3 конечностей. Точки расположения грудного электрода находятся последовательно по передне-боковой поверхности грудной клетки от средней линии тела к левой руке.

Слишком подробно не указываю, потому для неспециалистов это не нужно. Важен сам принцип (см. рис.). V1 - в IV межреберье по правому краю грудины. V2 V3 V4 - на уровне верхушки сердца. V5 V6 - по левой среднеподмышечной линии на уровне верхушки сердца.

Расположение 6 грудных электродов при записи ЭКГ .

12 указанных отведений являются стандартными . При необходимости “пишут” и дополнительные отведения:

    по Нэбу (между точками на поверхности грудной клетки),

    V7 - V9 (продолжение грудных отведений на левую половину спины),

    V3R - V6R (зеркальное отражение грудных отведений V3 - V6 на правую половину грудной клетки).

Значение отведений

Для справки : величины бывают скалярные и векторные. Скалярные величины имеют только величину (численное значение), например: масса, температура, объем. Векторные величины, или векторы, имеют как величину, так и направление ; например: скорость, сила, напряжённость электрического поля и т. д. Векторы обозначаются стрелочкой над латинской буквой.

Зачем придумано так много отведений ? ЭДС сердца - это вектор ЭДС сердца в трехмерном мире (длина, ширина, высота) с учетом времени. На плоской ЭКГ-пленке мы можем видеть только 2-мерные величины, поэтому кардиограф записывает проекцию ЭДС сердца на одну из плоскостей во времени.

Плоскости тела, используемые в анатомии .

В каждом отведении записывается своя проекция ЭДС сердца. Первые 6 отведений (3 стандартных и 3 усиленных от конечностей) отражают ЭДС сердца в так называемой фронтальной плоскости (см. рис.) и позволяют вычислять электрическую ось сердца с точностью до 30° (180° / 6 отведений = 30°). Недостающие 6 отведений для формирования круга (360°) получают, продолжая имеющиеся оси отведений через центр на вторую половину круга.

Взаимное расположение стандартных и усиленных отведений во фронтальной плоскости . Но на рисунке есть ошибка: aVL и III отведение НЕ находятся на одной линии. Ниже приведены правильные рисунки.

6 грудных отведений отражают ЭДС сердца в горизонтальной (поперечной) плоскости (она делит тело человека на верхнюю и нижнюю половины). Это позволяет уточнить локализацию патологического очага (например, инфаркта миокарда): межжелудочковая перегородка, верхушка сердца, боковые отделы левого желудочка и т. д.

При разборе ЭКГ используют проекции вектора ЭДС сердца, поэтому такой анализ ЭКГ называется векторным .

Примечание . Нижележащий материал может показаться очень сложным. Это нормально. При изучении второй части цикла вы к нему вернетесь, и станет намного понятнее.

Электрическая ось сердца (ЭОС)

Если нарисовать круг и через его центр провести линии, соответствующие направлениям трех стандартных и трех усиленных отведений от конечностей, то получим 6-осевую систему координат . При записи ЭКГ в этих 6 отведениях записывают 6 проекций суммарной ЭДС сердца, по которым можно оценить расположение патологического очага и электрическую ось сердца.

Формирование 6-осевой системы координат . Отсутствующие отведения заменяются продолжением уже имеющихся.

Электрическая ось сердца - это проекция суммарного электрического вектора ЭКГ-комплекса QRS (он отражает возбуждение желудочков сердца) на фронтальную плоскость. Количественно электрическая ось сердца выражаетсяуглом α между самой осью и положительной (правой) половиной оси I стандартного отведения, расположенной горизонтально.

Наглядно видно, что одна и та же ЭДС сердца в проекциях на разные отведения дает различные формы кривых.

Правила определения положения ЭОС во фронтальной плоскости такие: электрическая ось сердца совпадает с тем из 6 первых отведений, в котором регистрируются самые высокие положительные зубцы , иперпендикулярна тому отведению, в котором величина положительных зубцов равна величине отрицательных зубцов. Два примера определения электрической оси сердца приведены в конце статьи.

Варианты положения электрической оси сердца:

    нормальное : 30° > α < 69°,

    вертикальное : 70° > α < 90°,

    горизонтальное : 0° > α < 29°,

    резкое отклонение оси вправо : 91° > α < ±180°,

    резкое отклонение оси влево : 0° > α < −90°.

Варианты расположения электрической оси сердца во фронтальной плоскости.

В норме электрическая ось сердца примерно соответствует его анатомической оси (у худых людей направлена более вертикально от средних значений, а у тучных - более горизонтально). Например, при гипертрофии (разрастании) правого желудочка ось сердца отклоняется вправо. При нарушениях проводимости электрическая ось сердца может резко отклоняться влево или вправо, что само по себе является диагностическим признаком. Например, при полной блокаде передней ветви левой ножки пучка Гиса наблюдается резкое отклонение электрической оси сердца влево (α ≤ −30°), задней ветви - вправо (α ≥ +120°).

Полная блокада передней ветви левой ножки пучка Гиса . ЭОС резко отклонена влево (α ≅− 30°), т.к. самые высокие положительные зубцы видны в aVL, а равенство зубцов отмечается во II отведении, которое перпендикулярно aVL.

Полная блокада задней ветви левой ножки пучка Гиса . ЭОС резко отклонена вправо (α ≅ +120°), т.к. самые высокие положительные зубцы видны в III отведении, а равенство зубцов отмечается в отведении aVR, которое перпендикулярн

В дальнейшем будем представлять себе, что якорь разрезан по осевой плоскости и выпрямлен так, что пазы и обмотка якоря лежат в одной плоскости. Кроме того, будем предполагать, что такой развернутый якорь будет двигаться относительно неподвижных полюсов справа налево (рисунок 1, а ), а полюсы находятся над плоскостью чертежа. При этом электродвижущие силы в проводниках обмотки будут направлены под северными полюсами вниз, а под южными - вверх.

Шаг секции обычно определяется по элементарным пазам:

При этом y 1z = y 1 / u п, ε z = ε / u п. Очевидно, что для равносекционной обмотки y 1z есть целое число.

В секциях и во всей обмотке индуктируются переменные электродвижущие силы. Как известно, синусоидальные электродвижущие силы могут быть изображены на векторных диаграммах в виде векторов. Для изучения свойств якорных обмоток машин также целесообразно пользоваться подобными . Однако при этом ввиду несинусоидальной формы электродвижущих сил проводников, витков и секций обмотки якоря необходимо рассматривать только основные гармоники этих электродвижущих сил, то есть первую гармонику кривой вида рисунка 4, а , представленного в статье «Принцип действия машины постоянного тока ».

В кривой поля под полюсами B δ (рисунок 1, б ) можно выделить первую, или основную, гармонику B δ1 , которой равен двойному полюсному делению 2 × τ. Таким образом, в электромагнитном отношении дуга окружности машины, соответствующая 2 × τ, равна 360 градусам, которые называются электрическими (360° электрических).
Очевидно, что полная окружность якоря, или геометрический угол 360°, соответствует электрическому углу p × 360° электрических.

Рисунок 2. Схема (а ), звезда электродвижущих сил пазов (б ) и векторная диаграмма электродвижущей силы секции 1 ’ - 5 ’’ (в ) обмотки с Z = Z э = 18, 2 × p = 4

Различные пазы якоря располагаются относительно основной гармоники поля полюсов различным образом, и поэтому основные гармоники электродвижущих сил проводников различных пазов будут сдвинуты по вазе. Угол сдвига между электродвижущими силами проводников соседних пазов

(3)

Если вычертить векторы электродвижущих сил проводников всех пазов, то получим звезду пазовых электродвижущих сил. На рисунке 2, б изображена такая звезда при 2 × p = 4 и Z = 18, когда

Векторы рисунка 2, б вращаются с угловой скоростью

ω = 2 × π × f = 2 × π × p × n

против часовой стрелки, и их проекции на неподвижную ось времени равны мгновенным значениям электродвижущих сил. Обычно ось времени направлена вертикально вверх, и тогда в момент времени, изображенный на рисунке 2, а , электродвижущие силы проводников пазов 1 и 10 имеют максимальное положительное значение.

Звезда пазовых электродвижущих сил имеет Z векторов, но отдельные векторы могут совпадать по , и число лучей поэтому может быть меньше Z , так как при построении звезды и обходе векторов электродвижущих сил всех пазов совершается p полных оборотов. Если, например, Z / p = целому числу, то и число лучей равно этой величине, и диаграмма состоит из p совпадающих или накладывающихся друг на друга звезд.

Электродвижущие силы проводников витка или проводников двух сторон секции сдвинуты на угол

α с = y 1z × α,

который на основании выражений (1) и (3) составляет

(4)

При ε z = 0, то есть при полном шаге, векторы этих электродвижущих сил сдвинуты на 180°.

При Z = 18 и 2 × p = 4, что соответствует рисунку 2, а , шаг секций по формуле (1) будет

то есть можно взять y 1z = 5 или y 1z = 4. Возьмем y 1z = 4 (рисунок 2, а ), тогда по формуле (4)

α с = y 1z × α = 4 × 40° = 160°

и векторы электродвижущих сил проводников секции, находящейся в пазах 1 и 1 + 4 = 5, будут взаимно расположены так, как показано на рисунке 2, в .

На рисунке 2, в , а также на всех последующих рисунках с одним штрихом обозначены векторы сторон секций, лежащих в верхнем слое паза, а с двумя штрихами - векторы сторон в нижнем слое.

При построении звезды (рисунок 2, б ) для электродвижущих сил проводников всех пазов было принято одинаковое положительное направление (например, снизу вверх на рисунке 1, а ). Поэтому по контуру витка электродвижущие силы двух его составляющих проводников вычитаются, и для случая, показанного на рисунке 2, в , электродвижущая сила витка E в равна разности векторов 1’ и 5’’. В другом масштабе вектор E в на рисунке 2, в представляет собой также электродвижущую силу секции E с.

Будем присваивать секции номер того паза, в котором она лежит своей верхней стороной.

Очевидно, что векторы электродвижущих сил двух секций, лежащих в соседних пазах, сдвинуты относительно друг друга на такой же угол α, как и электродвижущие силы проводников двух соседних пазов. Поэтому звезда электродвижущих сил секций аналогична звезде пазовых электродвижущих сил на рисунке 2, б , но повернута относительно звезды электродвижущих сил сторон секций при укороченном шаге на угол α/2 = 40°/2 = 20° против часовой стрелки.

Применение векторных диаграмм для анализа свойств обмоток рассмотрено в следующих статьях.

Зубцовые пульсации электродвижущих сил

Зубчатое строение якоря способствует пульсации электродвижущих сил секций и электродвижущих сил обмотки в целом.

f z = Z × n

и как следствие пульсации электродвижущих сил с такой же частотой в обмотке. Во избежание этого выбирают Z / p равным нечетному числу. При этом сумма магнитных сопротивлений воздушных зазоров под двумя соседними полюсами при повороте якоря изменяться не будет и пульсации магнитного потока исчезнут.

Пульсации потока рассмотренного вида называются продольными. Кроме них, при движении якоря возникают также поперечные пульсации потока, выражающиеся в том, что ось магнитного потока полюсов в зазоре колеблется с частотой f z около среднего положения (рисунок 4, а и б ). Вследствие этого потокосцепление и ее электродвижущая сила пульсируют с той же частотой.

Эффективной мерой против влияния поперечных пульсаций потока является скос пазов относительно полюсного наконечника (рисунок 5) или скос полюсного наконечника относительно оси машины при нескошенных пазах на якоре. Скос пазов производится на 0,5 - 1,0 зубцового деления и применяется в машинах мощностью до 30 - 40 кВт. При скосе пазов снижается также шум машины.