Найти угловой коэффициент прямой. Как найти угловой коэффициент


На рисунке показан угол наклона прямой и указано значение углового коэффициента при различных вариантах расположения прямой относительно прямоугольной системы координат.

Нахождение углового коэффициента прямой при известном угле наклона к оси Ox не представляет никаких сложностей. Для этого достаточно вспомнить определение углового коэффициента и вычислить тангенс угла наклона.

Пример.

Найдите угловой коэффициент прямой, если угол ее наклона к оси абсцисс равен .

Решение.

По условию . Тогда по определению углового коэффициента прямой вычисляем .

Ответ:

Задача нахождения угла наклона прямой к оси абсцисс при известном угловом коэффициенте немного сложнее. Здесь необходимо учитывать знак углового коэффициента. При угол наклона прямой является острым и находится как . При угол наклона прямой является тупым и его можно определить по формуле .

Пример.

Определите угол наклона прямой к оси абсцисс, если ее угловой коэффициент равен 3 .

Решение.

Так как по условию угловой коэффициент положителен, то угол наклона прямой к оси Ox острый. Его вычисляем по формуле .

Ответ:

Пример.

Угловой коэффициент прямой равен . Определите угол наклона прямой к оси Ox .

Решение.

Обозначим k – угловой коэффициент прямой, - угол наклона этой прямой к положительному направлению оси Ox . Так как , то используем формулу для нахождения угла наклона прямой следующего вида . Подставляем в нее данные из условия: .

Ответ:

Уравнение прямой с угловым коэффициентом.

Уравнение прямой с угловым коэффициентом имеет вид , где k - угловой коэффициент прямой, b – некоторое действительное число. Уравнением прямой с угловым коэффициентом можно задать любую прямую, не параллельную оси Oy (для прямой параллельно оси ординат угловой коэффициент не определен).

Давайте разберемся со смыслом фразы: «прямая на плоскости в фиксированной системе координат задана уравнением с угловым коэффициентом вида ». Это означает, что уравнению удовлетворяют координаты любой точки прямой и не удовлетворяют координаты никаких других точкек плоскости. Таким образом, если при подстановке координат точки получается верное равенство, то прямая проходит через эту точку. В противном случае точка не лежит на прямой.

Пример.

Прямая задана уравнением с угловым коэффициентом . Принадлежат ли точки и этой прямой?

Решение.

Подставим координаты точки в исходное уравнение прямой с угловым коэффициентом: . Мы получили верное равенство, следовательно, точка М 1 лежит на прямой.

При подстановке координат точки получаем неверное равенство: . Таким образом, точка М 2 не лежит на прямой.

Ответ:

Точка М 1 принадлежит прямой, М 2 – не принадлежит.

Следует отметить, что прямая, определенная уравнением прямой с угловым коэффициентом , проходит через точку , так как при подстановке ее координат в уравнение мы получаем верное равенство: .

Таким образом, уравнение прямой с угловым коэффициентом определяет на плоскости прямую, проходящую через точку и образующую угол с положительным направлением оси абсцисс, причем .

В качестве примера изобразим прямую, определяемую уравнением прямой с угловым коэффициентом вида . Эта прямая проходит через точку и имеет наклон радиан (60 градусов) к положительному направлению оси Ox . Ее угловой коэффициент равен .

Уравнение прямой с угловым коэффициентом, проходящей через заданную точку.

Сейчас решим очень важную задачу: получим уравнение прямой с заданным угловым коэффициентом k и проходящую через точку .

Так как прямая проходит через точку , то справедливо равенство . Число b нам неизвестно. Чтобы избавиться от него, вычтем из левой и правой частей уравнения прямой с угловым коэффициентом соответственно левую и правую части последнего равенства. При этом получим . Это равенство представляет собой уравнение прямой с заданным угловым коэффициентом k , которая проходит через заданную точку .

Рассмотрим пример.

Пример.

Напишите уравнение прямой, проходящей через точку , угловой коэффициент этой прямой равен -2 .

Решение.

Из условия имеем . Тогда уравнение прямой с угловым коэффициентом примет вид .

Ответ:

Пример.

Напишите уравнение прямой, если известно, что она проходит через точку и угол наклона к положительному направлению оси Ox равен .

Решение.

Сначала вычислим угловой коэффициент прямой, уравнение которой мы ищем (такую задачу мы решали в предыдущем пункте этой статьи). По определению . Теперь мы располагаем всеми данными, чтобы записать уравнение прямой с угловым коэффициентом:

Ответ:

Пример.

Напишите уравнение прямой с угловым коэффициентом, проходящую через точку параллельно прямой .

Решение.

Очевидно, что углы наклона параллельных прямых к оси Ox совпадают (при необходимости смотрите статью параллельность прямых), следовательно, угловые коэффициенты у параллельных прямых равны. Тогда угловой коэффициент прямой, уравнение которой нам нужно получить, равен 2 , так как угловой коэффициент прямой равен 2 . Теперь мы можем составить требуемое уравнение прямой с угловым коэффициентом:

Ответ:

Переход от уравнения прямой с угловым коэффициентом к другим видам уравнения прямой и обратно.

При всей привычности уравнение прямой с угловым коэффициентом далеко не всегда удобно использовать при решении задач. В некоторых случаях задачи проще решаются, когда уравнение прямой представлено в другом виде. К примеру, уравнение прямой с угловым коэффициентом не позволяет сразу записать координаты направляющего вектора прямой или координаты нормального вектора прямой . Поэтому следует научиться переходить от уравнения прямой с угловым коэффициентом к другим видам уравнения этой прямой.

Из уравнения прямой с угловым коэффициентом легко получить каноническое уравнение прямой на плоскости вида . Для этого из правой части уравнения переносим слагаемое b в левую часть с противоположным знаком, затем делим обе части полученного равенства на угловой коэффициент k : . Эти действия приводят нас от уравнения прямой с угловым коэффициентом к каноническому уравнению прямой.

Пример.

Приведите уравнение прямой с угловым коэффициентом к каноническому виду.

Решение.

Выполним необходимые преобразования: .

Ответ:

Пример.

Прямая задана уравнением прямой с угловым коэффициентом . Является ли вектор нормальным вектором этой прямой?

Решение.

Для решения этой задачи перейдем от уравнения прямой с угловым коэффициентом к общему уравнению этой прямой: . Нам известно, что коэффициенты перед переменными x и y в общем уравнении прямой являются соответствующими координатами нормального вектора этой прямой, то есть, - нормальный вектор прямой . Очевидно, что вектор коллинеарен вектору , так как справедливо соотношение (при необходимости смотрите статью ). Таким образом, исходный вектор также является нормальным вектором прямой , а, следовательно, является нормальным вектором и исходной прямой .

Ответ:

Да, является.

А сейчас будем решать обратную задачу – задачу приведения уравнения прямой на плоскости к уравнению прямой с угловым коэффициентом.

От общего уравнения прямой вида , в котором , очень легко перейти к уравнению с угловым коэффициентом. Для этого нужно общее уравнение прямой разрешить относительно y . При этом получаем . Полученное равенство представляет собой уравнение прямой с угловым коэффициентом, равным .

Эта математическая программа находит уравнение касательной к графику функции \(f(x) \) в заданной пользователем точке \(a \).

Программа не только выводит уравнение касательной, но и отображает процесс решения задачи.

Этот калькулятор онлайн может быть полезен учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вам нужно найти производную функции, то для этого у нас есть задача Найти производную.

Если вы не знакомы с правилами ввода функций, рекомендуем с ними ознакомиться.

Введите выражение функции \(f(x)\) и число \(a\)
f(x)=
a=
Найти уравнение касательной

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Угловой коэффициент прямой

Напомним, что графиком линейной функции \(y=kx+b\) является прямая. Число \(k=tg \alpha \) называют угловым коэффициентом прямой , а угол \(\alpha \) - углом между этой прямой и осью Ox

Если \(k>0\), то \(0 Если \(kУравнение касательной к графику функции

Если точка М(а; f(a)) принадлежит графику функции у = f(x) и если в этой точке к графику функции можно провести касательную, не перпендикулярную оси абсцисс, то из геометрического смысла производной следует, что угловой коэффициент касательной равен f"(a). Далее мы выработаем алгоритм составления уравнения касательной к графику любой функции.

Пусть даны функция у = f(x) и точка М(а; f(a)) на графике этой функции; пусть известно, что существует f"(a). Составим уравнение касательной к графику заданной функции в заданной точке. Это уравнение, как уравнение любой прямой, не параллельной оси ординат, имеет вид y = kx + b, поэтому задача состоит в нахождении значений коэффициентов k и b.

С угловым коэффициентом k все понятно: известно, что k = f"(a). Для вычисления значения b воспользуемся тем, что искомая прямая проходит через точку М(а; f(a)). Это значит, что если подставить координаты точки М в уравнение прямой, получим верное равенство: \(f(a)=ka+b \), т.е. \(b = f(a) - ka \).

Осталось подставить найденные значения коэффициентов k и b в уравнение прямой:

$$ y=kx+b $$ $$ y=kx+ f(a) - ka $$ $$ y=f(a)+ k(x-a) $$ $$ y=f(a)+ f"(a)(x-a) $$

Нами получено уравнение касательной к графику функции \(y = f(x) \) в точке \(x=a \).

Алгоритм нахождения уравнения касательной к графику функции \(y=f(x) \)
1. Обозначить абсциссу точки касания буквой \(a \)
2. Вычислить \(f(a) \)
3. Найти \(f"(x) \) и вычислить \(f"(a) \)
4. Подставить найденные числа \(a, f(a), f"(a) \) в формулу \(y=f(a)+ f"(a)(x-a) \)

Книги (учебники) Рефераты ЕГЭ и ОГЭ тесты онлайн Игры, головоломки Построение графиков функций Орфографический словарь русского языка Словарь молодежного слэнга Каталог школ России Каталог ССУЗов России Каталог ВУЗов России Список задач Нахождение НОД и НОК Упрощение многочлена (умножение многочленов)

Научитесь брать производные от функций. Производная характеризует скорость изменения функции в определенной точке, лежащей на графике этой функции. В данном случае графиком может быть как прямая, так и кривая линия. То есть производная характеризует скорость изменения функции в конкретный момент времени. Вспомните общие правила, по которым берутся производные, и только потом переходите к следующему шагу.

  • Прочитайте статью .
  • Как брать простейшие производные, например, производную показательного уравнения, описано . Вычисления, представленные в следующих шагах, будут основаны на описанных в ней методах.

Научитесь различать задачи, в которых угловой коэффициент требуется вычислить через производную функции. В задачах не всегда предлагается найти угловой коэффициент или производную функции. Например, вас могут попросить найти скорость изменения функции в точке А(х,у). Также вас могут попросить найти угловой коэффициент касательной в точке А(х,у). В обоих случаях необходимо брать производную функции.

  • Возьмите производную данной вам функции. Здесь строить график не нужно – вам понадобится только уравнение функции. В нашем примере возьмите производную функции . Берите производную согласно методам, изложенным в упомянутой выше статье:

    • Производная:
  • В найденную производную подставьте координаты данной вам точки, чтобы вычислить угловой коэффициент. Производная функции равна угловому коэффициенту в определенной точке. Другими словами, f"(х) – это угловой коэффициент функции в любой точке (x,f(x)). В нашем примере:

    • Найдите угловой коэффициент функции f (x) = 2 x 2 + 6 x {\displaystyle f(x)=2x^{2}+6x} в точке А(4,2).
    • Производная функции:
      • f ′ (x) = 4 x + 6 {\displaystyle f"(x)=4x+6}
    • Подставьте значение координаты «х» данной точки:
      • f ′ (x) = 4 (4) + 6 {\displaystyle f"(x)=4(4)+6}
    • Найдите угловой коэффициент:
    • Угловой коэффициент функции f (x) = 2 x 2 + 6 x {\displaystyle f(x)=2x^{2}+6x} в точке А(4,2) равен 22.
  • Если возможно, проверьте полученный ответ на графике. Помните, что угловой коэффициент можно вычислить не в каждой точке. Дифференциальное исчисление рассматривает сложные функции и сложные графики, где угловой коэффициент можно вычислить не в каждой точке, а в некоторых случаях точки вообще не лежат на графиках. Если возможно, используйте графический калькулятор, чтобы проверить правильность вычисления углового коэффициента данной вам функции. В противном случае проведите касательную к графику в данной вам точке и подумайте, соответствует ли найденное вами значение углового коэффициента тому, что вы видите на графике.

    • Касательная будет иметь тот же угловой коэффициент, что и график функции в определенной точке. Для того, чтобы провести касательную в данной точке, двигайтесь вправо/влево по оси Х (в нашем примере на 22 значения вправо), а затем вверх на единицу по оси Y. Отметьте точку, а затем соедините ее с данной вам точкой. В нашем примере соедините точки с координатами (4,2) и (26,3).
  • Угловой коэффициент прямой. В этой статье мы с вами рассмотрим задачи связанные с координатной плоскостью включённые в ЕГЭ по математике. Это задания на:

    — определение углового коэффициента прямой, когда известны две точки через которые она проходит;
    — определение абсциссы или ординаты точки пересечения двух прямых на плоскости.

    Что такое абсцисса и ордината точки было описано в данной рубрики. В ней мы уже рассмотрели несколько задач связанных с координатной плоскостью. Что необходимо понимать для рассматриваемого типа задач? Немного теории.

    Уравнение прямой на координатной плоскости имеет вид:

    где k это и есть угловой коэффициент прямой.

    Следующий момент! Угловой коэффициент прямой равен тангенсу угла наклона прямой. Это угол между данной прямой и осью ох.



    Он лежит в пределах от 0 до 180 градусов.

    То есть, если мы приведём уравнение прямой к виду y = kx + b , то далее всегда сможем определить коэффициент k (угловой коэффициент).

    Так же, если мы исходя из условия сможем определить тангенс угла наклона прямой, то тем самым найдём её угловой коэффициент.

    Следующий теоретический момент! Уравнение прямой походящей через две данные точки. Формула имеет вид:


    Рассмотрим задачи (аналогичные задачам из открытого банка заданий):

    Найдите угловой коэффициент прямой, проходящей через точки с координатами (–6;0) и (0;6).


    В данной задаче самый рациональный путь решения это найти тангенс угла между осью ох и данной прямой. Известно, что он равен угловому коэффициенту. Рассмотрим прямоугольный треугольник образованный прямой и осями ох и оу:


    Тангенсом угла в прямоугольном треугольнике является отношение противолежащего катета к прилежащему:

    *Оба катета равны шести (это их длины).

    Конечно, данную задачу можно решить используя формулу нахождения уравнения прямой проходящей через две данные точки. Но это будет более длительный путь решения.

    Ответ: 1

    Найдите угловой коэффициент прямой, проходящей через точки с координатами (5;0) и (0;5).


    Наши точки имеют координаты (5;0) и (0;5). Значит,

    Приведём формулу к виду y = kx + b

    Получили, что угловой коэффициент k = – 1.

    Ответ: –1

    Прямая a проходит через точки с координатами (0;6) и (8;0). Прямая b проходит через точку с координатами (0;10) и параллельна прямой a b с осью оx.


    В данной задаче можно найти уравнение прямой a , определить угловой коэффициент для неё. У прямой b угловой коэффициент будет такой же, так как они параллельны. Далее можно найти уравнение прямой b . А затем, подставив в него значение y = 0, найти абсциссу. НО!

    В данном случае, проще использовать свойство подобия треугольников.

    Прямоугольные треугольники, образованные данными (параллельными) прямыми о осями координат подобны, а это значит, что отношения их соответствующих сторон равны.


    Искомая абсцисса равна 40/3.

    Ответ: 40/3

    Прямая a проходит через точки с координатами (0;8) и (–12;0). Прямая b проходит через точку с координатами (0; –12) и параллельна прямой a . Найдите абсциссу точки пересечения прямой b с осью оx .


    Для данной задачи самый рациональный путь решения — это применение свойства подобия треугольников. Но мы решим её другим путём.

    Нам известны точки, через которые проходит прямая а . Можем составить уравнение прямой. Формула уравнения прямой походящей через две данные точки имеет вид:


    По условию точки имеют координаты (0;8) и (–12;0). Значит,

    Приведём к виду y = kx + b :

    Получили, что угловой k = 2/3.

    *Угловой коэффициент можно было найти через тангенс угла в прямоугольном треугольнике с катетами 8 и 12.

    Известно, у параллельных прямых угловые коэффициенты равны. Значит уравнение прямой проходящей через точку (0;-12) имеет вид:

    Найти величину b мы можем подставив абсциссу и ординату в уравнение:

    Таким образом, прямая имеет вид:

    Теперь чтобы найти искомую абсциссу точки пересечения прямой с осью ох, необходимо подставить у = 0:

    Ответ: 18

    Найдите ординату точки пересечения оси оy и прямой, проходящей через точку В(10;12) и параллельной прямой, проходящей через начало координат и точку А(10;24).


    Найдём уравнение прямой проходящей через точки с координатами (0;0) и (10;24).

    Формула уравнения прямой походящей через две данные точки имеет вид:

    Наши точки имеют координаты (0;0) и (10;24). Значит,

    Приведём к виду y = kx + b

    Угловые коэффициенты параллельных прямых равны. Значит, уравнение прямой, проходящей через точку В(10;12) имеет вид:

    Значение b найдём подставив в это уравнение координаты точки В(10;12):

    Получили уравнение прямой:

    Чтобы найти ординату точки пересечения этой прямой с осью оу нужно подставить в найденное уравнение х = 0:

    *Самый простой способ решения. При помощи параллельного переноса сдвигаем данную прямую вниз вдоль оси оу до точки (10;12). Сдвиг происходит на 12 единиц, то есть точка А(10;24) «перешла» в точку В(10;12), а точка О(0;0) «перешла» в точку (0;–12). Значит, полученная прямая будет пересекать ось оу в точке (0;–12).

    Искомая ордината равна –12.

    Ответ: –12

    Найдите ординату точки пересечения прямой, заданной уравнением

    + 2у = 6 , с осью Oy .

    Координата точки пересечения заданной прямой с осью оу имеет вид (0;у ). Подставим в уравнение абсциссу х = 0, и найдём ординату:

    Ордината точки пересечения прямой с осью оу равна 3.

    *Решается система:

    Ответ: 3

    Найдите ординату точки пересечения прямых, заданных уравнениями

    3х + 2у = 6 и у = – х .

    Когда заданны две прямые, и стоит вопрос о нахождении координат точки пересечения этих прямых, решается система из данных уравнений:

    В первом уравнении подставляем – х вместо у :

    Ордината равна минус шести.

    Ответ: 6

    Найдите угловой коэффициент прямой, проходящей через точки с координатами (–2;0) и (0;2).

    Найдите угловой коэффициент прямой, проходящей через точки с координатами (2;0) и (0;2).

    Прямая a проходит через точки с координатами (0;4) и (6;0). Прямая b проходит через точку с координатами (0;8) и параллельна прямой a. Найдите абсциссу точки пересечения прямой b с осью Ox.

    Найдите ординату точки пересечения оси оy и прямой, проходящей через точку B (6;4) и параллельной прямой, проходящей через начало координат и точку A (6;8).

    1. Необходимо чётко усвоить, что угловой коэффициент прямой равен тангенсу угла наклона прямой. Это поможет вам при решении многих задач данного типа.

    2. Формулу нахождения прямой проходящей через две данные точки нужно понимать обязательно. С её помощью всегда найдёте уравнение прямой, если даны координаты двух её точек.

    3. Помните о том, что угловые коэффициенты параллельных прямых равны.

    4. Как вы поняли, в некоторых задачах удобно использовать признак подобия треугольников. Задачи решаются практически устно.

    5. Задачи в которых даны две прямые и требуется найти абсциссу или ординату точки их пересечения можно решить графическим способом. То есть, построить их на координатной плоскости (на листе в клетку) и определить точку пересечения визуально. *Но этот способ применим не всегда.

    6. И последнее. Если дана прямая и координаты точек её пересечения с осями координат, то в таких задачах удобно находить угловой коэффициент через нахождение тангенса угла в образованном прямоугольном треугольнике. Как «увидеть» этот треугольник при различных расположениях прямых на плоскости схематично показано ниже:

    >> Угол наклона прямой от 0 до 90 градусов <<


    >> Угол наклона прямой от 90 до 180 градусов <<

    На этом всё. Успеха Вам!

    С уважением, Александр.

    P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.