Что такое силы упругости какова их природа. Применение силы упругости. Как рождается сила упругости

Виды деформаций.

Деформацией называют изменение формы, размеров или объема тела. Деформация может быть вызвана действием на тело приложенных к нему внешних сил.
Деформации, полностью исчезающие после прекращения действия на тело внешних сил, называют упругими , а деформации, сохраняющиеся и после того, как внешние силы перестали действовать на тело, - пластическими .
Различают деформации растяжения или сжатия (одностороннего или всестороннего), изгиба , кручения и сдвига .

Сила, возникающая в теле в результате его деформации и стремящаяся вернуть тело в исходное положение, называется силой упругости .

Сила упругости имеет электромагнитную природу.

Закон Гука: при упругих деформациях сила упругости прямо пропорциональна абсолютному удлинению тела.

F упр =- kΔl

F упр – сила упругости; k – коэффициент пропорциональности, называемый жесткостью; Δl – удлинение тела (изменение его длины).

Знак «минус» показывает, что сила упругости направлена противоположно деформации тела.

Закон Гука справедлив только для упругой деформации.

Деформация является упругой, если после прекращения действия сил, деформирующих тело, оно возвращается в исходное положение.

2..Колебательный контур. Свободные электромагнитные колебания. Затухание свободных колебаний. Формула Томсона.

Электромагнитные колебания - это колебания электрического и магнитного полей, которые сопровождаются периодическим изменением заряда, силы тока и напряжения. Простейшей системой, где могут возникнуть и существовать свободные электромагнитные колебания, является колебательный контур. Колебательный контур - это цепь, состоящая из катушки индуктивности и конденсатора (рис. 29, а). Если конденсатор зарядить и замкнуть на катушку, то по катушке потечет ток (рис. 29, б). Когда конденсатор разрядится, ток в цепи не прекратится из-за самоиндукции в катушке. Индукционный ток, в соответствии с правилом Ленца, будет иметь то же направление и перезарядит конденсатор (рис. 29, в). Процесс будет повторяться (рис. 29, г) по аналогии с колебаниями маятника.

Таким образом, в колебательном контуре будут происходить электромагнитные колебания

из-за превращения энергии электрического поля конденсатора () в энергию магнитного поля катушки с током (), и наоборот. Период электромагнитных колебаний в идеальном колебательном контуре (т. е. в таком контуре, где нет потерь энергии) зависит от индуктивности катушки и емкости конденсатора и находится по формуле Томсона . Частота с периодом связана обратно пропорциональной зависимостью .

В реальном колебательном контуре свободные электромагнитные колебания будут затухающими из-за потерь энергии на нагревание проводов. Для практического применения важно получить незатухающие электромагнитные колебания, а для этого необходимо колебательный контур пополнять электроэнергией, чтобы скомпенсировать потери энергии.

Силы в природе

Сила упругости

Деформация – это изменение размеров, формы и конфигурации тела в результате действия внешних или внутренних сил (от лат. deformatio – искажение).

Твердые тела имеют кристаллическую решетку, в которой атомы находятся на определенном равновесном расстоянии друг от друга. Эти атомы взаимодействуют друг с другом с помощью кулоновских электростатических сил. Если на твердое тело действует внешняя сжимающая сила, стремящаяся уменьшить расстояние между атомами кристаллической решетки, то электростатическое равновесие нарушается, и в результате появляется сила упругости, стремящаяся вернуть тело в начальное недеформированное состояние.

Сила упругости действует со стороны деформируемого тела на внешние тела и направлена так, чтобы уменьшить деформацию тела.

Существуют различные виды деформации твердых тел: деформация растяжения (сжатия), деформация сдвига, деформация изгиба, деформация кручения.

Если после снятия нагрузки твердое тело возвращается в исходное недеформированное состояние, то такая деформация называется упругой деформацией. Иначе деформация называется пластической деформацией.

Упругая деформация возможна лишь под действием относительно небольших сил.

А
бсолютным удлинением называется разность длин деформированного и недеформированного тела:

Закон Гука

При упругой деформации растяжения или сжатия под действием внешних сил возникает сила упругости, величина которой прямо пропорциональна деформации тела и направлена противоположно направлению перемещения частиц при деформации:


Знак минус в формуле имеет решающее физическое значение: сила упругости всегда направлена так, что стремится возвратить тело в недеформированное состояние. Иными словами, если внешняя сила растягивает тело, то возникающая при этом сила упругости стремится сжать тело. Наоборот, если внешняя сила сжимает тело, то сила упругости стремится растянуть тело

Размерность жесткости:

В системе СИ за единицу размерности жесткости - ньютон на метр (Н/м) - принята жесткость такой пружины, которая под действием силы упругости величиной 1 ньютон растягивается на 1 метр.

График зависимости силы упругости является для математика графиком прямой пропорциональности, то есть является прямой, проходящей через начало

координат.

Силой реакции опоры N называется сила упругости, действующая на данное тело со стороны опоры и направленная перпендикулярно одной из соприкасающихся поверхностей.

Силой натяжения нити T называется сила упругости, действующая на данное тело со стороны нити подвеса и направленная от тела по линии подвеса.


Вес тела

Весом тела называется сила, с которой тело действует на опору и натягивает нить подвеса.

Вес тела - это не какая-то новая сила. Просто термин "вес" исторически очень широко используется в обыденной жизни. С ним связана вся торговля с незапамятных времен.

В быту слова "вес" и "тяжесть" являются синонимами термина "масса", что для физики совершенно недопустимо.

Также нельзя путать термины "вес" и "сила тяжести". Вес - это сила упругости , а сила тяжести является гравитационной силой.

Кроме того, даже по величине вес тела зависит от ускорения опоры и лежащего на этой опоре тела.

Если опора и тело вертикально движутся с ускорением, то это ускорение создается силой тяжести и силой реакции опоры, которая по третьему закону Ньютона равна по величине и противоположна по направлению силе давления тела на опору (то есть весу тела):

И
з этого векторного уравнения следует:

1. Если тело и опора покоятся относительно некоторой инерциальной системы отсчета, то вес тела равен силе тяжести:

2. Если опора, на которой находится тело, движется с ускорением, направленным вверх, возникает перегрузка.

3. Если тело и опора свободно падают, то вес тела равен нулю (состояние невесомости).

Состояние невесомости испытывают все предметы в искусственном спутнике Земли.

Если подпрыгнуть, то после отрыва от земли и до момента соприкосновения с землей человек испытывает состояние невесомости.

Сила трения

Сила трения покоя

Сила трения покоя возникает между двумя покоящимися друг относительно друга поверхностями двух твердых тел и направлена так, чтобы препятствовать относительному перемещению трущихся поверхностей.

Величина и направление силы трения покоя заранее неизвестны. Их приходится определять, исходя из конкретных условий задачи.

Если на тело, лежащее на горизонтальной опоре, действует внешняя горизонтальная сила, стремящаяся сдвинуть трущиеся поверхности, то сила трения покоя по величине равна, а по направлению - противоположна этой внешней силе

Мы можем прикладывать значительное усилие, чтобы сдвинуть тяжелый шкаф. Он остается на месте, поскольку сила трения покоя шкафа о пол уравновешивает наше усилие.

Максимальная сила трения покоя

Величина силы трения покоя не может быть больше максимальной силы трения покоя, которая пропорциональна силе реакции опоры (силе давления), существующей между трущимися телами.

Если постепенно увеличивать внешнюю горизонтальную силу, то сила трения покоя будет также увеличиваться, компенсируя сдвигающее действие внешней силы, и тело будет оставаться в покое. Такое компенсирующее действие силы трения покоя возможно лишь до тех пор, пока она не достигнет своего максимального значения, определяемого коэффициентом трения поверхностей тела и опоры и силой давления тела на опору (или равной ей по величине силой реакции опоры). После этого тело под действием внешней силы начнет сдвигаться, и сила трения покоя сменится силой трения скольжения (см. рис).

На практике максимальное значение силы трения покоя немного больше силы трения скольжения.

Сила трения скольжения

Между двумя движущимися друг относительно друга соприкасающимися поверхностями возникают силы трения скольжения, величины которых пропорциональны силе реакции опоры:

Сила трения скольжения всегда направлена против относительного перемещения трущихся поверхностей.

Силой сопротивления (силой вязкого трения) называют силу трения, возникающую при движении в жидких (газообразных) средах.


Силой сопротивления также называют силу, действующую на тело внутри твердой преграды (например, на пулю, которая пробивает стенку).

Причины трения покоя и скольжения

В большинстве случаев трение обусловлено шероховатостью поверхностей соприкасающихся тел.

В процессе шлифовки и полировки поверхностей сила трения сначала уменьшается, а затем начинает увеличиваться.

Включается другой механизм: взаимное притяжение молекул соприкасающихся тел.

З
акон Архимеда

На тело, погруженное в жидкость, со стороны жидкости действует выталкивающая сила Архимеда, которая по величине равна весу вытесненной телом жидкости, а по направлению противоположна этому весу.

Для покоящейся жидкости величина силы Архимеда равна произведению плотности жидкости на ускорение свободного падения и на объем погруженной в жидкость части тела.

По своей природе сила Архимеда является силой упругости, возникающей в результате упругого сжатия жидкости под действием силы тяжести тела. Если сказать еще точней, то сила Архимеда - это равнодействующая всех сил давления, действующих со стороны жидкости на погруженное в нее тело.


Сила Архимеда существует не всегда. Если тело плотно прижать к дну банки так, чтобы между телом и дном не было воды, то сила давления жидкости на нижнюю грань тела исчезнет. Вместо выталкивающей силы на тело будут действовать сила давления на верхнюю грань, которая будет еще больше прижимать тело ко дну сосуда, и сила реакции опоры со стороны дна сосуда.

Условие плавания

Д
ля мореплавателей закон Архимеда является основным: только выталкивающая сила позволяет кораблю находиться на плаву и не тонуть.

На корабль действуют две силы: общая сила тяжести самого корабля и его груза и сила реакции воды, она же сила упругости, которая в этом случае носит специальное название - сила Архимеда. Условие плавания получается из условия равновесия корабля под действием этих двух сил.

Урок№10 10 класс Дата_____________

" Силы в природе. Сила упругости, трения "

Цель урока:

    Продолжить знакомить учащихся с силами всемирного тяготения, с основными проявлениями закона всемирного тяготения, дать понятие силы тяжести, веса тела, невесомости, выяснить природу сил упругости и трения, рассмотреть способы уменьшения и увеличения сил трения;

    научить учащихся находить информацию на заданную тему в различных источниках, сравнивать ее и критически осмысливать;

    учить учащихся выделять главное в информации и излагать ее в доступной для присутствующих в классе форме.

Тип урока: комбинированный.

Методы словесные, наглядные.

План урока.

    Организационный момент. Приветствие учащихся, проверка готовности к уроку.

    Постановка цели урока.

    Актуализация ранее изученного материала. Проверка знаний учащихся на начальном этапе урока

    Основной этап урока. Изучение нового материала.

    Закрепление материала

    Итоговый этап. Оценивание знаний учащихся. Домашнее задани

Ход урока:

Актуализация знаний: “Силы в природе”.

Бесконечно сложной кажется на первый взгляд картина взаимодействий в природе. Однако все их многообразие сводится к очень небольшому числу фундаментальных сил.

Что это за фундаментальные силы? Сколько их? Каким образом сводится к ним вся сложная картина связей в окружающем нас мире? Об этом мы и поговорим с вами на сегодняшнем уроке.

Рассмотрим понятие СИЛА в повседневной речи.

Почти в любом толковом словаре объяснению этого слова отводится едва ли не самое большое место.

В словаре В.Даля можно прочесть: “ сила – это источник, начало, основная причина всякого действия, движения, стремления, побуждения, всякой вещественной перемены в пространстве, или: “начало изменяемости мировых явлений”

А как вам нравится еще одно определение силы у того же В.Даля: “Сила – есть отвлеченное понятие общего свойства вещества, тел, ничего не объясняющее, а собирающее только все явления под одно общее понятие и название”.

Учащиеся обсуждают оба определения и высказывают свою точку зрения по данному вопросу.

Разнообразие смыслов, в которых употребляется слово “СИЛА”, поистине удивительно: здесь физическая сила и сила воли, лошадиная сила и сила убеждения, стихийные силы и силы страсти и т.д.

Но, может быть, словарь В.Даля устарел? Обратимся к словарю русского языка С.И.Ожегова, который составлен в 1953 году. Здесь мы не найдем вообще единого определения этого слова, зато увидим сразу десять различных толкований от “центробежной силы” до “силы привычки”, “силы возможности”.

Мы же с вами сегодня будем говорить о тех силах, которые являются предметом изучения в физике.

В механике в основу понимания силы легли ощущения, которые появляются у человека при поднимании груза, при приведении в движение окружающих тел и своего собственного тела. Объяснение искали метафизическое, как и многим другим явлениям и понятиям в те времена.

Подобно тому, - рассуждали ученые древности – как утомленный путник ускоряет шаги по мере приближения к дому, падающий камень начинает двигаться все быстрее и быстрее, приближаясь к матери – Земле. Как это ни странно для нас, движение живых организмов, например, кошки, казалось в те времена гораздо более простым и понятным, чем падение камня”.

[Лауэ “История физики”]

Только Галилею и Ньютону удалось целиком освободить понятие силы от “стремлений” и “желаний”.

Классическая механика Галилея и Ньютона стала колыбелью научного понимания слова “сила”.

Количественная мера воздействия тел друг на друга называется в механике силой.

Оказывается, несмотря на удивительное многообразие взаимодействий, в природе имеется не более четырех типов взаимодействий.

Какие же они? (Ответ учащихся о четырех типах взаимодействия)

Так уж устроен пытливый человеческий ум, что его привлекают необъяснимые явления, происходящие в природе.

Датский ученый Тихо Браге многие годы наблюдал за движением планет и накопил многочисленные данные, которые впоследствии и обработал его ученик Иоганн Кеплер , создавший законы движения планет вокруг Солнца. Но он не сумел объяснить причину движения планет. На этот вопрос сумел ответить Исаак Ньютон , используя законы движения планет Кеплера, сформулировавший общие законы динамики.

Ньютон предположил, что ряд явлений, казалось бы не имеющих ничего общего, (падение тел на Землю, обращение планет вокруг Солнца, движение Луны вокруг Земли, приливы и отливы и т.д.) вызваны одной причиной. Окинув единым взором “земное” и “небесное”, Ньютон предположил, что существует единый закон Всемирного тяготения, которому подвластны все тела Вселенной – от яблок до планет!

В чем же заключается суть закона Всемирного тяготения?

( Учащиеся рассказывают о силах всемирного тяготения и формулируют закон).

Следующие силы с которыми мы знакомы –это сила упругости и сила трения

1. Природа силы упругости

Вследствие каких-либо деформаций тела всегда возникают силы, препятствующие деформациям; эти силы направлены в сторону восстановления прежних форм и размеров тела, т.е. направлены противоположно деформації. их называют силами упругости.

Сила упругости - это сила, возникающая в результате деформации тела и направленная противоположно направлению смещения частиц в процессе деформации.

Любое тело состоит из частиц (атомов или молекул), а те, в свою очередь, состоят из положительного ядра и отрицательных электронов. Между заряженными частицами существуют силы электромагнитного притяжения и отталкивания. Если частицы находятся в состоянии равновесия, то силы притяжения и отталкивания урвновешивают друг друга.

В случае деформации тела происходят изменения во взаимном расположении частиц. Если расстояние между частицами увеличивается, то электромагнитные силы притяжения превышают силы отталкивания. Если же частицы сближаются, то преобладают силы отталкивания.

Силы, возникающие в результате изменения расположения частиц очень малы. Но вследствие деформации изменяется расположение очень большого количества частиц, поэтому равнодействующая всех сил уже является значительной. Это и есть сила упругости. Следовательно, сила упругости по своему происхождению - электромагнитная сила.

Механическое напряжение

Состояние упруго деформированного тела характеризуют физической величиной, называется механическим напряжением.

Будем растягивать с определенной силой металлический стержень. В любом сечении S деформированного стержня возникают силы упругости, которые препятствуют его разрыву.

Механическое напряжение σ - это физическая величина, которая характеризует деформированное тело и равен отношению модуля силы упругости Fnp к площади поперечного сечения тела S :

Единица механического напряжения в СИ - паскаль (Па).

Опыты показывают, что:

в случае незначительных упругих деформаций механическое напряжение пропорционально относительному удлинению:

Коэффициент пропорциональности Е называется модулем упругости, или модулем Юнга.

Модуль Юнга - это физическая величина, которая характеризует сопротивляемость материала упругой деформации растяжения или сжатия.

Поскольку относительное удлинение ε - безразмерная величина, то единица модуля Юнга в СИ - паскаль (Па).

Закон Гука

В 7 классе мы изучали закон Гука:

в пределах упругой деформации сила упругости прямо пропорциональна абсолютному удлинению пружины:

Жесткость пружины определяется по формуле:

Отсюда следует, что единица жесткости в системе СИ измеряется в Н/м.

Покажем, что выражение также является законом Гука, но в другой форме записи.

По определению, а относительное удлинение Тогда с учетом формулы получаем:

Отсюда:

где - коэффициент жесткости. Следовательно, коэффициент жесткости зависит от упругих свойств материала, из которого изготовлено тело, и его геометрических размеров.

Прямую пропорциональную зависимость между силой упругости и удлинением используют в динамометрах. Сила упругости часто работает в технике и природе: в часовых механизмах, в амортизаторах на транспорте, в канатах, тросах, в человеческих костях и мышцах т.д.

2 Сила трения

Жизнь – это движение!!!

Без каких сил невозможно движение? (Без сил трения.)

Что вы знаете об этой силе? (Рассказ о силе трения, о силе трения покоя, о силе трения скольжения.).

Еще один вид сил электромагнитного происхождения, с которыми имеют дело в механике, - это силы трения. Эти силы действуют вдоль поверхности тел при их непосредственном соприкосновении.

Главная особенность сил трения, отличающая их от сил упругости, состоит в том, что они зависят от скорости движения тел относительно друг друга.

Попробуем разобраться, от чего зависят силы трения.

Силы, действующие между поверхностями соприкасающихся твердых тел, называются силами трения.

Они всегда направлены по касательной к соприкасающимся поверхностям.

Различают: силу трения покоя, силу трения скольжения, силу трения качения.

Установлено, что F тр.пок > F тр. ск. ; F тр.ск.> F тр. кач. .

Сила трения не зависит от площади контактирующих поверхностей.

Сила трения зависит от вида соприкасающихся поверхностей. На более гладкой поверхности, сила трения меньше, чем на шероховатой.

Сила трения зависит от массы тела (силы реакции опоры), т.е. чем больше масса тела, тем больше сила трения.

При движении тела в жидкости или газе сила трения уменьшается. При медленном движении сила трения пропорциональна скорости движения; при быстром движении- квадрату силы трения.

Сила трения скольжения зависит от нормального давления (или силы реакции опоры), от состояния и вида поверхностей (описываются коэффициентом трения скольжения), что в итоге приводит к следующему закону для силы трения F N .

Трение сопровождает нас повсюду. В одних случаях оно полезно, и мы стараемся его увеличить. В других – вредно, и мы ведем с ним борьбу.

Привести примеры полезного и вредного трения и методы борьбы с ним.

Закрепление

1. Чтобы растянуть пружину на 2 см, нужно приложить силу в 10 Н. Какую силу нужно приложить, чтобы растянуть пружину на 6 см? на 10 см?

2. Вычислите массу груза, висящего на пружине жесткостью 100 Н/м, если удлинение пружины равно 1 см?

3. Вследствие сжатия буферной пружины на 3 см возникает сила упругости 6 кН. На сколько вырастет эта сила, если сжать пружину еще на 2 см?

Подведём итог

Положение с силами в механике вряд ли можно назвать блестящим. Остается не до конца выясненным вопрос о том, вследствие каких физических процессов появляются те или иные силы. Это понимал и Исаак Ньютон . Ему принадлежат слова: “ Я не знаю, чем я кажусь миру; мне же самому кажется, что я был только мальчиком, играющим на берегу моря и развлекающимся тем, что время от времени находил более гладкий камушек или более красивую раковину, чем обыкновенно, в то время как великий океан истины лежал передо мной совершенно неразгаданный…”

[И.Ньютон]

Как вы понимаете слова Ньютона?

О каком океане истины идет речь в его словах?

Итог урока

    Что нового вы узнали сегодня на уроке?

    Какова особенность силы трения?

    Как зависит сила сопротивления от скорости движения тела?

    Какая деформация называется упругой?

    Какие силы являются следствием деформации тела?

    Сколько же различных типов сил существует в природе?

Домашнее задание: создать проект на тему “ Силы в природе”, включив в неё презентацию о силах.

Транскрипт

1 Силы упругости Силы в природе

2 Цели и задачи урока: Образовательные: актуализировать имеющиеся у учащихся знания о строении вещества, на основе которых, познакомить с принципом плотной упаковки атомов твёрдого тела; сформировать у учащихся устойчивые представления о природе возникновения силы упругости, силах межатомного взаимодействия; ввести понятия деформации, видов деформации, удлинения, жёсткости; познакомить с формулировкой и алгебраической записью закона Гука, а так же с видами движения тела под действием силы упругости; выработать умение записывать, анализировать закон Гука и другие закономерности, производить алгебраические преобразования величин и единиц измерения; по - возможности, самостоятельно определять порядок действий, составлять план практической деятельности, выполнять его; сформировать навыки измерения физических величин (k) косвенным методом на основе прямых измерений нескольких величин (Fупр и X).

3 Цели и задачи урока: Воспитательные: показать взаимосвязь процессов макро- и микромира; продолжить формирование единой естественно научной картины мира на основе объяснения законами физики процессов и явлений окружающей нас действительности, целостной системы знаний по теме «силы в природе», Развивающие: развивать логическое мышление, умение планировать свою работу обобщать и делать выводы, используя новую информацию и имеющийся жизненный опыт, а так же умение рефлексировать; развивать навыки практической работы; развивать способности к диалогу и сотрудничеству в мини группах.

4 В твердых телах аморфных и кристаллических частицы (молекулы, атомы, ионы) совершают тепловые колебания около положений равновесия, в которых энергия их взаимодействия минимальна. При увеличении расстояния между частицами возникают силы притяжения, а при уменьшении силы отталкивания. Силы взаимодействия между частицами обусловливают механические свойства твердых тел.

5 Знакомы ли вы с понятием силы? Как давно? Ещё много раз вы будете его слышать, употреблять и не только на уроке, но и в жизни. Дальнейшее изучение физики без понятия «сила» невозможно! Сегодня мы выясним, как много различных сил в окружающем нас мире, и подробно остановимся на законах и природе силы упругости. Когда она возникает? Какое значение она имеет для человека? Как можно её измерить и вычислить? Часто ли мы встречаемся в жизни с проявлениями силы упругости? Вы поймёте, что наблюдали неоднократно действие этой силы, пользовались приборами, устройство которых основано на действии силы упругости.

6 Сила упругости имеет электромагнитную природу, являясь макроскопическим проявлением межмолекулярного взаимодействия.

7 Силы упругости являются следствием деформации, возникающей при контакте тел. На карандаш, лежащий на столе, действует сила тяжести, однако, он остаётся неподвижным, и значит, на него действует сила упругости чуть-чуть деформированного им стола, направленная вертикально вверх и равная по величине силе тяжести карандаша. Если на то же место стола поставить монитор компьютера, то деформацию поверхности стола можно будет заметить и на глаз. Си ла упруѓости сила, возникающая при деформации тела и противодействующая этой деформации.

9 На линейку ставим тело. Почему прогибается линейка? А почему через некоторое время прогиб останавливается? Где возникает сила упругости в случае? Какой можно сделать вывод? Сила упругости возникает при деформациях! Когда мы говорим, что тело деформировано? Деформация это изменение формы и размеров тел. Если убрать тело, которое находится на линейке линейка принимает первоначальное положение. Если убрать из пружины пружина тоже возвращается в первоначальное состояние. Например: если взять кусок пластилина и подействовать силой (нажимом), то пластилин изменяет свою форму, если прекратили действие пластилин будет сохранять измененную форму. Применяют при обработке металлов ковке, штамповке, при кепке из пластилина, глины. Очень многие ученые занимались изучением деформации, но только английскому ученому Гуку удалось установить закон для упругих деформаций.

10 ГУК (Hooke), Роберт 18 июля 1635 г. 3 марта 1703 г. Английский естествоиспытатель Роберт Гук родился во Фрешуотере, графство Айл-оф- Уайт (остров Уайт) в семье священника местной церкви. В 1653 г. поступил в Крайст-Чёрч-колледж Оксфордского университета, где впоследствии стал ассистентом Р. Бойля. В 1662 г. был назначен куратором экспериментов при только что основанном Королевском обществе; член Лондонского королевского общества с 1663 г. С 1665 г. профессор Лондонского университета, в гг. секретарь Лондонского Королевского общества.

11 Разносторонний учёный и изобретатель, Гук затронул в своих работах многие разделы естествознания. В 1659 г. построил воздушный насос, совместно с Х. Гюйгенсом установил (около 1660 г.) постоянные точки термометра таяния льда и кипения воды. Усовершенствовал барометр, зеркальный телескоп, применил зрительную трубу для измерения углов, сконструировал прибор для измерения силы ветра, машину для деления круга и другие приборы.

12 К концу жизни Р. Гук сделал около 500 научных и технических открытий, включая закон упругости, конический маятник, спиртовой уровень, морской барометр и футшток. Они составляют основу современной науки, но по разным причинам приписываются другим людям. В силу особенностей характера и из-за чрезвычайно широкого круга интересов Гук часто не доводил свои открытия до конца и утрачивал приоритет, по поводу которого ему приходилось часто спорить с Ньютоном.

13 Виды деформаций: - растяжение (тросы, цепи); - сжатие (колонны, стены); - сдвиг (болты, заклёпки); - кручение (гайки, валы, оси); - изгиб (мосты, балки). Cилы, создавая давление, либо растяжение, могут изменять форму тела, например, длину пружины. Силы служат причиной либо ускорения тела (динамическое действие), либо изменение его формы (статическое действие).

14 ДЕФОРМАЦИЯ Деформация - изменение объема или формы тела. Виды деформаций: сжатие, растяжение, изгиб, кручение и др.

15 Некоторые виды деформаций твердых тел: 1 деформация растяжения;2 деформация сдвига; 3 деформация всестороннего сжатия

16 Деформация растяжения Деформация растяжения вид деформации, при которой нагрузка прикладывается продольно от тела, то есть соосно или параллельно точкам крепления тела. Проще всего растяжение рассмотреть на буксировочном тросе для автомобилей. Трос имеет две точки крепления к буксиру и буксируемому объекту, по мере начала движения трос выпрямляется и начинает тянуть буксируемый объект. В натянутом состоянии трос подвергается деформации растяжения, если нагрузка меньше предельных значений, которые может он выдержать, то после снятия нагрузки трос восстановит свою форму.

17 Деформация сжатия Деформация сжатия вид деформации, аналогичный растяжению, с одним отличием в способе приложения нагрузки, ее прикладывают соосно, но по направлению к телу. Сдавливание объекта с двух сторон приводит к уменьшению его длины и одновременному упрочнению, приложение больших нагрузок образовывает в теле материала утолщения типа «бочка».

18 Деформация сдвига Деформация сдвига вид деформации, при котором нагрузка прикладывается параллельно основанию тела. В ходе деформации сдвига одна плоскость тела смещается в пространстве относительно другой. На предельные нагрузки сдвига испытываются все крепежные элементы болты, шурупы, гвозди. Простейший пример деформации сдвига расшатанный стул, где за основание можно принять пол, а за плоскость приложения нагрузки сидение.

19 Деформация изгиба Деформация изгиба вид деформации, при котором нарушается прямолинейность главной оси тела. Деформации изгиба испытывают все тела подвешенные на одной или нескольких опорах. Каждый материал способен воспринимать определенный уровень нагрузки, твердые тела в большинстве случаев способны выдерживать не только свой вес, но и заданную нагрузку. В зависимости от способа приложения нагрузки при изгибе различают чистый и косой изгиб.

20 Деформация кручения Деформация кручения вид деформации, при котором к телу приложен крутящий момент, вызванный парой сил, действующих в перпендикулярной плоскости оси тела. На кручение работают валы машин, шнеки буровых установок и пружины.

21 В качестве примера рассмотрим деформацию (растяжение или сжатие) упругой пружины. Под действием приложенной к пружине силы, равной весу подвешенного груза, пружина деформируется (т.е. ее длина увеличится на величину "х"). Возникает сила, противодействующая деформации -сила упругости. Сила упругости приложена к телу, вызывающему деформацию (к грузу). Сила упругости растянутой пружины уравновешивает силу тяжести, действующую на груз. Сила упругости возникает только при деформации тела. При исчезновении деформации тела исчезает и сила упругости.

23 Вид деформации Растяжения Сжатия Кручения Изгиба Сдвига Упругая Пластичная Признаки увеличивается расстояние между молекулярными слоями. уменьшается расстояние между молекулярными слоями. поворот одних молекулярных слоев относительно других. одни молекулярные слои растягиваются, а другие сжимаются или растягиваются, но меньше первых. одни слои молекул сдвигаются относительно других. после прекращения воздействия тело полностью вос-станавливает первоначальную форму и размеры. после прекращения воздействия тело не восстанавливает первоначальную форму или размеры.

24 ЗАКОН ГУКА Сила упругости прямо пропорциональна величине деформации. Закон Гука справедлив при малых (упругих) деформациях тел. Модуль силы Гука: F упр = k x где k -коэффициент упругости или жесткость пружины (ед.изм. в СИ - 1 Н/м) х - удлинение пружины или величина деформации пружины (ед.изм. в СИ - 1м) Fупр - сила упругости (ед.изм. в СИ - 1Н)

27 Пластическая и упругая деформация В процессе деформации важное значение имеет величина межатомных связей, приложение нагрузки достаточной для их разрыва приводит к необратимым последствиям (необратимая или пластическая деформация). Если нагрузка не превысила допустимых значений, то тело может вернуться в исходное состояние (упругая деформация). Простейший пример поведения предметов, подверженных пластической и упругой деформацией, можно проследить на падении с высоты резинового мяча и куска пластилина. Резиновый мяч обладает упругостью, поэтому при падении он сожмется, а после превращения энергии движения в тепловую и потенциальную, снова примет первоначальную форму. Пластилин обладает большой пластичностью, поэтому при ударе о поверхность оно необратимо утратит свою первоначальную форму.

29 Разновидностями сил упругости являются: - сила натяжения; направлена вдоль нити. - сила реакции опоры (со стороны опоры на тело); - сила нормального давления (со стороны тела на опору); направлены перпендикулярно поверхности

31 Вопросы «Мозаики». 1.Что такое деформация? 2.Какую деформацию называют упругой? 3.Какую деформацию называют пластической? 4.Перечислите виды деформаций. 5.Что происходит с телом при сжатии? 6.Что происходит с телом при растяжении? 7.Что происходит с телом при деформации изгиба? 8.Какую деформацию испытывают зубья пилы?

32 Вопросы «Мозаики». 9.Какую деформацию испытывает винт мясорубки? 10.Какую деформацию испытывают фундамент и стены домов? 11.Что происходит, если механическое напряжение в материале превышает предел прочности? 12.Для каких деформаций выполняется закон Гука? 13.Почему при упругих деформациях тело возвращается в исходное состояние? 14.Какие силы возникают в деформированном теле?


Лекция 16 Силы упругости. Упругие свойства твердых тел. Закон Гука для разных деформаций. Модули упругости, коэффициент Пуассона. Диаграмма напряжений. Упругий гистерезис. Потенциальная энергия упругой

ЛАБОРАТОРНАЯ РАБОТА М-8 ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА И МОМЕНТА ИНЕРЦИИ МЕТОДОМ КОЛЕБАНИЙ Цель работы: определение модуля сдвига и момента инерции диска методом крутильных колебаний. Приборы и принадлежности:

ЛАБОРАТОРНАЯ РАБОТА 1.17 ЗАКОН ГУКА ЦЕЛЬ РАБОТЫ Экспериментально проверить справедливость закона Гука для упругих материалов различных видов. ЗАДАЧИ 1. Измерить удлинения l пружины 1 и пружины 2 в зависимости

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ КАЗАНСКАЯ ГОСУДАРСТВЕННАЯ АРХИТЕКТУРНО-СТРОИТЕЛЬНАЯ АКАДЕМИЯ Кафедра физики МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЛАБОРАТОРНЫМ РАБОТАМ ПО ФИЗИКЕ для студентов специальностей

Экзаменационный билет 1 1. Реальный объект и расчетная схема. Силы внешние и внутренние. Метод сечений. Основные виды нагружения бруса. 2. Понятие об усталостной прочности. Экзаменационный билет 2 1. Растяжение

Лабораторная работа Изучение деформации растяжения. Цель: Приборы и оборудование: прибор для изучения деформации растяжения; индикатор часового типа 0-10 мм; микрометр; линейка измерительная; стальная

Лабораторная работа «ИЗУЧЕНИЕ УПРУГИХ СВОЙСТВ МАТЕРИАЛОВ» Цель работы: Определение модуля упругости материалов. Принадлежности: Установка для изучения упругих свойств материалов, образцы, линейка, микрометр,

Тема 4. Силы в природе 1. Многообразие сил в природе Не смотря на кажущееся разнообразие взаимодействий и сил в окружающем мире, существует всего ЧЕТЫРЕ типа сил: 1 тип - ГРАВИТАЦИОННЫЕ силы (иначе - силы

Методические указания к выполнению лабораторной работы 1.6 ОПРЕДЕЛЕНИЕ МОДУЛЯ ЮНГА * * Аникин А.И. Механика: методические указания к выполнению лабораторных работ по физике. Архангельск: Изд-во АГТУ, 2008.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» УТВЕРЖДАЮ Проректор-директор

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра физики УПРУГИЕ

Лекция 8. Теория упругости 8.. Закон Гука и принцип суперпозиции 8.. Однородная деформация. Всестороннее сжатие 8.3.Однородная деформация. Сдвиг 8.4. Деформация зажатого бруска 8.5. Продольный звук 8.6.

КРУТИЛЬНЫЕ КОЛЕБАНИЯ МОДУЛЬ КРУЧЕНИЯ И МОДУЛЬ СДВИГА Цель работы: изучить деформацию кручения и проверить выполнимость закона Гука при этой деформации Задачи: - определить модуль кручения стального стержня,

Лабораторная работа 5 ОПРЕДЕЛЕНИЕ МОДУЛЯ ЮНГА Приборы и материалы: проволока, закрепленная на кронштейне; грузы для растяжения проволоки; индикатор, микрометр; рулетка. Краткая теория Всякое твердое тело

Лабораторная работа 14 Деформация твердого тела. Определение модуля Юнга Приборы и принадлежности: исследуемая проволока, набор грузов, два микроскопа Теоретические сведения Изменение формы твердого тела

Лабораторная работа Определение модуля сдвига и момента инерции вращающегося твердого тела при помощи утильного маятника Цель работы: Ознакомиться с деформациями сдвига, учения и методами определения модуля

МЕТОДИЧЕСКИЕ УКАЗАНИЯ 1 ТЕМА Введение. Инструктаж по технике безопасности. Входной контроль. ВВЕДЕНИЕ В ПРАКТИЧЕСКИЕ ЗАНЯТИЯ ПО КУРСУ «ПРИКЛАДНАЯ МЕХЕНИКА». ИНСТРУКТАЖ ПО ПОЖАРО- И ЭЛЕКТРОБЕЗОПАСНОСТИ.

Взаимодействие тел (тема «Силы») Вариант 1 1. Какое явление происходит с резиновым жгутом, когда, взяв его за концы, разводят руки в стороны? а) Деформация сжатия. в) Деформация растяжения. б) Деформация

Методические указания к выполнению лабораторной работы.5 ОПРЕДЕЛЕНИЕ ЖЕСТКОСТИ ПРУЖИНЫ И СИСТЕМЫ ПРУЖИН * * Аникин А.И. Механика: методические указания к выполнению лабораторных работ по физике. Архангельск:

43 МЕХАНИЧЕСКИЕ СВОЙСТВА БИОЛОГИЧСКИХ ТКАНЕЙ. ФИЗИЧЕСКИЕ ВОПРОСЫ ГЕМОДИНАМИКИ Задание 1. Выберите правильный ответ: 1. Деформацией называется.... а) изменение взаимного положения тел; б) изменение взаимного

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УТВЕРЖДАЮ Декан ЕНМФ Ю.И. Тюрин 2007 г. ОПРЕДЕЛЕНИЕ

Н.А.Кормаков 1 9 класс Содержание БЛОК - 2 Блок - 2 Механические колебания и волны. Звук Содержание опорного конспекта Стр. Параграф учебника Лист -2 вопросов ОК 9.2.16 24 23,25 1-4 1.Колебательное движение

Физика. 9 класс. Тренинг «Инерция. Законы Ньютона. Силы в механике» 1 Инерция. Законы Ньютона. Силы в механике Вариант 1 1 Металлический брусок подвешен к пружине и целиком погружён в сосуд с водой, находясь

Кузьмичев Сергей Дмитриевич 2 СОДЕРЖАНИЕ ЛЕКЦИИ 10 Элементы теории упругости и гидродинамики. 1. Деформации. Закон Гука. 2. Модуль Юнга. Коэффициент Пуассона. Модули всестороннего сжатия и одностороннего

Лекция 6 http://www.supermetalloved.narod.ru Нагрузки, напряжения и деформации. Механические свойства. 1. Физическая природа деформации металлов. 2. Природа пластической деформации. 3. Дислокационный механизм

МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН ТАШКЕНТСКИЙ ХИМИКО-ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ Кафедра: «Машины и оборудование пищевой промышленности основы механики» РЕФЕРАТ

Сила тяжести СИЛА, с которой Земля притягивает все находящиеся на ней тела называется силой тяжести. Направление силы тяжести - вертикаль в данной точке земной поверхности. Вес тела и сила тяжести Модуль

ЛАБОРАТОРНАЯ РАБОТА 4 ИЗМЕРЕНИЕ МОМЕНТОВ ИНЕРЦИИ И МОДУЛЯ СДВИГА ТВЕРДЫХ ТЕЛ МЕТОДОМ КРУТИЛЬНЫХ КОЛЕБАНИЙ Цель работы: 1. Изучить динамику и кинематику крутильных колебаний.. Измерить моменты инерции твердых

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» Кафедра «Проектирование и управление в технических системах» МЕТОДИЧЕСКИЕ

И. В. Яковлев Материалы по физике MathUs.ru Энергия Темы кодификатора ЕГЭ: работа силы, мощность, кинетическая энергия, потенциальная энергия, закон сохранения механической энергии. Мы приступаем к изучению

Контрольные вопросы по сопротивлению материалов 1. Основные положения 2. Каковы основные гипотезы, допущения и предпосылки положены в основу науки о сопротивлении материалов? 3. Какие основные задачи решает

Методическая разработка открытого урока по предмету: «Физика» Субханкулова Римма Ахметовна, преподаватель физики, высшей квалификационной категории ГАПОУ «БНК» г. Бугуруслана Оренбургской области. Тема:

1.1. Механическое движение. Траектория. Путь. Перемещение. Механическим движением тела называют изменение его положения в пространстве относительно других тел с течением времени. Поступательное движение

МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ухтинский государственный технический университет» (УГТУ) 7 Определение модуля

1 Пояснительная записка Рабочая программа по физике для 7 класса составлена на основе «Примерной программы основного общего образования по физике. 7-9 классы» под редакцией В. А. Орлова, О. Ф. Кабардина,

Лабораторная работа 8 ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ ТВЕРДОГО ТЕЛА МЕТОДОМ КРУТИЛЬНЫХ КОЛЕБАНИЙ Цель работы изучение колебательного движения на примере крутильного маятника, определение момента инерции твердого

Рабочая программа по физике для 7 класса Пояснительная записка Рабочая программа по физике для 7 класса составлена на основе программы: Е.М.Гутник, А.В.Перышкин. Физика. 7-9 классы. М.: Дрофа, 202 год.

Динамика 008.Сила, возникающая между приводным ремнем и шкивом при его движении, является силой А) натяжения. В) трения скольжения. С) трения качения. D) упругости. Е) трения покоя.. Равнодействующая трех

Аннотация к рабочей программе по физике для 9 класса МБОУ «Средняя общеобразовательная школа 35 с углубленным изучением отдельных предметов» Приволжского района города Казани (общеобразовательный уровень)

1.5. Механические колебания и волны Основные законы и формулы Колебания, при которых физические величины, которые их описывают (например, отклонение от положения равновесия, скорость, ускорение и т.д.),

Лекция 4 Тема: Динамика материальной точки. Законы Ньютона. Динамика материальной точки. Законы Ньютона. Инерциальные системы отсчета. Принцип относительности Галилея. Силы в механике. Сила упругости (закон

1 Физические явления и законы Ответами к заданиям являются слово, словосочетание, число или последовательность слов, чисел. Запишите ответ без пробелов, запятых и других дополнительных символов. Два тела

Лабораторная работа 5 Определение модуля сдвига по крутильным колебаниям Целью работы является изучение деформации сдвига и кручения, определение модуля сдвига металлического стержня. Краткая теория Модуль

Федеральное агентство по образованию РФ Ухтинский государственный технический университет 7 Определение модуля сдвига методом кручения Методические указания к лабораторной работе для студентов всех специальностей

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ»

Работа 1. Определение скорости распространения упругих продольных волн по времени соударения стержней Оборудование: установка, стержни, электронный счетчик-секундомер, линейка. Введение Процесс распространения

Теория деформированного состояния Понятие о тензоре деформаций, главные деформации Обобщенный закон Гука для изотропного тела Деформация объема при трехосном напряженном состоянии Потенциальная энергия

3. СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ 3.2. Осевое растяжение-сжатие. Растяжением или сжатием называют такой вид деформации бруса (стержня), при котором в его поперечных сечениях возникает только один внутренний

КАРТА СХЕМА ПРОРАБОТКИ ТЕМЫ КОЛЕБАТЕЛЬНОЕ ДВИЖЕНИЕ ОБЩИЕ ПОНЯТИЯ О КОЛЕБАНИЯХ 1. Определение колебаний. Виды колебаний Гармонические колебания: уравнение, амплитуда, фаза, частота, период. КИНЕМАТИКА ГАРМОНИЧЕСКИХ

12 Лекция 2. Динамика материальной точки. гл.2 План лекции 1. Законы Ньютона. Основное уравнение динамики поступательного движения. 2. Виды взаимодействий. Силы упругости и трения. 3. Закон Всемирного

Продолжаем обзор некоторых теми из раздела «Механика». Наша сегодняшняя встреча посвящена силе упругости.

Именно эта сила лежит в основе работы механических часов, её воздействию подвергаются буксирные канаты и тросы подъемных кранов, амортизаторы автомобилей и железнодорожных составов. Её испытывает мяч и теннисный шарик, ракетка и другой спортивный инвентарь. Как возникает эта сила, и каким закономерностям подчиняется?

Как рождается сила упругости

Метеорит под действием земного тяготения падает на землю и… замирает. Почему? Разве земное тяготение исчезает? Нет. Сила не может исчезнуть просто так. В момент соприкосновения с землей уравновешивается другой силой равной ей по величине и противоположной по направлению. И метеорит, как и другие тела на поверхности земли, остается в покое.

Этой уравновешивающей силой является сила упругости.

Такие же упругие силы появляются в теле при всех видах деформации:

  • растяжения;
  • сжатия;
  • сдвига;
  • изгиба;
  • кручения.

Силы, возникающие в результате деформации, называются упругими.

Природа силы упругости

Механизм возникновение сил упругости удалось объяснить лишь в XX веке, когда была установлена природа сил межмолекулярного взаимодействия. Физики назвали их «гигантом с короткими руками». Каков смысл этого остроумного сравнения?

Между молекулами и атомами вещества действуют силы притяжения и отталкивания. Такое взаимодействие обусловлено, входящими в их состав мельчайших частиц, несущих положительные и отрицательные заряды. Силы эти достаточно велики (отсюда слово гигант), но проявляются лишь на очень малых расстояниях (с короткими руками). При расстояниях равных утроенному диаметру молекулы, эти частицы притягиваются, «радостно» устремляясь, друг к другу.

Но, соприкоснувшись, начинают активно отталкиваться друг от друга.

При деформации растяжения расстояние между молекулами возрастает. Межмолекулярные силы стремятся его сократить. При сжатии молекулы сближаются, что порождает отталкивание молекул.

А, поскольку все виды деформаций можно свести к сжатию и растяжению, то появление упругих сил при любых деформациях объяснимо этими рассуждениями.

Закон, установленный Гуком

Изучением сил упругости и их взаимосвязью с другими физическими величинами занимался соотечественник и современник . Его считают основоположником экспериментальной физики.

Учёный продолжал свои эксперименты около 20 лет. Он проводил опыты по деформации растяжения пружин, подвешивая к ним различные грузы. Подвешиваемый груз вызывал растяжение пружины до тех пор, пока возникшая в ней сила упругости не уравновешивала вес груза.

В результате многочисленных экспериментов ученый делает вывод: приложенная внешняя сила вызывает возникновение равной ей по величине силе упругости, действующей в противоположном направлении.

Сформулированный им закон (закон Гука) звучит так:

Сила упругости, возникающая при деформации тела, прямо пропорциональна величине деформации и направлена в сторону, противоположную перемещению частиц.

Формула закона Гука имеет вид:

  • F - модуль, т. е. численное значение силы упругости;
  • х - изменение длины тела;
  • k - коэффициент жесткости, зависящий от формы, размеров и материала тела.

Знак минус указывает то, что сила упругости направлена в сторону противоположную смещению частиц.

Каждый физический закон имеет свои границы применения. Закон, установленный Гуком можно применять только к упругим деформациям, когда после снятия нагрузки форма и размеры тела полностью восстанавливаются.

У пластичных тел (пластилин, влажная глина) такого восстановления не происходит.

Упругостью в той или иной степени обладают все твёрдые тела. Первое место по упругости занимает резина, второе - . Даже очень упругие материалы при определенных нагрузках могут проявлять пластичные свойства. Это используют для изготовления проволоки, вырезания специальными штампами деталей сложной формы.

Если у вас есть ручные кухонные весы (безмен), то на них наверняка написан максимальный вес, на который они рассчитаны. Скажем 2 кг. При подвешивании более тяжелого груза, находящаяся в них стальная пружина уже никогда не восстановит свою форму.

Работа силы упругости

Как и любая сила, сила упругости, способна совершать работу. Причем очень полезную. Она предохраняет деформируемое тело от разрушения. Если она с этим не справляется, наступает разрушение тела. Например, разрывается трос подъёмного крана, струна на гитаре, резинка на рогатке, пружина на весах. Эта работа всегда имеет знак минус, поскольку сама сила упругости тоже отрицательна.

Вместо послесловия

Вооружившись некоторыми сведениями о силах упругости и деформациях, мы легко ответим на некоторые вопросы. Скажем, почему крупные кости у человека имеют трубчатое строение?

Изогните металлическую или деревянную линейку. Её выпуклая часть испытает деформацию растяжения, а вогнутая - сжатия. Средняя же часть нагрузки не несет. Природа и воспользовалась этим обстоятельством, снабдив человека и животных трубчатыми костями. В процессе движения кости, мышцы и сухожилья испытывают все виды деформаций. Трубчатое строение костей значительно облегчает их вес, абсолютно не влияя на их прочность.

Стебли злаковых культур имеют такое же строение. Порывы ветра пригибают их до земли, а силы упругости помогают выпрямиться. Кстати, рама у велосипеда тоже изготавливается из трубок, а не из стержней: вес намного меньше и металл экономится.

Закон, установленный Робертом Гуком, послужил основой для создания теории упругости. Расчёты, выполненные по формулам этой теории, позволяют обеспечить долговечность высотных сооружений и других конструкций .

Если это сообщение тебе пригодилось, буда рада видеть тебя