Основные признаки делимости. Признаки делимости, или что не поделили числа

Определение 1. Пусть число a 1) есть произведение двух чисел b и q так, что a=bq. Тогда a называется кратным b .

1) В данной статье под словом число будем понимать целое число.

Можно сказать также a делится на b, или b есть делитель a , или b делит a , или b входит множителем в a .

Из определения 1 вытекают следующие утверждения:

Утверждение 1. Если a -кратное b , b -кратное c , то a кратное c .

Действительно. Так как

где m и n какие то числа, то

Следовательно a делится на c.

Если в ряду чисел, каждое делится на следующее за ним, то каждое число есть кратное всех последующих чисел.

Утверждение 2. Если числа a и b - кратные числа c , то их сумма и разность также кратные числа c .

Действительно. Так как

a+b=mc+nc=(m+n)c,

a−b=mc−nc=(m−n)c.

Следовательно a+b делится на c и a−b делится на c .

Признаки делимости

Выведем общую формулу для определения признака делимости чисел на некоторое натуральное число m , которое называется признаком делимости Паскаля.

Найдем остатки деления на m следующей последовательностью. Пусть остаток от деления 10 на m будет r 1 , 10·r 1 на m будет r 2 , и т.д. Тогда можно записать:

Докажем, что остаток деления числа A на m равна остатку деления числа

(3)

Как известно, если два числа при делении на какое то число m дают одинаковый остаток, то из разность делится на m без остатка.

Рассмотрим разность A−A"

(6)
(7)

Каждый член правой части (5) делится на m следовательно левая часть уравнения также делится на m . Рассуждая аналогично, получим - правая часть (6) делится на m , следовательно левая часть (6) также делится на m , правая часть (7) делится на m , следовательно левая часть (7) также делится на m . Получили, что правая часть уравнения (4) делится на m . Следовательно A и A" имеют одинаковый остаток при делении на m . В этом случае говорят, что A и A" равноостаточные или сравнимыми по модулю m .

Таким образом, если A" делится на m m ) , то A также делится на m (имеет нулевой остаток от деления на m ). Мы показали что для определения делимости A можно определить делимость более простого числа A" .

Исходя из выражения (3), можно получить признаки делимости для конкретных чисел.

Признаки делимости чисел 2, 3, 4, 5, 6, 7, 8, 9, 10

Признак делимости на 2.

Следуя процедуре (1) для m=2 , получим:

Все остатки от деления на 2 равняются нулю. Тогда, из уравнения (3) имеем

Все остатки от деления на 3 равняются 1. Тогда, из уравнения (3) имеем

Все остатки от деления на 4 кроме первого равняются 0. Тогда, из уравнения (3) имеем

Все остатки равны нулю. Тогда, из уравнения (3) имеем

Все остатки равны 4. Тогда, из уравнения (3) имеем

Следовательно число делится на 6 тогда и только тогда, когда учетверённое число десятков, сложенное с числом единиц, делится на 6. То есть из числа отбрасываем правую цифру, далее суммируем полученное число с 4 и добавляем отброшенное число. Если данное число делится на 6, то исходное число делится на 6.

Пример. 2742 делится на 6, т.к. 274*4+2=1098, 1098=109*4+8=444, 444=44*4+4=180 делится на 6.

Более простой признак делимости. Число делится на 6, если оно делится на 2 и на 3 (т.е. если оно четное число и если сумма цифр делится на 3). Число 2742 делится на 6, т.к. число четное и 2+7+4+2=15 делится на 3.

Признак делимости на 7.

Следуя процедуре (1) для m=7 , получим:

Все остатки разные и повторяются через 7 шагов. Тогда, из уравнения (3) имеем

Все остатки все остатки нулевые, кроме первых двух. Тогда, из уравнения (3) имеем

Все остатки от деления на 9 равняются 1. Тогда, из уравнения (3) имеем

Все остатки от деления на 10 равняются 0. Тогда, из уравнения (3) имеем

Следовательно число делится на 10 тогда и только тогда, когда последняя цифра делится на 10 (то есть последняя цифра нулевая).

ПРИЗНАКИ ДЕЛИМОСТИ чисел - простейшие критерии (правила), позволяющие судить о делимости (без остатка) одних натуральных чисел на другие. Решение вопроса о делимости чисел признаки делимости сводят к действиям над небольшими числами, обычно выполняемым в уме.
Так как основанием общепринятой системы счисления является 10, то наиболее простыми и распространенными являются признаки делимости на делители чисел трех видов: 10 k , 10 k - 1, 10 k + 1 .
Первый вид - признаки делимости на делители числа 10 k , для делимости любого целого числа N на любой целый делитель q числа 10 k необходимо и достаточно, чтобы последняя k-циферная грань (к-циферное окончание) числа N делилась на q. В частности (при к = 1, 2 и 3), получаем следующие признаки делимости на делители чисел 10 1 = 10 (I 1), 10 2 = 100 (I 2) и 10 3 = 1000 (I 3):
I 1 . На 2, 5 и 10 - одноциферное окончание (последняя цифра) числа должно делиться соответственно на 2, 5 и 10. Например, число 80 110 делится на 2, 5 и 10, так как последняя цифра 0 этого числа делится на 2, 5 и 10; число 37 835 делится на 5, но не делится на 2 и 10, так как последняя цифра 5 этого числа делится на 5. но не делится на 2 и 10.

I 2 . На 2, 4, 5, 10, 20, 25, 50 и 100-двуциферное окончание числа должно делиться соответственно на 2, 4, 5, 10, 20, 25, 50 и 100. Например, число 7 840 700 делится на 2, 4, 5, 10, 20, 25, 50 и 100, так как двуциферное окончание 00 этого числа делится на 2, 4, 5, 10, 20, 25, 50 и 100; число 10 831 750 делится на 2, 5, 10, 25 и 50, но не делится на 4, 20 и 100, так как двуциферное окончание 50 этого числа делится на 2, 5, 10, 25 и 50, но не делится на 4, 20 и 100.

I 3 . На 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 125, 200, 250, 500 и 1000 - трехциферное окончание числа должно делиться соответственно на 2,4,5,8,10, 20, 25, 40, 50, 100, 125, 200, 250, 500 и 1000. Например, число 675 081 000 делится на все перечисленные в этом признаке числа, так как на каждое из них делится трехциферное окончание 000 заданного числа; число 51 184 032 делится на 2, 4 и 8 и не делится на остальные, так как трехциферное окончание 032 заданного числа делится только на 2, 4 и 8 и не делится на остальные.

Второй вид - признаки делимости на делители числа 10 k - 1: для делимости любого целого числа N на любой целый делительq числа 10 k - 1 необходимо и достаточно, чтобы сумма k-циферных граней числа N делилась на q. В частности (при к=1, 2 и 3), получаем следующие признаки делимости на делители чисел 10 1 - 1 = 9 (II 1), 10 2 - 1=99 (II 2) и 10 3 - 1 = 999 (II 3):
II 1 . На 3 и 9 -сумма цифр (одноциферных граней) числа должна делиться соответственно на 3 и 9. Например, число 510 887 250 делится на 3 и 9, так как сумма цифр 5+1+0+8+8+7+2+5+0=36 (и 3+6=9) этого числа делится на 3 и 9; число 4 712 586 делится на 3, но не делится на 9, так как сумма цифр 4+7+1+2+5+8+6=33 (и 3+3=6) этого числа делится на 3, но не делится на 9.

II 2 . На 3, 9, 11, 33 и 99 - сумма двуциферных граней числа должна делиться соответственно на 3, 9, 11, 33 и 99. Например, число 396 198 297 делится на 3, 9, 11, 33 и 99, так как сумма двуциферных граней 3+96+19+ +82+97=297 (и 2+97=99) делится на 3, 9,11, 33 и 99; число 7 265 286 303 делится на 3, 11 и 33, но не делится на 9 и 99, так как сумма двуциферных граней 72+65+28+63+03=231 (и 2+31=33) этого числа делится на 3, 11 и 33 и не делится на 9 и 99.

II 3 . На 3, 9, 27, 37, 111, 333 и 999 - сумма трехциферных граней числа должна делиться соответственно на 3, 9, 27, 37, 111, 333 и 999. Например, число 354 645 871 128 делится на все перечисленные в этом признаке числа, так как на каждое из них делится сумма трехциферных граней 354+645+ +871 + 128=1998 (и 1 + 998 = 999) этого числа.

Третий вид - признаки делимости на делители числа 10 k + 1: для делимости любого целого числа N на любой целый делитель q числа 10 k + 1 необходимо и достаточно, чтобы разность между суммой k-циферных граней, стоящих в N на четных местах, и суммой k-циферных граней, стоящих в N на нечетных местах, делилась на q. В частности (при к = 1, 2 и 3), получаем следующие признаки делимости на делители чисел 10 1 + 1 =11 (III 1), 10 2 + 1 = 101 (III 2) и 10 3 +1 = 1001 (III 3).

III 1 . На 11 - разность между суммой цифр (одноциферных граней), стоящих на четных местах, и суммой цифр (одноциферных граней), стоящих на нечетных местах, должна делиться на 11. Например, число 876 583 598 делится на 11, так как разность 8 - 7+6 - 5+8 - 3+5 - 9+8=11 (и 1 - 1=0) между суммой цифр, стоящих на четных местах, и суммой цифр, стоящих на нечетных местах, делится на 11.

III 2 . На 101 - разность между суммой двуциферных граней, стоящих в числе на четных местах, и суммой двуциферных граней, стоящих на нечетных местах, должна делиться на 101. Например, число 8 130 197 делится на 101, так как разность 8-13+01-97 = 101 (и 1-01=0) между суммой двуциферных граней, стоящих в этом числе на четных местах, и суммой двуциферных граней, стоящих на нечетных местах, делится на 101.

III 3 . На 7, 11, 13, 77, 91, 143 и 1001 - разность между суммой трехциферных граней, стоящих в числе на четных местах, и суммой трехциферных граней, стоящих на нечетных местах, должна делиться соответственно на 7, 11, 13, 77, 91, 143 и 1001. Например, число 539 693 385 делится на 7, 11 и 77, но не делится на 13, 91, 143 и 1001, так как 539 - 693+385=231 делится на 7, 11 и 77 и не делится на 13, 91, 143 и 1001.

Из школьной программы многие помнят, что существуют признаки делимости. Под данным словосочетанием понимают правила, которые позволяют достаточно быстро определить, является ли число кратным заданному, не совершая при этом непосредственную арифметическую операцию. Данный способ основан на действиях, совершаемых с частью цифр из записи в позиционной

Самые простые признаки делимости многие помнят из школьной программы. Например, то, что на 2 делятся все числа, последняя цифра в записи которых четная. Данный признак наиболее легко запомнить и применять на практике. Если говорить о способе деления на 3, то для многозначных чисел применяется следующее правило, которое можно показать на таком примере. Необходимо узнать, будет ли 273 кратно трем. Для этого выполняем следующую операцию: 2+7+3=12. Полученная сумма делится на 3, следовательно, и 273 будет делиться на 3 таким образом, что в результате получится целое число.

Признаки делимости на 5 и 10 будут следующие. В первом случае запись будет оканчиваться на цифры 5 или 0, во втором случае только на 0. Для того чтобы узнать, кратно ли делимое четырем, следует поступить следующим образом. Необходимо вычленить две последние цифры. Если это два нуля или число, которое делится на 4 без остатка, то и все делимое будет кратно делителю. Нужно отметить, что перечисленные признаки используются только в десятичной системе. Они не применяются в других способах счисления. В таких случаях выводятся свои правила, которые зависят от основания системы.

Признаки деления на 6 следующие. 6 в том случае, если оно кратно и 2, и 3. Для того чтобы определить, делится ли число на 7, нужно удвоить последнюю цифру в его записи. Полученный результат вычитается из первоначального числа, в котором не учитывается последняя цифра. Данное правило можно рассмотреть на следующем примере. Необходимо узнать, кратно ли 364. Для этого 4 умножается на 2, получается 8. Далее выполняется следующее действие: 36-8=28. Полученный результат кратен 7, а, следовательно, и первоначальное число 364 можно разделить на 7.

Признаки делимости на 8 звучат следующим образом. Если три последних цифры в записи числа образуют число, которое кратно восьми, то и само число будет делиться на заданный делитель.

Узнать, делится ли многозначное число на 12, можно следующим образом. По перечисленным выше признакам делимости необходимо узнать, кратно ли число 3 и 4. Если они могут выступать одновременно делителями для числа, то с заданным делимым можно проводить и операцию деления на 12. Подобное правило применяется и для других сложных чисел, например, пятнадцати. При этом делителями должны выступать 5 и 3. Чтобы узнать, делится ли число на 14, следует посмотреть, кратно ли оно 7 и 2. Так, можно рассмотреть это на следующем примере. Необходимо определить, можно ли 658 разделить на 14. Последняя цифра в записи четная, следовательно, число кратно двум. Далее мы 8 умножаем на 2, получаем 16. Из 65 нужно вычесть 16. Результат 49 делится на 7, как и все число. Следовательно, 658 можно разделить и на 14.

Если две последние цифры в заданном числе делятся на 25, то и все оно будет кратно этому делителю. Для многозначных чисел признак делимости на 11 будет звучать следующим образом. Необходимо узнать, кратна ли заданному делителю разность сумм цифр, которые стоят на нечетных и четных местах в его записи.

Нужно отметить, что признаки делимости чисел и их знание очень часто значительно упрощает многие задачи, которые встречаются не только в математике, но и в повседневной жизни. Благодаря умению определить, кратно ли число другому, можно быстро выполнять различные задания. Помимо этого, применение данных способов на занятиях математики поможет развивать у студентов или школьников, будет способствовать развитию определенных способностей.

Правила деления на числа от 1 до 10, а также на 11 и 25 были выведены, чтобы упростить процесс деления натуральных чисел. Те из них, которые оканчиваются на 2, на 4, на 6, на 8, на 0 считаются четными.

Что же такое признаки делимости?

По сути это алгоритм, который позволяет быстро определить, будет ли число делиться на то, которое задано заранее. В случае, когда признак делимости дает возможность выяснить еще и остаток от деления, его называют признаком равноостаточности.

Признак делимости на цифру 2

Число можно разделить на два, если последняя его цифра четная или ноль. В других случаях разделить не удастся.

Например:

52 734 делится на 2, потому как его последняя цифра 4 - то есть четная. 7 693 не делится на цифру 2, так как 3 - нечетная. 1 240 делится, потому что последняя цифра ноль.

Признаки делимости на 3

Цифре 3 кратны только те числа, у которых сумма делится на 3

Пример:

17 814 можно разделить на цифру 3, потому что общая сумма его цифр равна 21 и на 3 делится.

Признак делимости на цифру 4

Число можно разделить на 4, если последние две его цифры ноли или могут образовать число, кратное 4. Во всех других случаях разделить не получится.

Примеры:

31 800 можно разделить на 4, потому как в конце него два ноля. 4 846 854 не делится на 4 из-за того, что последние две цифры образуют число 54, а оно на 4 не делится. 16 604 поддается делению на 4, потому что последние две цифры 04 образуют число 4, которое делится на 4.

Признак делимости на цифру 5

5 кратны числа, в которых последняя цифра ноль или пять. Все другие - не делятся.

Пример:

245 кратно 5, потому что последняя цифра 5. 774 не кратно 5 из-за того, что последняя цифра четыре.

Признак делимости на цифру 6

Число можно разделить на 6, если его можно одновременно разделить на 2 и 3. Во всех других случаях - не делится.

Например:

216 можно разделить на 6, потому что оно кратно и двум и трем.

Признак делимости на 7

Кратно 7 число в том случае, если при вычитании последней удвоенной цифры из этого числа, но без нее (без последней цифры) получилось значение, которое можно поделить на 7.

Например, 637 кратно 7, потому что 63-(2·7)=63-14=49. 49 можно разделить на.

Признак делимости на цифру 8

Похож на признак делимости на цифру 4. Число можно разделить на 8, если три (а не две, как в случае с четверкой) последние цифры нули или могут образовать число, кратное 8. Во всех других случаях - не делится.

Примеры:

456 000 можно разделить на 8, потому как в конце него три нуля. 160 003 не получится разделить на 8, потому что три последние цифры образуют число 4, которое не кратно 8. 111 640 кратно 8, потому что последние три цифры образуют число 640, которое можно поделить на 8.

К сведению: можно назвать такие же признаки и для совершения деления на числа 16, 32, 64 и так далее. Но на практике они значения не имеют.

Признак делимости на 9

9-ке кратны те числа, сумму цифр которых можно разделить на 9.

Например:

Число 111 499 на 9 не делится, потому что сумму цифр (25) на 9 не разделить. Число 51 633 можно разделить на 9, потому что его сумма цифр (18) 9-ти кратна.

Признаки делимости на 10, на 100 и на 1000

На 10 можно разделить те числа, последняя цифра у которых 0, на 100 -те, у которых последние две цифры ноли, на 1000 - те, у которых последние три цифры ноли.

Примеры:

4500 можно поделить на 10 и 100. 778 000 кратно и 10, и 100, и 1000.

Теперь вы знаете, какие признаки делимости чисел существуют. Успешных вам вычислений и не забывайте о главном: все эти правила даны для упрощения математических расчетов.


Серию статей о признаках делимости продолжает признак делимости на 3 . В этой статье сначала дана формулировка признака делимости на 3 , и приведены примеры применения этого признака при выяснении, какие из данных целых чисел делятся на 3 , а какие – нет. Дальше дано доказательство признака делимости на 3 . Также рассмотрены подходы к установлению делимости на 3 чисел, заданных как значение некоторого выражения.

Навигация по странице.

Признак делимости на 3, примеры

Начнем с формулировки признака делимости на 3 : целое число делится на 3 , если сумма его цифр делится на 3 , если же сумма цифр данного числа не делится на 3 , то и само число не делится на 3 .

Из приведенной формулировки понятно, что признаком делимости на 3 не удастся воспользоваться без умения выполнять . Также для успешного применения признака делимости на 3 нужно знать, что из всех на 3 делятся числа 3 , 6 и 9 , а числа 1 , 2 , 4 , 5 , 7 и 8 – не делятся на 3 .

Теперь можно рассмотреть простейшие примеры применения признака делимости на 3 . Выясним, делится ли на 3 число −42 . Для этого вычисляем сумму цифр числа −42 , она равна 4+2=6 . Так как 6 делится на 3 , то в силу признака делимости на 3 можно утверждать, что и число −42 делится на 3 . А вот целое положительное число 71 на 3 не делится, так как сумма его цифр равна 7+1=8 , а 8 не делится на 3 .

А делится ли на 3 число 0 ? Чтобы ответить на этот вопрос, признак делимости на 3 не понадобится, здесь нужно вспомнить соответствующее свойство делимости , которое утверждает, что нуль делится на любое целое число. Таким образом, 0 делится на 3 .

В некоторых случаях чтобы показать, что данное число обладает или не обладает способностью делиться на 3 , к признаку делимости на 3 приходится обращаться несколько раз подряд. Приведем пример.

Пример.

Покажите, что число 907 444 812 делится на 3 .

Решение.

Сумма цифр числа 907 444 812 равна 9+0+7+4+4+4+8+1+2=39 . Чтобы выяснить, делится ли 39 на 3 , вычислим его сумму цифр: 3+9=12 . А чтобы узнать, делится ли 12 на 3 , находим сумму цифр числа 12 , имеем 1+2=3 . Так как мы получили число 3 , которое делится на 3 , то в силу признака делимости на 3 число 12 делится на 3 . Следовательно, 39 делится на 3 , так как сумма его цифр равна 12 , а 12 делится на 3 . Наконец, 907 333 812 делится на 3 , так как сумма его цифр равна 39 , а 39 делится на 3 .

Для закрепления материала разберем решение еще одного примера.

Пример.

Делится ли на 3 число −543 205 ?

Решение.

Вычислим сумму цифр данного числа: 5+4+3+2+0+5=19 . В свою очередь сумма цифр числа 19 равна 1+9=10 , а сумма цифр числа 10 равна 1+0=1 . Так как мы получили число 1 , которое не делится на 3 , из признака делимости на 3 следует, что 10 не делится на 3 . Поэтому 19 не делится на 3 , так как сумма его цифр равна 10 , а 10 не делится на 3 . Следовательно, исходное число −543 205 не делится на 3 , так как сумма его цифр, равная 19 , не делится на 3 .

Ответ:

Нет.

Стоит заметить, что непосредственное деление данного числа на 3 также позволяет сделать вывод о том, делится ли данное число на 3 нацело, или нет. Этим мы хотим сказать, что не нужно пренебрегать делением в пользу признака делимости на 3 . В последнем примере, 543 205 на 3 , мы бы убедились, что 543 205 не делится нацело на 3 , откуда можно было бы сказать, что и −543 205 не делится на 3 .

Доказательство признака делимости на 3

Доказать признак делимости на 3 нам поможет следующее представление числа a . Любое натуральное число a мы можем , после чего позволяет получить представление вида , где a n , a n−1 , …, a 0 – цифры, стоящие слева направо в записи числа a . Для наглядности приведем пример такого представления: 528=500+20+8=5·100+2·10+8 .

Теперь запишем ряд достаточно очевидных равенств: 10=9+1=3·3+1 , 100=99+1=33·3+1 , 1 000=999+1=333·3+1 и так далее.

Подставив в равенство a=a n ·10 n +a n−1 ·10 n−1 +…+a 2 ·10 2 +a 1 ·10+a 0 вместо 10 , 100 , 1 000 и так далее выражения 3·3+1 , 33·3+1 , 999+1=333·3+1 и так далее, получим
.

И позволяют полученное равенство переписать так:

Выражение есть сумма цифр числа a . Обозначим ее для краткости и удобства буквой А , то есть, примем . Тогда получим представление числа a вида , которым и воспользуемся при доказательстве признака делимости на 3 .

Также для доказательства признака делимости на 3 нам потребуются следующие свойства делимости:

  • чтобы целое число a делилось на целое число b необходимо и достаточно, чтобы a делился на модуль числа b ;
  • если в равенстве a=s+t все члены, кроме какого-то одного, делятся на некоторое целое число b , то и этот один член делится на b .

Теперь мы полностью подготовлены и можем провести доказательство признака делимости на 3 , для удобства этот признак сформулируем в виде необходимого и достаточного условия делимости на 3 .

Теорема.

Для делимости целого числа a на 3 необходимо и достаточно, чтобы сумма его цифр делилась на 3 .

Доказательство.

Для a=0 теорема очевидна.

Если a отлично от нуля, то модуль числа a является натуральным числом, тогда возможно представление , где - сумма цифр числа a .

Так как сумма и произведение целых чисел есть целое число, то - целое число, тогда по определению делимости произведение делится на 3 при любых a 0 , a 1 , …, a n .

Если сумма цифр числа a делится на 3 , то есть, А делится на 3 , то в силу свойства делимости, указанного перед теоремой, делится на 3 , следовательно, a делится на 3 . Так доказана достаточность.

Если a делится на 3 , то и делится на 3 , тогда в силу того же свойства делимости число А делится на 3 , то есть, сумма цифр числа a делится на 3 . Так доказана необходимость.

Другие случаи делимости на 3

Иногда целые числа задаются не в явном виде, а как значение некоторого при данном значении переменной. Например, значение выражения при некотором натуральном n является натуральным числом. Понятно, что при таком задании чисел для установления их делимости на 3 не поможет непосредственное деление на 3 , да и признак делимости на 3 удастся применить далеко не всегда. Сейчас мы рассмотрим несколько подходов к решению подобных задач.

Суть этих подходов заключается в представлении исходного выражения в виде произведения нескольких множителей, и если хотя бы один из множителей будет делиться на 3 , то в силу соответствующего свойства делимости можно будет сделать вывод о делимости на 3 всего произведения.

Иногда реализовать такой подход позволяет . Рассмотрим решение примера.

Пример.

Делится ли значение выражения на 3 при любом натуральном n ?

Решение.

Очевидно равенство . Воспользуемся формулой бинома Ньютона:

В последнем выражении мы можем вынести 3 за скобки, при этом получим . Полученное произведение делится на 3 , так как содержит множитель 3 , а значение выражения в скобках при натуральных n представляет собой натуральное число. Следовательно, делится на 3 при любом натуральном n .

Ответ:

Да.

Во многих случаях доказать делимость на 3 позволяет . Разберем его применение при решении примера.

Пример.

Докажите, что при любом натуральном n значение выражения делится на 3 .

Решение.

Для доказательства применим метод математической индукции.

При n=1 значение выражения равно , а 6 делится на 3 .

Предположим, что значение выражения делится на 3 при n=k , то есть, делится на 3 .

Учитывая, что делится на 3 , покажем, что значение выражения при n=k+1 делится на 3 , то есть, покажем, что делится на 3 .