Преобразование фурье интеграл фурье комплексная форма интеграла преобразование фурье косинус и синус преобразования амплитудный и фазовый спектры свойства приложения. Свойства преобразований фурье

Преобразование Фурье – это семейство математических методов, основанных на разложении исходной непрерывной функции от времени на совокупность базисных гармонических функций (в качестве которых выступают синусоидальные функции) различной частоты, амплитуды и фазы. Из определения видно, что основная идея преобразования заключается в том, что любую функцию можно представить в виде бесконечной суммы синусоид, каждая из которых будет характеризоваться своей амплитудой, частотой и начальной фазой.

Преобразование Фурье является основоположником спектрального анализа. Спектральный анализ – это способ обработки сигналов, который позволяет охарактеризовать частотный состав измеряемого сигнала. В зависимости от того, каким образом представлен сигнал, используют разные преобразования Фурье. Различают несколько видов преобразования Фурье:

– Непрерывное преобразование Фурье (в англоязычной литературе Continue Time Fourier Transform – CTFT или, сокращенно, FT );

– Дискретное преобразование Фурье (в англоязычной литературе Discrete Fourier Transform – DFT );

Быстрое преобразование Фурье (в англоязычной литературе Fast Fourier transform – FFT ).

Непрерывное преобразование Фурье

Преобразование Фурье является математическим инструментом, применяемым в различных научных областях. В некоторых случаях его можно использовать как средство решения сложных уравнений, описывающих динамические процессы, которые возникают под воздействием электрической, тепловой или световой энергии. В других случаях оно позволяет выделять регулярные составляющие в сложном колебательном сигнале, благодаря чему можно правильно интерпретировать экспериментальные наблюдения в астрономии, медицине и химии. Непрерывное преобразование фактически является обобщением рядов Фурье при условии, что период разлагаемой функции устремить к бесконечности. Таким образом, классическое преобразование Фурье имеет дело со спектром сигнала, взятым во всем диапазоне существования переменной.

Существует несколько видов записи непрерывного преобразования Фурье, отличающихся друг от друга значением коэффициента перед интегралом (две формы записи):

или

где и - Фурье-образ функцииили частотный спектр функции ;

- круговая частота.

Следует отметить, что разные виды записи встречаются в различных областях науки и техники. Нормировочный коэффициент необходим для корректного масштабирования сигнала из частотной области во временную. Нормировочный коэффициент уменьшает амплитуду сигнала на выходе обратного преобразования для того чтобы она совпадала с амплитудой исходного сигнала. В математической литературе прямое и обратное преобразование Фурье умножаются на множитель , в то время как в физике чаще всего при прямом преобразовании множитель не ставят, а при обратном ставят множитель . Если последовательно рассчитать прямое преобразование Фурье некоторого сигнала, а после взять обратное преобразование Фурье, то результат обратного преобразования должен полностью совпадать с исходным сигналом.

Если функция нечетная на интервале (−∞, +∞), то преобразование Фурье может быть представлено через синус-функцию:

Если функция четная на интервале (−∞, +∞), то преобразование Фурье может быть представлено через косинус-функцию:

Таким образом, непрерывное преобразование Фурье позволяет представить непериодическую функцию в виде интеграла функции, представляющей в каждой своей точке коэффициент ряда Фурье для непериодической функции.

Преобразование Фурье является обратимым, то есть если по функции был рассчитан ее Фурье-образ , то по Фурье-образу можно однозначно восстановить исходную функцию . Под обратным преобразованием Фурье понимают интеграл вида (две формы записи):

или

где - Фурье-образ функцииили частотный спектр функции ;

- круговая частота.

Если функция нечетная на интервале (−∞, +∞), то обратное преобразование Фурье может быть представлено через синус-функцию:

Если функция четная на интервале (−∞, +∞), то обратное преобразование Фурье может быть представлено через косинус-функцию:

В качестве примера, рассмотрим следующую функцию . График исследуемой экспоненциальной функции представлен ниже.

Поскольку функция является четной функцией, то непрерывное преобразование Фурье будет определяться следующим образом:

В результате получили зависимость изменения исследуемой экспоненциальной функции на частотном интервале (см. ниже).

Непрерывное преобразование Фурье используют, как правило, в теории при рассмотрении сигналов, которые изменяются в соответствии с заданными функциями, но на практике обычно имеют дело с результатами измерений, которые представляют собой дискретные данные. Результаты измерений фиксируются через равные промежутки времени с определённой частотой дискретизации, например, 16000 Гц или 22000 Гц. Однако в общем случае дискретные отсчёты могут идти неравномерно, но это усложняет математический аппарат анализа, поэтому на практике обычно не применяется.

Существует важная теорема Котельникова (в иностранной литературе встречается название «теорема Найквиста-Шеннона», «теорема отсчетов»), которая гласит, что аналоговый периодический сигнал, имеющий конечный (ограниченный по ширине) спектр (0…fmax), может быть однозначно восстановлен без искажений и потерь по своим дискретным отсчётам, взятым с частотой, большей или равной удвоенной верхней частоте спектра - частота дискретизации (fдискр >= 2*fmax). Другими словами, при частоте дискретизации 1000 Гц из аналогового периодического сигнала можно восстановить сигнал с частотой до 500 Гц. Следует отметить, что дискретизация функции по времени приводит к периодизации ее спектра, а дискретизация спектра по частоте приводит к периодизации функции.

Это одно из преобразований Фурье, широко применяемых в алгоритмах цифровой обработки сигналов.

Прямое дискретное преобразование Фурье ставит в соответствие временной функции , которая определена N-точками измерений на заданном временном интервале, другую функцию , которая определена на частотном интервале. Следует отметить, что функция на временном интервале задается с помощью N-отсчетов, а функция на частотном интервале задается с помощью K-кратного спектра.

k ˗ индекс частоты.

Частота k-го сигнала определяется по выражению

где T - период времени, в течение которого брались входные данные.

Прямое дискретное преобразование может быть переписано через вещественную и мнимую составляющие. Вещественная составляющая представляет собой массив, содержащий значения косинусоидальных составляющих, а мнимая составляющая представляет собой массив, содержащий значения синусоидальных составляющих.

Из последних выражений видно, что преобразование раскладывает сигнал на синусоидальные составляющие (которые называются гармониками) с частотами от одного колебания за период до N колебаний за период.

Дискретное преобразование Фурье имеет особенность, так как дискретная последовательность может быть получена суммой функций с различным составом гармонического сигнала. Другими словами, дискретная последовательность раскладывается на гармонические переменные – неоднозначно. Поэтому при разложении дискретной функции с помощью дискретного преобразования Фурье во второй половине спектра возникают высокочастотные составляющие, которых не было в оригинальном сигнале. Данный высокочастотный спектр является зеркальным отображением первой части спектра (в части частоты, фазы и амплитуды). Обычно вторая половина спектра не рассматривается, а амплитуды сигнала первой части спектра - удваиваются.

Следует отметить, что разложение непрерывной функции не приводит к появлению зеркального эффекта, так как непрерывная функция однозначно раскладывается на гармонические переменные.

Амплитуда постоянной составляющей является средним значением функции за выбранный промежуток времени и определяется следующим образом:

Амплитуды и фазы частотных составляющих сигнала определяются по следующим соотношениям:

Полученные значения амплитуды и фазы называют полярным представлением (polar notation). Результирующий вектор сигнала будет определяться следующим образом:

Рассмотрим алгоритм преобразования дискретно заданной функции на заданном интервале (на заданном периоде) с количеством исходных точек

Д искретное преобразование Фурье

В результате преобразования получаем вещественное и мнимое значение функции , которая определена на частотном диапазоне.

Обратное дискретное преобразование Фурье ставит в соответствие частотной функции , которая определена K-кратным спектром на частотном интервале, другую функцию , которая определена на временном интервале.

N ˗ количество значений сигнала, измеренных за период, а также кратность частотного спектра;

k ˗ индекс частоты.

Как уже было сказано, дискретное преобразование Фурье N-точкам дискретного сигнала ставит в соответствие N-комплексных спектральных отсчетов сигнала . Для вычисления одного спектрального отсчета требуется N операций комплексного умножения и сложения. Таким образом, вычислительная сложность алгоритма дискретного преобразования Фурье является квадратичной, другими словами требуется операций комплексного умножения и сложения.

1. Линейность. Преобразование Фурье относится к числу линейных интегральных операций, т.е. спектр суммы сигналов равен сумме спектров этих сигналов.

a n s n (t) ? a n S n (щ)

2. Свойства четности

Преобразования определяются косинусными (четными, действительными) и синусными (нечетными, мнимыми) частями разложения и подобием прямого и обратного преобразований.


  • 3. Изменение аргумента функции (сжатие или расширение сигнала) приводит к обратному изменению аргумента ее фурье-образа и обратно пропорциональному изменению его модуля.
  • 4. Теорема запаздывания. Запаздывание (сдвиг, смещение) сигнала по аргументу функции на интервал t o приводит к изменению фазочастотной функции спектра (фазового угла всех гармоник) на величину -щt o без изменения модуля (амплитудной функции) спектра.

5. Преобразование производной (дифференцирование сигнала):

s(t) = d/dt = d/dt =Y(щ) dщ= = jщ Y(щ) exp(jщt) dщ jщ Y(щ).

Таким образом, дифференцирование сигнала отображается в спектральной области простым умножением спектра сигнала на оператор дифференцирования сигнала в частотной области jщ, что эквивалентно дифференцированию каждой гармоники спектра. Умножение на jщ приводит к обогащению спектра производной сигнала высокочастотными составляющими (по сравнению с исходным сигналом) и уничтожает составляющие с нулевой частотой.


6. Преобразование интеграла сигнала в частотной области при известном спектре сигнала может быть получено из следующих простых соображений. Если имеет место s(t) = d/dt jщY(щ) = S(щ), то должна выполняться и обратная операция: y(t) =s(t) dt Y(щ) = S(щ)/jщ. Отсюда следует:

s(t)dt ? (1/j щ)S(щ).

Оператор интегрирования в частотной области (1/j щ) при щ >1 ослабляет в амплитудном спектре высокие частоты и при щ <1 усиливает низкие. Фазовый спектр сигнала смещается на -90 0 для положительных частот и на 90 0 для отрицательных.


7. Преобразование свертки сигналов y(t) = s(t) * h(t):

Y(щ) =y(t) exp(-jщt) dt =s(ф) h(t- ф) exp(-jщt) dфdt

Y(щ) =s(ф) d ф h(t- ф) exp(-jщt) dt.

По теореме запаздывания:

h(t- ф) exp(-jщt) dt = H(щ) exp(-jщt).

Y(щ) =H(щ) s(ф) exp(-jщ ф) dф= H(щ)·S(щ).

s(t) * h(t)?S(щ)H(щ).


Таким образом, свертка функций в координатной форме отображается в частотном представлении произведением фурье-образов этих функций.

8. Преобразование произведения сигналов y(t) = s(t)·h(t):

Y(?) =s(t) h(t) exp(-j?t) dt =s(t) [(1/2?)H(?") exp(j?"t) d?"] dt = (1/2?)s(t)H(?") exp(-j(?-?")t) d?"dt = (1/2?)H(?") d?"s(t) exp(-j(?-?")t) dt = (1/2?)H(?") S(?-?") d?" = (1/2?) H(?) * S(?).

Произведение функций в координатной форме отображается в частотном представлении сверткой фурье-образов этих функций.

9. Умножение сигнала на гармоническую функцию заполняет сигнал гармонической частотой и формирует радиоимпульс.


10. Спектры мощности. Если функция s(t) имеет фурье-образ S(?), то спектральная плотность мощности данной функции определяется выражениями:

w(t) = s(t) s*(t) = |s(t)| 2 |S(?)| 2 = S(?) S*(?) = W(?).

Спектр мощности - вещественная неотрицательная четная функция, которую очень часто называют энергетическим спектром. Спектр мощности, как квадрат модуля спектра сигнала, не содержит фазовой информации о частотных составляющих, а, следовательно, восстановление сигнала по спектру мощности невозможно. Это означает также, что сигналы с различными фазовыми характеристиками могут иметь одинаковые спектры мощности. В частности, сдвиг сигнала не отражается на его спектре мощности. математический метод преобразование фурье

11. Равенство Парсеваля. Полная энергия спектра сигнала:

E s =W(f)df=|S(f)| 2 df.

Так как координатное и частотное представление по существу только разные математические отображения одного и того же сигнала, то равной должна быть и энергия сигнала в двух представлениях, откуда следует равенство Парсеваля:

|s(t)| 2 dt =|S(f)| 2 df,

т.е. энергия сигнала равна интегралу модуля его частотного спектра - сумме энергий всех частотных составляющих сигнала.

Я полагаю что все в общих чертах знают о существовании такого замечательного математического инструмента как преобразование Фурье. Однако в ВУЗах его почему-то преподают настолько плохо, что понимают как это преобразование работает и как им правильно следует пользоваться сравнительно немного людей. Между тем математика данного преобразования на удивление красива, проста и изящна. Я предлагаю всем желающим узнать немного больше о преобразовании Фурье и близкой ему теме того как аналоговые сигналы удается эффективно превращать для вычислительной обработки в цифровые.

Без использования сложных формул и матлаба я постараюсь ответить на следующие вопросы:

  • FT, DTF, DTFT - в чем отличия и как совершенно разные казалось бы формулы дают столь концептуально похожие результаты?
  • Как правильно интерпретировать результаты быстрого преобразования Фурье (FFT)
  • Что делать если дан сигнал из 179 сэмплов а БПФ требует на вход последовательность по длине равную степени двойки
  • Почему при попытке получить с помощью Фурье спектр синусоиды вместо ожидаемой одиночной “палки” на графике вылезает странная загогулина и что с этим можно сделать
  • Зачем перед АЦП и после ЦАП ставят аналоговые фильтры
  • Можно ли оцифровать АЦП сигнал с частотой выше половины частоты дискретизации (школьный ответ неверен, правильный ответ - можно)
  • Как по цифровой последовательности восстанавливают исходный сигнал

Я буду исходить из предположения что читатель понимает что такое интеграл , комплексное число (а так же его модуль и аргумент), свертка функций , плюс хотя бы “на пальцах” представляет себе что такое дельта-функция Дирака . Не знаете - не беда, прочитайте вышеприведенные ссылки. Под “произведением функций” в данном тексте я везде буду понимать “поточечное умножение”

Начать надо, наверное, с того что обычное преобразование Фурье - это некая такая штука которая, как можно догадаться из названия, преобразует одни функции в другие, то есть ставит в соответствие каждой функции действительного переменного x(t) её спектр или фурье-образ y(w):

Если приводить аналогии, то примером аналогичного по смыслу преобразования может послужить например дифференцирование, превращающее функцию в её производную. То есть преобразование Фурье - такая же, по сути, операция как и взятие производной, и её часто обозначают схожим образом, рисуя треугольную “шапочку” над функцией. Только в отличие от дифференцирования которое можно определить и для действительных чисел, преобразование Фурье всегда “работает” с более общими комплексными числами. Из-за этого постоянно возникают проблемы с отображением результатов этого преобразования, поскольку комплексные числа определяются не одной, а двумя координатами на оперирующем действительными числами графике. Удобнее всего, как правило, оказывается представить комплексные числа в виде модуля и аргумента и нарисовать их по раздельности как два отдельных графика:

График аргумента комплексного значения часто называют в данном случае “фазовым спектром”, а график модуля - “амплитудным спектром”. Амплитудный спектр как правило представляет намного больший интерес, а потому “фазовую” часть спектра нередко пропускают. В этой статье мы тоже сосредоточимся на “амплитудных” вещах, но забывать про существование пропущенной фазовой части графика не следует. Кроме того, вместо обычного модуля комплексного значения часто рисуют его десятичный логарифм умноженный на 10. В результате получается логарифмический график, значения на котором отображаются в децибелах (дБ).

Обратите внимание что не очень сильно отрицательным числам логарифмического графика (-20 дБ и менее) при этом соответствуют практически нулевые числа на графике “обычном”. Поэтому длинные и широкие “хвосты” разнообразных спектров на таких графиках при отображении в “обычные” координаты как правило практически исчезают. Удобство подобного странного на первый взгляд представления возникает из того что фурье-образы различных функций часто необходимо перемножать между собой. При подобном поточечном умножении комплекснозначных фурье-образов их фазовые спектры складываются, а амплитудные - перемножаются. Первое выполняется легко, а второе - сравнительно сложно. Однако логарифмы амплитуды при перемножении амплитуд складываются, поэтому логарифмические графики амплитуды можно, как и графики фаз, просто поточечно складывать. Кроме того, в практических задачах часто удобнее оперировать не «амплитудой» сигнала, а его «мощностью» (квадратом амплитуды). На логарифмической шкале оба графика (и амплитуды и мощности) выглядят идентично и отличаются только коэффициентом - все значения на графике мощности ровно вдвое больше чем на шкале амплитуд. Соответственно для построения графика распределения мощности по частоте (в децибелах) можно не возводить ничего в квадрат, а посчитать десятичный логарифм и умножить его на 20.

Заскучали? Погодите, еще немного, с занудной частью статьи, объясняющей как интерпретировать графики, мы скоро покончим:). Но перед этим следует понять одну крайне важную вещь: хотя все вышеприведенные графики спектров были нарисованы для некоторых ограниченных диапазонов значений (в частности, положительных чисел), все эти графики на самом деле продолжаются в плюс и минус бесконечность. На графиках просто изображается некоторая “наиболее содержательная” часть графика, которая обычно зеркально отражается для отрицательных значений параметра и зачастую периодически повторяется с некоторым шагом, если рассматривать её в более крупном масштабе.

Определившись с тем, что же рисуется на графиках, давайте вернемся собственно к преобразованию Фурье и его свойствам. Существует несколько разных способов как определить это преобразование, отличающихся небольшими деталями (разными нормировками). Например в наших ВУЗах почему-то часто используют нормировку преобразования Фурье определяющую спектр в терминах угловой частоты (радианов в секунду). Я буду использовать более удобную западную формулировку, определяющую спектр в терминах обычной частоты (герцах). Прямое и обратное преобразование Фурье в этом случае определяются формулами слева, а некоторые свойства этого преобразования которые нам понадобятся - списком из семи пунктов справа:

Первое из этих свойств - линейность. Если мы берем какую-то линейную комбинацию функций, то преобразование Фурье этой комбинации будет такой же линейной комбинацией образов Фурье этих функций. Это свойство позволяет сводить сложные функции и их фурье-образы к более простым. Например, фурье-образ синусоидальной функции с частотой f и амплитудой a является комбинацией из двух дельта-функций расположенных в точках f и -f и с коэффициентом a/2:

Если взять функцию, состоящую из суммы множества синусоид с разными частотами, то согласно свойству линейности, фурье-образ этой функции будет состоять из соответствующего набора дельта-функций. Это позволяет дать наивную, но наглядную интерпретацию спектра по принципу “если в спектре функции частоте f соответствует амплитуда a, то исходную функцию можно представить как сумму синусоид, одной из которых будет синусоида с частотой f и амплитудой 2a”. Строго говоря, эта интерпретация неверна, поскольку дельта-функция и точка на графике - это совершенно разные вещи, но как мы увидим дальше, для дискретных преобразований Фурье она будет не так уж и далека от истины.

Второе свойство преобразования Фурье - это независимость амплитудного спектра от сдвига сигнала по времени. Если мы подвинем функцию влево или вправо по оси x, то поменяется лишь её фазовый спектр.

Третье свойство - растяжение (сжатие) исходной функции по оси времени (x) пропорционально сжимает (растягивает) её фурье-образ по шкале частот (w). В частности, спектр сигнала конечной длительности всегда бесконечно широк и наоборот, спектр конечной ширины всегда соответствует сигналу неограниченной длительности.

Четвертое и пятое свойства самые, пожалуй, полезные из всех. Они позволяют свести свертку функций к поточечному перемножению их фурье-образов и наоборот - поточечное перемножение функций к свертке их фурье-образов. Чуть дальше я покажу насколько это удобно.

Шестое свойство говорит о симметрии фурье-образов. В частности, из этого свойства следует что в фурье-образе действительнозначной функции (т.е. любого “реального” сигнала) амплитудный спектр всегда является четной функцией, а фазовый спектр (если его привести к диапазону -pi...pi) - нечетной. Именно по этой причине на графиках спектров практически никогда не рисуют отрицательную часть спектра - для действительнозначных сигналов она не дает никакой новой информации (но, повторюсь, и нулевой при этом не является).

Наконец последнее, седьмое свойство, говорит о том, что преобразование Фурье сохраняет “энергию” сигнала. Оно осмысленно только для сигналов конечной продолжительности, энергия которых конечна, и говорит о том, что спектр подобных сигналов на бесконечности быстро приближается к нулю. Именно в силу этого свойства на графиках спектров как правило изображают только “основную” часть сигнала, несущую в себе львиную долю энергии - остальная часть графика просто стремится к нулю (но, опять же, нулем не является).

Вооружившись этими 7 свойствами, давайте посмотрим на математику “оцифровки” сигнала, позволяющую перевести непрерывный сигнал в последовательность цифр. Для этого нам понадобится взять функцию, известную как “гребенка Дирака”:

Гребенка Дирака - это просто периодическая последовательность дельта-функций с единичным коэффициентом, начинающаяся в нуле и идущая с шагом T. Для оцифровки сигналов, T выбирают по возможности малым числом, T<<1. Фурье-образ этой функции - тоже гребенка Дирака, только с гораздо большим шагом 1/T и несколько меньшим коэффициентом (1/T). С математической точки зрения, дискретизация сигнала по времени - это просто поточечное умножение исходного сигнала на гребенку Дирака. Значение 1/T при этом называют частотой дискретизации:

Вместо непрерывной функции после подобного перемножения получается последовательность дельта-импульсов определенной высоты. При этом согласно свойству 5 преобразования Фурье, спектр получившегося дискретного сигнала есть свертка исходного спектра с соответствующей гребенкой Дирака. Несложно понять, что исходя из свойств свертки, спектр исходного сигнала при этом как бы “копируется” бесконечное число раз вдоль оси частот с шагом 1/T, а затем суммируется.

Заметим, что если исходный спектр имел конечную ширину и мы использовали достаточно большую частоту дискретизации, то копии исходного спектра не будут перекрываться, а следовательно и суммироваться друг с другом. Несложно понять что по подобному “свернутому” спектру будет легко восстановить исходный - достаточно будет просто взять компоненту спектра в районе нуля, “обрезав” лишние копии уходящие на бесконечность. Простейший способ это сделать - это домножить спектр на прямоугольную функцию, равную T в диапазоне -1/2T...1/2T и нулю - вне этого диапазона. Подобный Фурье-образ соответствует функции sinc (Tx) и согласно свойству 4, подобное умножение равнозначно свертке исходной последовательности дельта-функций с функцией sinc(Tx)



То есть с помощью преобразования Фурье мы получили способ легко восстановить исходный сигнал из дискретизированного по времени, работающий при условии что мы используем частоту дискретизации, по крайней мере вдвое (из-за наличия в спектре отрицательных частот) превышающую максимальную частоту присутствующую в исходном сигнале. Этот результат широко известен и называется “теорема Котельникова / Шеннона-Найквиста” . Однако, как несложно теперь (понимая доказательство) заметить, этот результат вопреки широко распространенному заблуждению определяет достаточное , но не необходимое условие для восстановления исходного сигнала. Все что нам требуется - это добиться того, чтобы интересующая нас часть спектра после дискретизации сигнала не накладывалась друг на друга и если сигнал достаточно узкополосный (имеет малую “ширину” ненулевой части спектра), то этого результата часто можно добиться и при частоте дискретизации намного ниже чем удвоенная максимальная частота сигнале. Подобная техника называется “undersampling” (субдискретизация, полосовая дискретизация) и довольно широко используется при обработке всевозможных радиосигналов. Например, если мы берем FM-радио действующее в полосе частот от 88 до 108 МГц, то для его оцифровки можно использовать АЦП с частотой всего 43.5 МГц вместо предполагающихся по теореме Котельникова 216 МГц. При этом, правда, понадобится качественный АЦП и хороший фильтр.

Замечу, что “дублирование” высоких частот частотами меньших порядков (алиасинг) - непосредственное свойство дискретизации сигнала, необратимо “портящее” результат. Поэтому если в сигнале в принципе могут присутствовать частоты высокого порядка (то есть практически всегда) перед АЦП ставят аналоговый фильтр, “отсекающий” все лишнее непосредственно в исходном сигнале (так как после дискретизации делать это уже будет поздно). Характеристики этих фильтров, как аналоговых устройств, неидеальны, поэтому некоторая “порча” сигнала при этом все равно происходит, и на практике из этого следует что наибольшие частоты в спектре, как правило, недостоверны. Чтобы уменьшить эту проблему, сигнал нередко сэмплируют с завышенной частотой дискретизации, ставя при этом входной аналоговый фильтр на меньшую полосу пропускания и используя только нижнюю часть теоретически доступного частотного диапазона АЦП.

Еще одно распространенное заблуждение, кстати, - это когда сигнал на выходе ЦАП рисуют “ступеньками”. “Ступеньки” соответствуют свертке дискретизированной последовательности сигналов с прямоугольной функцией ширины T и высоты 1:

Спектр сигнала при таком преобразовании умножается на фурье-образ этой прямоугольной функции, а у подобной прямоугольной функции это снова sinc(w), “растянутый” тем сильнее, чем меньше ширина соответствующего прямоугольника. Спектр дискретизированного сигнала при подобном “ЦАП” поточечно умножается на этот спектр. При этом ненужные высокие частоты с “лишними копиями” спектра обрезаются не полностью, а верхняя часть “полезной” части спектра, напротив, ослабляется.

На практике так, естественно, никто не делает. Существует много разных подходов к построению ЦАП, но даже в наиболее близких по смыслу ЦАП взвешивающего типа прямоугольные импульсы в ЦАП напротив выбираются по возможности короткими (приближающимися к настоящей последовательности дельта-функций) чтобы избежать излишнего подавления полезной части спектра. “Лишние” частоты в получившемся широкополосном сигнале практически всегда гасят, пропуская сигнал через аналоговый фильтр низких частот, так что «цифровых ступенек» нет ни «внутри» преобразователя, ни, тем более, на его выходе.

Однако вернемся обратно к преобразованию Фурье. Описанное выше преобразование Фурье, примененное к заранее дискретизированной последовательности сигналов называется преобразованием Фурье дискретного времени (DTFT). Спектр получаемый подобным преобразованием всегда 1/T-периодичен, поэтому спектр DTFT полностью определяется её значениями на отрезке }