Новый взгляд на неожиданно быстрое расширение вселенной. Расширение Вселенной: как его открывали

Создано: 25.10.2013 , 10010 46

"Он сотворил землю силою Своею, утвердил вселенную мудростью Своею и разумом Своим распростер небеса "

Иеремия 10:12

В процессе развития науки многие ученые начали искать возможность исключить Бога из своих взглядов как Первопричину появления вселенной. В результате этого появилось много различных теорий возникновения вселенной, а также появления и развития живых организмов. Самыми популярными из них являются теория «Большого взрыва» и теория «Эволюции». В процессе обоснования теории «Большого взрыва» была создана одна из фундаментальных теорий эволюционистов - «Расширяющаяся вселенная». Данная теория говорит о том, что происходит расширение космического пространства в масштабах вселенной, которое наблюдается благодаря постепенному отдалению галактик одной от другой.

Давайте рассмотрим аргументы, которыми некоторые ученые пытаются доказать данную теорию. Ученые эволюционисты, в частности Стивен Хокинг, считают, что расширяющаяся вселенная является результатом Большого взрыва и что после взрыва было быстрое расширение вселенной, а потом оно замедлилось и сейчас это расширение медленное, но этот процесс продолжается. Они аргументируют это измерением скорости отдаления других галактик от нашей галактики с помощью эффекта Доплера, а также тем, что им известна скорость в процентном отношении, о чем Стивен Хокинг говорит: «Поэтому нам известно лишь то, что скорость расширения Вселенной составляет от 5 до 10% за миллиард лет.» (С.Хокинг «Кратчайшая история времени» пер.Л.Млодинов, стр.38). Однако здесь возникают вопросы: как данное процентное отношение было получено, а также кто и каким образом проводил данное исследование? Этого Стивен Хокинг не объясняет, но говорит об этом как о факте. Исследовав данный вопрос, мы получили информацию, что на сегодняшний день для измерения скорости отдаления галактик используют закон Хаббла, использующий теорию о «Красном смещении», которое в свою очередь основывается на Эффекте Доплера. Давайте посмотрим, что собой представляют данные понятия:

Закон Хаббла - закон, связывающий красное смещение галактик и расстояние до них линейным образом. Данный закон имеет вид: cz = H 0 D, где z - красное смещение галактики; H 0 - коэффициент пропорциональности, называемый "постоянная Хаббла"; D - расстояние до галактики. Одним из важнейших элементов для закона Хаббла является скорость света.

Красное смещение - сдвиг спектральных линий химических элементов в красную сторону. Есть мнение, что это явление может быть выражением эффекта Доплера или гравитационного красного смещения, или их комбинацией, но чаще всего берется во внимание эффект Доплера. Это проще выражается тем, что чем дальше галактика, тем больше ее свет смещается в красную сторону.

Эффект Доплера - изменение частоты и длинны звуковых волн, регистрируемых приёмником, вызванное движением их источника в результате движения приёмника. Проще говоря, чем ближе объект, тем больше частота звуковых волн и наоборот чем дальше объект, тем меньше частота звуковых волн.

Однако существует ряд проблем с данными принципами измерения скорости отдаления галактик. Для закона Хаббла является проблемой оценка «постоянной Хаббла», так как помимо скорости отдаления галактик, они обладают еще собственной скоростью, что приводит к тому, что закон Хаббла плохо выполняется, или совсем не выполняется для объектов, находящихся на расстоянии ближе 10-15 млн. световых лет. Закон Хаббла плохо выполняется также для галактик на очень больших расстояниях (в миллиарды св. лет), которым соответствует величина красного смещения больше 1. Расстояния до объектов с таким большим красным смещением теряют однозначность, поскольку зависят от принимаемой модели Вселенной и от того, к какому моменту времени они отнесены. В качестве меры расстояния в этом случае обычно используется только красное смещение. Таким образом, получается, что определить скорость отдаления далеких галактик практически является невозможным и определяется только той моделью вселенной, которую принимает исследователь. Это говорит о том, что каждый верит в свою субъективную скорость отдаления галактик.

Также нужно сказать, что невозможно измерить расстояние к дальним галактикам относительно их сияния или красного смещения. Этому мешают некоторые факты, а именно, что скорость света не постоянная и изменяется, причем эти изменения идут в сторону замедления. В 1987 году в отчете Станфордского научно-исследовательского института австралийские математики Тревор Норман и Барри Сеттерфилд постулировали, что в прошлом произошло большое снижение скорости света (B. Setterfield, The Velocity of Light and the Age of the Universe .). В1987 году нижегородский физик-теоретик В.С. Троицкий постулировал, что со временем произошло громадное снижение скорости света. Доктор Троицкий говорил о снижении скорости света в 10 миллионов раз по сравнению с ее нынешним значением (V.S. Troitskii, Physical Constants and Evolution of the Universe , Astrophysics and Space Science 139(1987): 389-411.). В 1998 году физики-теоретики лондонского Импириал-колледжа Альбрехт и Жоао Магейжу также постулировали уменьшение скорости света. 15 ноября 1998 года газета «Лондон таймс» напечатала статью «Скорость света – самая высокая во вселенной – снижается» (The speed of light - the fastest thing in the universe - is getting slower , The London Times, Nov. 15, 1998.). Относительно этого нужно сказать, что на скорость света влияет много факторов, например, химические элементы через которые проходит свет, а также температура, которую они имеют, потому как через одни элементы свет проходит медленней, а через другие намного быстрее, что и было доказано экспериментально. Так 18 февраля 1999 года в весьма уважаемом (и на 100% эволюционистском) научном журнале «Nature» была опубликована научная статья с подробным описанием эксперимента, в котором скорость света удалось уменьшить до 17 метров в секунду, то есть до каких-то 60 километров в час. Это значит, что за ним можно было наблюдать как за едущим по улице автомобилем. Этот эксперимент был поставлен датским физиком Лене Хау и международной группой ученых из Гарвардского и Стенфордского университетов. Они пропускали свет через пары натрия, охлажденные до невероятно низких температур, измеряемых нанокельвинами (то есть, миллиардными долями кельвина; это практически абсолютный ноль, который по определению равен -273,160C). В зависимости от точной температуры паров скорость света была снижена до значений в интервале 117 км/час – 61 км/час; то есть, по существу, до 1/20.000.000-ной от обычной скорости света (L.V. Hau, S.E. Harris, Science News, March 27, p. 207, 1999.).

В июле 2000 года ученые из исследовательского института NEC в Прингстоне сообщили об ускорении ими света до скорости, превышающей скорость света! Их эксперимент был опубликован в британском журнале «Nature». Они направили лазерный луч на стеклянную камеру, содержащую пары цезия. В результате энергетического обмена между фотонами лазерного луча и атомами цезия возник луч, скорость которого на выходе из камеры была выше скорости входного луча. Считается, что свет распространяется с максимальной скоростью в вакууме, где отсутствует сопротивление, и медленнее в любой другой среде из-за дополнительного сопротивления. Например, всем известно, что в воде свет распространяется медленнее, чем в воздухе. В описанном выше эксперименте полученныйлуч вышел из камеры с парами цезия еще до того, как полностью вошел в нее. Эта разница была очень интересной. Лазерный луч перепрыгнул на 18 метров вперед от того места, где должен был быть. По идее, это можно было расценить как следствие, предшествующее причине, но это не совсем верно. Существует и научная область, изучающая сверхсветовое распространение импульсов. Правильная интерпретация этого исследования такова: скорость света непостоянна, и свет можно ускорить подобно любому другому физическому объекту во вселенной при наличии нужных условий и подходящего источника энергии. Ученые получили вещество из энергии без потерь; ускорили свет до скорости, превышающей ныне принятую скорость света.

Относительно красног о смещения нужно сказать, что никто с точностью не может сказать причину появления красного смещения и сколько раз преломляется свет, доходя до земли, а это в свою очередь делает нелепой основу для измерения расстояний с помощью красного смещения. Также изменение скорости света опровергает все существующие предположения расстояния к дальним галактикам и нивелирует метод измерения данного расстояния по красному смещению. Еще нужно сказать, что применение эффекта Доплера к свету является чисто теоретическим, а учитывая, что скорость света меняется, то это вдвойне усложняет применение данного эффекта к свету. Все это говорит, что метод определения расстояния к дальним галактикам по красному смещению и тем более аргументирование того, что вселенная расширяется, просто являются не научным подходом и обманом. Давайте подумаем, даже если нам будет известна скорость отдаления галактик, то невозможно утверждать, что происходит расширение пространства вселенной. Никто не может сказать, происходит ли вообще подобное расширение. Движение планет и галактик во вселенной не говорит об изменении самого пространства, а ведь согласно теории Большого взрыва пространство появилось в результате большого взрыва и расширяется. Это утверждение не является научным, так как никто не нашел край вселенной и тем более не измерил расстояние до него.

Исследуя теорию "Большого взрыва" мы наталкиваемся на еще одно не исследованное и недоказанное явление, но о котором говорят как о факте, а именно о «черной материи». Посмотрим, что об этом говорит Стивен Хокинг: «Наша и другие галактики должны содержать большое количество некой «темной материи», которую мы не можем наблюдать непосредственно, но о существовании которой мы знаем благодаря ее гравитационному воздействию на орбиты звезд в галактиках. Возможно, лучшим свидетельством существования темной материи являются орбиты звезд на периферии спиральных галактик, подобных Млечному Пути. Эти звезды обращаются вокруг своих галактик слишком быстро, чтобы их могло удерживать на орбите притяжение одних только видимых звезд галактики» (С.Хокинг «Кратчайшая история времени» пер.Л.Млодинов, стр.38). Мы хотим подчеркнуть, что о «черной материи» говорится так: «которую мы не можем наблюдать непосредственно», это свидетельствует о том, что фактов существования данной материи нет, но непонятное для эволюционистов поведение галактик во вселенной заставляет их верить в существование чего-то, но сами не знают чего. Интересным также представляется утверждение: «фактически количество темной материи во Вселенной значительно превышает количество обычного вещества» . Данное утверждение говорит о количестве «темной материи», но возникает вопрос, как и каким методом, это количество определили в условиях, когда невозможно наблюдать и исследовать данную «материю»? Можно сказать, что было взято неизвестно что и получено количество этого, непонятно каким образом. То, что ученым непонятно как звезды спиральных галактик держатся на своей орбите, при высокой скорости, не означает существование призрачной «материи», которую никто не видел и не мог непосредственно наблюдать.

Современная наука находится в невыгодном положении относительно своих фантазий о большом взрыве. Так заключением в размышлениях о существовании различных материй Стивен Хокинг говорит: «Нельзя, однако, исключать существования других, еще не известных нам форм материи, распределенных почти равномерно повсюду во Вселенной, что могло бы повысить ее среднюю плотность. Например, существуют элементарные частицы, называемые нейтрино, которые очень слабо взаимодействуют с веществом и которые чрезвычайно трудно обнаружить» (С.Хокинг «Кратчайшая история времени» пер.Л.Млодинов, стр.38) . Это показывает всю беспомощность современной науки в попытке доказать, что вселенная возникла сама по себе без Творца. Если частицы не найдены, тогда нельзя на этом строить научные доводы, так как вероятность, что другие формы материи не существуют больше чем вероятность их существования.

Как бы там ни было, движение галактик, планет и других космических тел не говорит о расширении пространства вселенной, так как подобное движение не имеет ничего общего с определением расширения пространства. Например, если в одной комнате находится два человека и один отдаляется от другого, то это не говорит о том, что комната расширяется, а говорит о том, что есть пространство, в котором возможно двигаться. Аналогично и в данной ситуации, происходит движение галактик в космическом пространстве, однако это не говорит об изменении космического пространства. Также абсолютно невозможно доказать, что самые далекие галактики находятся на краю вселенной и за ними нет еще каких-либо галактик, а это в свою очередь говорит о том, что край вселенной не найден.

Таким образом, у нас есть все факты для утверждения, что на сегодняшний день не существует доказательств расширения вселенной, а это в свою очередь подтверждает несостоятельность теории "Большого взрыва".


Куда расширяется Вселенная
Думаю, что все уже слышали, что Вселенная расширяется , и часто мы её представляем, как огромный шар, наполненный Галактиками и туманностями, который увеличивается из какого-то меньшего состояния и закрадывается мысль, что в начале времён Вселенная вообще была зажата в точечку.

Тогда возникает вопрос, а что же находится за границей , и куда Вселенная расширяется ? Но, о какой границе идёт речь?! Разве Вселенная не бесконечна?! Всё-же попробуем в этом разобраться.

Расширение Вселенной и сфера Хаббла

Давайте представим, что наблюдаем в суперогромный телескоп, в которой видно, что угодно во Вселенной . Она расширяется и её галактики удаляются от нас. Причём, чем пространственно дальше относительно нас находятся они, тем быстрее галактики удаляются. Давайте посмотрим всё дальше и дальше. И на каком-то расстоянии выяснится, что все тела удаляются относительно нас со световой скоростью. Так образуется сфера, которая называется, сфера Хаббла . Сейчас до неё чуть менее 14 млрд.св.лет , и всё за её пределами улетает относительно нас быстрее света. Казалось бы, что это противоречит Теории Относительности , ведь скорость не может превышать световую. Но нет, ведь тут речь не о скорости самих объектов, а о скорости расширения пространства . А это совсем другое и она может быть какой угодно.
Но мы можем посмотреть и дальше. На некотором расстоянии объекты удаляются настолько быстро, что мы их вообще никогда не увидим. Фотоны, испущенные в нашу сторону просто никогда не достигнут Земли. Они словно человек, идущий против движения эскалатора. Будут уноситься назад быстро расширяющимся пространством. Граница, где такое происходит, называется Горизонтом частиц . Сейчас до него около 46,5 млрд.св.лет . Расстояние это увеличивается, ведь Вселенная расширяется . Это граница, так называемой, Наблюдаемой Вселенной . И всё за пределами этой границы, мы никогда никогда не увидим.
И вот тут вот самое интересное. А что же за ней? Может быть, это и есть ответ на вопрос?! Оказывается всё очень прозаично. На самом-то деле никакой границы нет. И там на миллиарды миллиарды километров простираются такие же Галактики, звёзды и планеты.

Но как?! Как так получается?!

Центр расширения вселенной и горизонт частиц

Просто Вселенная разлетается довольно хитро. Это происходит в каждой точке пространства одинаково. Словно мы взяли координатную сетку и увеличиваем её масштаб. От этого и правда кажется, что все Галактики удаляются от нас. Но, если вы переместимся в другую Галактику, то увидим эту же картину. Теперь все объекты будут удаляться от неё. То есть, в каждой точке космоса будет казаться, что мы находимся в центре расширения . Хотя никакого центра нет.
Поэтому, если мы окажемся рядом с Горизонтом частиц , соседние Галактики не будут разлетаться от нас быстрее скорости света. Ведь Горизонт частиц переместиться вместе с нами и опять окажется очень далеко. Соответственно, сместятся границы Наблюдаемой Вселенной и мы увидим новые Галактики, ранее недоступные для наблюдения. И такую операцию можно проделывать бесконечно. Можно раз за разом перемещаться к горизонту частиц, но тогда он сам будет смещаться, открывая взору всё новые просторы Вселенной . То есть, мы не достигнем ее границ никогда, и получается, что Вселенная и правда бесконечна . Ну, а границы есть только у наблюдаемой ее части.
Что-то похожее происходит и на Земном шаре . Нам кажется, что горизонт — это граница земной поверхности, но стоит переместиться в ту точку и окажется, что никакой границы то нет. У Вселенной нет предела, за которым отсутствует пространство-время или что-то типа такого. Просто здесь мы наталкиваемся на бесконечностью , которая для нас непривычна. Но можно сказать так, Вселенная всегда была бесконечной и растягивается продолжая оставаться бесконечной. Она может это делать потому, что у пространства нет мельчайшей частицы. Оно может растягиваться сколь угодно долго. Вселенной, для расширения, не нужны границы и области куда расширяться. Так, что этого куда просто не существует.

Так подождите-ка, а как же Большой Взрыв ?! Разве всё, что существует в космосе не было сжато в одну малюсенькую точечку?!

Нет! Сжата в точечку была лишь наблюдаемая граница Вселенной . А вся в целом она никогда не имела границ. Чтобы понять это, давайте вообразим себе Вселенную через миллиардные доли секунды после , когда наблюдаемая её часть была размером с баскетбольный мяч. Даже тогда мы можем перемещаться к Горизонту частиц и вся видимая Вселенная будет сдвигаться. Мы можем проделывать это сколько угодно раз и окажется, что Вселенная действительно бесконечна .
И мы можем проделывать тоже самое и раньше. Таким образом, перемещаясь во времени назад, мы окажемся всё ближе к Большому Взрыву . Но при этом, каждый раз мы будем обнаруживать, что Вселенная бесконечна в каждый период времени! Даже в мгновение Большого Взрыва! И получается, что он случился не в какой-то конкретной точечке, а повсюду, в каждой точечке, не имеющего предела Космоса.
Однако, это только теория. Да, достаточно согласованная и логичная, но не лишённая недостатков.

В каком состоянии находилось вещество в мгновение Большого Взрыва ? Что было до него и почему он вообще произошел? Пока что, на эти вопросы чётких ответов нет. Но научный мир не стоит на месте, и может быть даже мы станем очевидцами разгадки этих тайн.

Звездное небо над головой долгое время было для человека символом вечности. Лишь в Новое время люди осознали, что «неподвижные» звезды на самом деле движутся, причем с огромными скоростями. В ХХ в. человечество свыклось с еще более странным фактом: расстояния между звездными системами – галактиками, не связанными друг с другом силами тяготения, постоянно увеличиваются.

И дело здесь не в природе галактик: сама Вселенная расширяется! Естествознанию пришлось расстаться с одним из своих основополагающих принципов: все вещи меняются в этом мире, но мир в целом всегда одинаков. Это можно считать важнейшим научным событием ХХ в.

Все началось, когда Альберт Эйнштейн создал общую теорию относительности. В ее уроках описаны фундаментальные свойства материи, пространства и времени. («относительный» по-латыни звучит как relativus, поэтому теории основанные на теории относительности Эйнштейна, называются релятивистскими).

Применив свою теорию ко Вселенной как целой системе, Эйнштейн обнаружил, что такого решения, которому соответствовала бы не меняющаяся со временем Вселенная, не получается. Этот не удовлетворил великого ученого.

Чтобы добиться стационарного решения своих уравнений, Эйнштейн ввел в них дополнительное слагаемое – так называемый ламбда-член. Однако до сих пор никто не смог найти какого-либо физического обоснования этого дополнительного члена.

В начале 20-х годов советский математик А. А. Фридман решил для Вселенной уравнения общей теории относительности, не накладывая условия стационарности. Он доказал, что могут существовать два состояния для Вселенной: расширяющийся мир и сжимающийся мир. Полученные Фридманом уравнения используют для описания эволюции Вселенной и в настоящее время.

Все эти теоретические рассуждения никак не связывались учеными с реальным миром, пока в 1929 г. американский астроном Эдвин Хаббл не подтвердил расширения видимой части Вселенной. Он использовал при этом эффект Доплера. Линии в спектре движущегося источника смещаются на величину, пропорциональную скорости его приближения или удаления, поэтому скорость галактики всегда можно вычислить по изменению положения ее спектральных линий.

Еще во втором десятилетии ХХ в. американский астроном Весто Слайфер, исследовав спектры нескольких галактик, заметил, что у большинства из них спектральные линии смещены в красную сторону. Это означало, что они удаляются от нашей Галактики со скоростями в сотни километров в секунду.

Хаббл определил расстояние до небольшого числа галактик и их скорости. Из его наблюдений следовало, что чем дальше находится галактика, тем с большей скоростью она от нас удаляется. Закон, по которому скорость удаления пропорциональна расстоянию, получил название закона Хаббла.

Означает ли это, что наша Галактика является центром, от которого и идет расширение? С точки зрения астрономов, такое невозможно. Наблюдатель в любой точке Вселенной должен увидеть ту же картину: все галактики имели бы красные смещения, пропорциональные расстояния до них. Само пространство как бы раздувается.

Вселенная расширяется, но уентр расширения отсутствует: из любого места картина расширения будет представляться той же самой.

Если на воздушном шарике нарисовать галактики, и начать надувать его, то расстояния между ними будут возрастать, причем тем быстрее, чем дальше они расположены друг от друга и разница лишь в том, что нарисованные галактики сами увеличиваются в размерах, реальные же звездные системы повсюду во Вселенной сохраняют свой объем. Это объясняется тем, что составляющие их звезды связаны между собой силами гравитации.

Факт постоянного расширения Вселенной установлен твердо. Самые далекие из известных галактик и квазаров имеют такое большое красное смещение, что длины волн всех линий в спектрах оказываются больше, чем у близких источников в 5 – 6 раз!

Но если Вселенная расширяется, то сегодня мы видим ее не такой, какой она была в прошлом. Миллиарды лет назад галактики располагались значительно ближе друг к другу. Еще раньше отдельных галактик просто не могло существовать, а еще ближе к началу расширения не могло быть даже звезд. Эта эпоха – начало расширения Вселенной – удалена от нас на 12 – 15 млрд лет.

Оценки возраста галактик пока слишком приближенны, чтобы уточнить эти цифры. Но надежно установлено, что самые старые звезды различных галактик имеют примерно одинаковый возраст. Следовательно, большинство звездных систем возникло в тот период, когда плотность вещества во Вселенной была значительно выше современной.

На начальной стадии все существо Вселенной имело настолько высокую плотность, что ее даже невозможно было себе представить. Идею о расширении Вселенной из сверхплотного состояния ввел в 1927 г. бельгийский астроном Жорж Леметр, а предложение, что первоначальное вещество было очень горячим, впервые высказал Георгий Антонович Гамов в 1946 г. Впоследствии эту гипотезу подтвердило открытие так называемого реликтового излучения. Оно осталось как эхо бурного рождения Вселенной, которое часто называют Большим Взрывом. Но остается множество вопросов. Что привело к образованию ныне наблюдаемой Вселенной, к началу Взрыва? Почему пространство имеет три измерения, а время одно? Как в стремительно расширяющейся Вселенной смогли появиться стационарные объекты – звезды и галактики? Что было до начала Большого Взрыва? Над поисками ответов на эти и другие вопросы работают современные астрономы и физики.

Вселенная расширяется. Но в некотором смысле расширение пока непосредственно не наблюдается: теоретики строят различные модели, позволяющие описать его, но мы не видим, как космические объекты в реальном времени становятся всё дальше и дальше.

Необходимо значительно увеличить точность наблюдений, а с существующей техникой нам придётся ждать века или по крайней мере десятилетия, чтобы накопить данные, иллюстрирующие этот процесс.

Для построения модели, демонстрирующей расширение Вселенной, обычно сравнивают расширяющуюся Вселенную с надувающимся воздушным шаром. При этом мы допускаем, что вся "область наблюдения" доступна нам целиком и в одно мгновение. На самом деле, чем более далёкую галактику мы наблюдаем, тем больше времени нужно её свету для того, чтобы попасть на сетчатку нашего глаза. Следовательно, в момент испускания этого света галактика как бы находилась на поверхности "менее надутого" шара. Самые далёкие из наблюдаемых нами галактик видны в те времена, когда "шарик" был совсем маленьким. Таким образом, вследствие конечности скорости света мы видим сильно искажённую картину окружающего нас мира.

Особенностью этой модели расширяющейся Вселенной является как бы некий "взгляд со стороны". Мы как бы смотрим из "лишнего" измерения, да ещё вдобавок видим всё сразу, наблюдая процессы по единым "космическим часам", то есть разом охватываем всю Вселенную, получая информацию с бесконечной скоростью. Этот "взгляд бога" недоступен обычному наблюдателю.

Мы находимся на Земле, внутри Вселенной. Сигналы приходят к нам с конечной скоростью - со скоростью света. Поэтому мы видим удалённые объекты такими, какими они были в далёком прошлом. В астрономии красное смещение - сдвиг спектра в красную сторону. Это явление может быть выражением эффекта Доплера, гравитационного красного смещения или их комбинаций. В смещение линий в галактических спектрах вносит вклад как космологическое красное смещение, вызванное расширением пространства Вселенной, так и красное (или фиолетовое) смещение, связанное с эффектом Доплера вследствие собственного движения галактик.

После открытия красного смещения в спектрах удалённых галактик предположили, что оно вызвано чем-то вроде "утомления от долгой поездки": некий неизвестный процесс вынуждает фотоны терять энергию по мере удаления от источника света и поэтому "краснеть".

Но эта гипотеза не согласуется с наблюдениями. Например, когда звезда взрывается как сверхновая, она вспыхивает, а затем тускнеет. У сверхновых типа 1а, используемых для определения расстояний до галактик, угасание длится примерно две недели. За этот период времени излучается определённое количество фотонов. Гипотеза "усталости" говорит, что за время пути они потеряют энергию, но наблюдатель всё равно увидит поток фотонов длительностью в две недели. В расширяющемся же пространстве "растягиваются" не только сами фотоны (за счёт чего они теряют энергию), но и их поток. Поэтому, чтобы все они "добрались" до Земли, требуется более двух недель.

В космологии две проблемы с расстоянием: всё расположено очень далеко друг от друга и быстро движется. Пока свет дойдёт от источника до наблюдателя, их удалённость сильно изменится. При этом расстояние до объектов "прямо сейчас" не поддается прямому измерению, так как эта процедура занимает конечное (и, вообще говоря, довольно большое) время, связанное с распространением сигнала: мы просто не видим далёкие объекты такими, каковы они в данный момент. Это всё усложняет, поскольку, пользуясь бытовым опытом, мы привыкли представлять себе всё "таким, какое оно сейчас". В космологии расстояния и скорости "прямо сейчас" мы можем только рассчитать в рамках определённой модели или же получить их каким-то "окольным путём", но не с помощью современных методов наблюдения.

Поскольку Вселенная расширяется, её наблюдаемая область сейчас имеет радиус больше 14 млрд световых лет. Пока свет путешествует, пространство, которое он пересекает, расширяется. К моменту, когда он достигает нас, расстояние до испустившей его галактики становится больше, чем просто вычисленное по времени "путешествия" фотонов (приблизительно второе).

Многие люди помнят события вчерашнего дня лучше, чем позавчерашнего, а недельной давности - вообще не помнят. Зато некоторые воспоминания детства и юности для них сияют, как будто всё это случилось вчера. Если мы возьмём галактику типа нашей, то окажется, что вплоть до некоторого расстояния (а, глядя на далёкие объекты, мы смотрим в прошлое!) она будет выглядеть всё меньше и меньше. Но потом - о чудо! - видимый размер начнёт увеличиваться. Это происходит потому, что свет наблюдаемой галактики был испущен в эпоху молодости Вселенной, когда мы находились гораздо ближе. Соответственно, угловое расстояние до далёких объектов меняется таким же причудливым образом. Угол между лучами света не меняется при распространении в "плоской" вселенной. Поэтому угловое расстояние до космического объекта зависит только от того, как далеко он находился в момент излучения.

Собственное расстояние - физическое расстояние между объектами. Оно изменяется в соответствии с расширением Вселенной. Расстояние, о котором обычно говорится во всех статьях, новостях, равно пути света, пройденному от источник с момента излучения. Оно примерно равно собственному на сравнительно небольших расстояниях, где за время распространения сигнала Вселенная не успела заметно расшириться. Сопутствующие координаты привязаны к координатной сетке, расширяющейся вместе с расширением Вселенной. Относительно неё положение объектов остаётся неизменным, при этом собственные расстояния между ними увеличиваются в соответствии с изменением масштабного фактора. Важно, что угловое расстояние равно собственному расстоянию в момент испускания излучения.

До сих пор горизонт поднимался как "линия, где земля сходится с небом". По мере совершенствования наших представлений о Вселенной в лексиконе ученых начали появляться всё новые и новые "горизонты", достичь которые не представляется возможным (хотя бы потому, что максимально возможная скорость в нашем мире ограничена скоростью света). Горизонт частиц - расширяющаяся сфера, радиус которой определяется расстоянием до самого далёкого источника, в принципе наблюдаемого в данный момент времени (речь идёт о собственном расстоянии до объекта в момент приёма фотона, а не в момент излучения). Такой горизонт нельзя определить как скорость света, умноженную на время после начала расширения, так как, пока фотон летит, вселенная расширяется. Но если мы говорим о частицах как о галактиках, которые возникли в какой-то не слишком ранний момент эволюции вселенной, то такой горизонт будет и в ускоряющихся моделях. Есть он и в нашей Вселенной. Расстояние до горизонта событий - это расстояние (в настоящий момент) до частицы, до которой может дойти наш световой сигнал, посланный прямо сейчас. Мы наблюдаем галактики на красном смещении около 1,8. Свет от таких галактик идёт к нам 10 млрд лет.

В момент излучения они находились от нас в 5,7 млрд световых лет (собственное расстояние на момент излучения). Сейчас до них 16,1 млрд световых лет (собственное расстояние в данный момент), и сигнал, посланный нами к ним, никогда их не достигнет, если динамика Вселенной в будущем принципиально не изменится. И наоборот, мы никогда не увидим события, происходящие в них сейчас.

Получается, что расстояние до горизонта событий соответствует расстоянию до таких галактик в данный момент, но мы-то видим их сейчас такими, какими они были в далёком прошлом! В этом смысле мы не увидим горизонт событий, но можем сказать, что его положение соответствует современному положению галактик, наблюдаемых нами на красном смещении 1,8. Согласно закону Хаббла, скорость удаления далёких объектов прямо пропорциональна расстояниям до них. Здесь речь идёт о скорости изменения собственного расстояния в настоящий момент.

Расстояние, на котором скорость удаления равняется световой, называется "сферой Хаббла". Есть источники, которые и в момент излучения, и в настоящий момент находятся за её пределами, то есть их скорость убегания выше световой и тогда, и сейчас.

В современной космологической модели (с вкладом тёмной энергии около 70%) все наблюдаемые источники с красным смещением, превышающим примерно 1,5, в настоящий момент удаляются от нас быстрее скорости света. То есть относительные скорости точек, находящихся друг от друга на больших расстояниях, не ограничиваются скоростями света.

В гипотетической стационарной вселенной с началом во времени горизонт частиц, представляет собой сферу, расширяющуюся со скоростью света. Если через 5 млрд лет после "сотворения" этого мира в какой-нибудь из галактик появится наблюдатель, для него этот горизонт частиц окажется сферой радиусом в 5 млрд световых лет. Ещё через миллиард лет её радиус составит 6 млрд световых лет и т.д.

Представим себе первый фотон, излученный в "момент ноль". К его скорости движения, равной скорости света, добавляется ещё скорость расширения пространства. За время существования Вселенной этот фотон удалился от места его испускания на расстояние 46 млрд световых лет (примерно 13,7 млрд световых лет он пролетел "самостоятельно", остальное - за счёт расширения Вселенной). Таким образом, без учёта скорости расширения ему понадобилось бы 46 млрд лет для преодоления такого расстояния. Реликтовое излучение возникло, когда Вселенной было 380 тыс. лет. Сопутствующее красное смещение равно 1089. Сегодня собственное расстояние до источника, испустившего это излучение, - почти 46 млрд световых лет.

Наблюдатель может видеть лишь конечную часть своего мира. Нам не дано знать, какова Вселенная за пределами нынешнего горизонта частиц. Если пространство и дальше будет расширяться с ускорением, то и в сколь угодно отдалённом будущем нельзя будет проверить, как выглядит Вселенная за горизонтом частиц. А наши телескопы не могут "заглянуть" в эпоху, когда космическое пространство было заполнено плазмой и не содержало свободных фотонов.

По материалу Сергея Попова и Алексея Топоренского подготовил Сергей РЯБОШАПКО, г. Самара

НА ГЛАВНУЮ

В истории познания окружающего нас мира четко прослеживается общее направление - постепенное признание неисчерпаемости природы, ее бесконечности во всех отношениях. Вселенная бесконечна в пространстве и во времени, и если отбросить идеи И. Ньютона о "первом толчке", то такого рода мировоззрение можно считать вполне материалистическим. Ньютоновская Вселенная утверждала, что пространство есть вместилище всех небесных тел, с движением и массой которых оно никак не связано; Вселенная всегда одна и та же, т. е. стационарна, хотя в ней постоянно происходит гибель и рождение миров.

Казалось бы, небо ньютоновской космологии обещало быть безоблачным. Однако очень скоро пришлось убедиться в обратном. В течение XIX в. обнаружились три противоречия, которые были сформулированы в форме трех парадоксов, названных космологическими. Они, казалось, подрывали представление о бесконечности Вселенной.


Фотометрический парадокс. Если Вселенная бесконечна и звезды в ней распределены равномерно, то по любому направлению мы должны видеть какую-нибудь звезду. В этом случае фон неба был бы ослепительно ярким, как Солнце.

Гравитационный парадокс. Если Вселенная бесконечна и звезды равномерно занимают ее пространство, то сила тяготения в каждой его точке должна быть бесконечно велика, а стало быть, бесконечно велики были бы и относительные ускорения космических тел, чего, как известно, нет.

Термодинамический парадокс. По второму закону термодинамики все физические процессы во Вселенной в конечном счете сводятся к выделению теплоты, которая необратимо рассеивается в мировом пространстве. Рано или поздно все тела остынут до температуры абсолютного нуля, движение прекратится и наступит навсегда "тепловая смерть". Вселенная имела начало, и ее ждет неизбежный конец.

Первая четверть XX в. прошла в томительном ожидании развязки. Никто, разумеется, не хотел отрицать бесконечность Вселенной, но, с другой стороны, никому не удавалось устранить космологические парадоксы стационарной Вселенной. Лишь гений Альберта Эйнштейна внес новую струю в космологические споры.



Ньютоновская классическая физика, как уже говорилось, рассматривала пространство как вместилище тел. Никакого взаимодействия между телами и пространством по Ньютону и быть не могло.

В 1916 г. А. Эйнштейн опубликовал основы общей теории относительности. Одна из главных ее идей состоит в том, что материальные тела, в особенности большой массы, заметно искривляют пространство. Из-за этого, например, луч света, проходящий вблизи Солнца, изменяет первоначальное направление.

Представим себе теперь, что во всей наблюдаемой нами части Вселенной материя равномерно "размазана" в пространстве и в любой его точке действуют одни и те же законы. При некоторой средней плотности космического вещества выделенная ограниченная часть Вселенной не только искривит пространство, но


даже замкнет его "на себя". Вселенная (точнее, выделенная ее часть) превратится в замкнутый мир, напоминающий обычную сферу. Но только это будет четырехмерная сфера, или гиперсфера, представить себе которую мы, трехмерные существа, не в состоянии. Однако, мысля по аналогии, мы легко разберемся в некоторых свойствах гиперсферы. Она, как и обычная сфера, имеет конечный объем, заключающий в себе конечную массу вещества. Если в мировом пространстве лететь все время в одном направлении, то через некоторое число миллиардов лет можно попасть в исходную точку.

Идею о возможности замкнутости Вселенной впервые высказал А. Эйнштейн. В 1922 г. советский математик А. А. Фридман доказал, что "замкнутая Вселенная" Эйнштейна никак не может быть статичной. В любом случае ее пространство или расширяется, или сжимается со всем своим содержимым.

В 1929 г. американский астроном Э. Хаббл открыл замечательную закономерность: линии в спектрах подавляющего большинства галактик смещены к красному концу, причем смещение тел тем больше, чем дальше от нас находится галактика. Это интересное явление называется красным смещением. Объяснив красное смещение эффектом Доплера, т. е. изменением длины волны света в связи с движением источника, ученые пришли к выводу о том, что расстояние между нашей и другими галактиками непрерывно увеличивается. Конечно, галактики не разлетаются во все стороны от нашей Галактики, которая не занимает никакого особого положения в Метагалактике, а происходит взаимное удаление всех галактик. Это означает, что наблюдатель, находящийся в любой галактике, мог бы, подобно нам, обнаружить красное смещение, ему казалось бы, что от него удаляются все галактики. Таким образом, Метагалактика нестационарна. Открытие расширения Метагалактики свидетельствует о том, что Метагалактика в прошлом была не такой, как сейчас, и иной станет в будущем, т. е. Метагалактика эволюционирует.

По красному смещению определены скорости удаления галактик. У многих галактик они очень велики, соизмеримы со скоростью света. Самыми большими скоростями, иногда превы-


шающими 250 тыс. км/с, обладают некоторые квазары, считающиеся самыми удаленными от нас объектами Метагалактики.

Закон, согласно которому красное смещение (а значит, и скорость удаления галактик) возрастает пропорционально расстоянию от галактик (закон Хаббла), можно записать в виде: v - Нr, где v - лучевая скорость галактики; r - расстояние до нее; Н - постоянная Хаббла. По современным оценкам, значение Н заключено в пределах:

Следовательно, наблюдаемый темп расширения Метагалактики таков, что галактики, разделенные расстоянием 1 Мпк (3 10 19 км), удаляются друг от друга со скоростью от 50 до 100 км/с. Если скорость удаления галактики известна, то можно вычислить расстояние до далеких галактик.

Итак, мы живем в расширяющейся Метагалактике. Это явление имеет свои особенности. Расширение Метагалактики проявляется только на уровне скоплений и сверхскоплений галактик, т. е. систем, элементами которых являются галактики. Другая особенность расширения Метагалактики заключается в том, что не существует центра, от которого разбегаются галактики.

Расширение Метагалактики - самое грандиозное из известных в настоящее время явлений природы. Правильное его истолкование имеет исключительно большое мировоззренческое значение. Не случайно в объяснении причины этого явления резко проявилось коренное отличие философских взглядов ученых. Некоторые из них, отождествляя Метагалактику со всей Вселенной, пытаются доказать, что расширение Метагалактики подтверждает религиозное о сверхъестественном, божественном происхождении Вселенной. Однако во Вселенной известны естественные процессы, которые в прошлом могли вызвать наблюдаемое расширение. По всей вероятности, это взрывы. Их масштабы поражают нас уже при изучении отдельных видов галактик. Можно представить, что расширение Метагалактики


также началось с явления, напоминающего колоссальный взрыв вещества, обладавшего огромной температурой и плотностью.

Так как Вселенная расширяется, естественно думать, что раньше она была меньше и когда-то все пространство было сжато в сверхплотную материальную точку. Это был момент так называемой сингулярности, который уравнениями современной физики описан быть не может. По неизвестным причинам произошел процесс, подобный взрыву, и с тех пор Вселенная начала "расширяться". Процессы, происходящие при этом, объясняются теорией горячей Вселенной.

В 1965 г. американские ученые А. Пензиас и Р. Вильсон нашли экспериментальное доказательство пребывания Вселенной в сверхплотном и горячем состоянии, т. е. реликтовое излучение. Оказалось, что космическое пространство заполнено электромагнитными волнами, являющимися посланцами той древней эпохи развития Вселенной, когда еще не было никаких звезд, галактик, туманностей. Реликтовое излучение пронизывает все пространство, все галактики, оно участвует в расширении Метагалактики. Реликтовое электромагнитное излучение находится в радиодиапазоне с длинами волн от 0,06 см до 60 см. Распределение энергии похоже на спектр абсолютно черного тела температурой 2,7 К. Плотность энергии реликтового излучения равна 4 10 -13 эрг/см 3 , максимум излучения приходится на 1,1 мм. При этом само излучение имеет характер некоторого фона, ибо заполняет все пространство и совершенно изотропно. Оно является свидетелем начального состояния Вселенной.

Очень важно, что, хотя это открытие было сделано случайно при изучении космических радиопомех, существование реликтового излучения было предсказано теоретиками. Одним из первых предсказал это излучение Д. Гамов, разрабатывая теорию происхождения химических элементов, возникших в первые минуты после Большого взрыва. Предсказание существования реликтового излучения и обнаружение его в космическом пространстве - еще один убедительный пример познаваемости мира и его закономерностей.


Во всех развитых динамических космологических моделях утверждается идея о расширении Вселенной из некоторого сверхплотного и сверхгорячего состояния, называемого сингулярным. Американский астрофизик Д. Гамов пришел к концепции Большого взрыва и горячей Вселенной на ранних этапах ее эволюции. Анализ проблем начальной стадии эволюции Вселенной оказался возможным благодаря новым представлениям о природе вакуума. Космологическое решение, полученное В. де Ситтером для вакуума (r ~ е Ht), показало, что экспоненциальное расширение неустойчиво: оно не может продолжаться неограниченно долго. Через сравнительно малый промежуток времени экспоненциальное расширение прекращается, в вакууме происходит фазовый переход, в процессе которого энергия вакуума переходит в обычное вещество и кинетическую энергию расширения Вселенной. Большой взрыв был 15-20 млрд лет назад.

Согласно стандартной модели горячей Вселенной сверхплотная материя после Большого взрыва начала расширяться и постепенно охлаждаться. По мере расширения произошли фазовые переходы, в результате которых выделились физические силы взаимодействия материальных тел. При экспериментальных значениях таких основных физических параметров, как плотность и температура (р ~ 10 96 кг/м 3 и Т ~ 10 32 К), на начальном этапе расширения Вселенной различие между элементарными частицами и четырьмя типами физических взаимодействий практически отсутствует. Оно начинает проявляться когда уменьшается температура и начинается дифференциация материи.

Таким образом, современные представления об истории возникновения нашей Метагалактики основываются на пяти важных экспериментальных наблюдениях:

1. Исследование спектральных линий звезд показывает, что Метагалактика в среднем обладает единым химическим составом. Преобладают водород и гелий.

2. В спектрах элементов далеких галактик обнаруживается систематическое смещение красной части спектра. Величина


этого смещения возрастает по мере удаления галактик от наблюдателя.

3. Измерения радиоволн, приходящих из космоса в сантиметровом и миллиметровом диапазонах, указывают на то, что космическое пространство равномерно и изотропно заполнено слабым радиоизлучением. Спектральная характеристика этого так называемого фонового излучения соответствует излучению абсолютно черного тела при температуре около 2,7 градуса Кельвина.

4. По астрономическим наблюдениям, крупномасштабное распределение галактик соответствует постоянной плотности массы, составляющей, по современным оценкам, по крайней мере 0,3 бариона на каждый кубический метр.

5. Анализ процессов радиоактивного распада в метеоритах показывает, что некоторые из этих компонентов должны были возникнуть от 14 до 24 миллиардов лет назад.