Вычислить приближенно с точностью. Приближенные вычисления с помощью рядов

Здесь полезно иметь в виду приведенные в предыдущем параграфе раз­ложения в степенные ряды функций e x , shx, chx, sinx, cosx, (1+x) m , ln(1+x), arctgx.

Для вычисления логарифмов эффективна формула

Ряд в правой части равенства сходится тем быстрее, чем больше t .

Для вычисления приближенного значения функции f(х) в ее разложении в степенной ряд сохраняют первые п членов (п- -конечная величина), а остальные члены отбрасывают. Для оценки погрешности найденного прибли­женного значения нужно оценить сумму отброшенных членов. Если данный ряд знакопостоянный, то ряд, составленный из отброшенных членов, сравни­вают с бесконечно убывающей геометрической прогрессией. В случае знако­переменного ряда, члены которого удовлетворяют признаку Лейбница, исполь­зуется оценка < где - первый из отброшенных членов ряда.

403.

0 < x < n+1

∆ Погрешность этого приближенного равенства определяется суммой членов, следующих после х п /п! в разложении е х:

Заменив каждый из сомножителей n+2, n+3, n+4, ... меньшей вели­чиной n+1 , получим неравенство

т.е.

404 . Вычислить с точностью до 0,00001.

∆ Используя разложение е х в ряд, получаем

Определим число n так, чтобы погрешность приближенного равенства

не превышала 0,00001. Воспользуемся оценкой погрешности, данной в преды­дущем, примере. Полагаем х=1/2 ; тогда

т.е.

Путем подбора определим, при каком значении п будет выполняться неравенство R п < 0,00001. Полагая, например, n= 3 , получаем R 3 < 1/(8·6·7), т. е. R 3 < 1/336. Пусть, далее, n = 5 ; отсюда R 5 < 1/(32·120·11), т. е. R 5 < 1/42240. Пусть, наконец, n= 6 ; отсюда R 6 < 1/(64·720·13) , т. е. R 6 < 1/100000. Итак, принимаем п = 6:

Суммируем слагаемые:

0,020833 (в 6 раз меньше предыдущего слагаемого)
0,002604 (« 8 « « « «)

0,000260 (« 10 « « « «)

0.000022 (« 12 « « « «)

Значит, Каждое слагаемое мы вычислили с точностью до 0,000001, чтобы при суммировании не получить погрешности, превышаю­щей 0,00001.

405. Вычислить сточностью до 0,00001.
∆ Имеем

Воспользуемся приближенным равенством

Мы взяли 5 слагаемых, так как знакопеременный ряд удовлетворяет усло­виям признака Лейбница, а поэтому допускаемая погрешность по абсолютной величине должна быть меньше первого из отброшенных членов ряда. Первый из отброшенных членов равен 1/(5!5 5). Нетрудно видеть, что 1/(5!5 5) < 0,00001.

Произведя вычисления, в результате получаем . ▲

406. Пользуясь разложением соsx в ряд, вычислить соs 18° с точностью до 0,0001.



соs 18°= ;

Достаточно взять три члена ряда, так как (1/6!)-(π/10) 6 < 0,0001. Тогда

. ▲

407. Вычислить с точностью до 0,0001.

∆ Воспользуемся разложением (1+x) m в ряд, полагая x = 0,1, m=1/5 .

Четвертый и следующие за ним члены отбрасываем, так как четвертый член меньше 0,0001. Итак,

408. Вычислить с точностью до 0,001.

∆ Так как 5 3 является ближайшим к числу 130 кубом целого числа, то целесообразно число 130 представить в виде суммы двух слагаемых: 130 = 5 3 + 5. Тогда

Четвертый член меньше 0,001, поэтому его и следующие за ним члены можно отбросить. Итак, 5 + 0,0667-0,0009, т. е. 5,066. ▲

409. Вычислить ln1,04 с точностью до 0,0001.
∆ Воспользуемся разложением ln(1+x ) в ряд:

откуда ln1,04≈ 0,0392. ▲

410. В прямоугольном треугольнике катеты равны 1 и 5 см. Определить острый угол треугольника, лежащий против мень­шего катета, с точностью до 0,001 радиана.

∆ Так как tgα=1/5, то α=arctg(1,5). Воспользуемся разложением

откуда α ≈ 0,2-0,0027, т. е. α ≈ 0,197. ▲

411. Оценить погрешность приближенного равенства

∆ Задача сводится к оценке суммы остатка ряда

Заменив каждый из множителей 2n+З, 2n + 5, 2n+7, ... меньшим числом 2n+1, получим неравенство

Просуммируем бесконечно убывающую геометрическую прогрессию в квад­ратных скобках:

т.е.

412. Вычислить ln2 с точностью до 0,0001.

∆ В формуле для определения ln(t + 1) и неравенстве для оценки R п полагаем t= 1:

Путем подбора определим п так, чтобы выполнялось неравенство R n < 0,0001. Если n= 2, то R 2 < 1/(4∙5∙3 3); R 2 < 1/540; если n = 3, то R 3 < 1(4∙7∙3 5); R 3 < 1/6804; если n= 4, то R 4 < 1/(4∙9∙3 7); R 4 < 1/10000.

Итак, n = 4 и для вычисления ln 2 получаем приближенное равенство
в разложении аrctg х.

Лекция 57

РАЗЛОЖЕНИЕ ФУНКЦИЙ В СТЕПЕННЫЕ РЯДЫ

Всякая функция, бесконечно дифференцируемая в интервале , т.е.
, может быть разложена в этом интервале в сходящийся к ней бесконечный степеннойряд Тейлора

,

если в этом интервале выполняется условие
, где
- остаточный член формулы Тейлора,.

При
получаем так называемыйряд Маклорена :.

Если в некотором интервале, содержащем точку , при любомвыполняется неравенство
, где
- положительная постоянная, то
и функция
разложима в ряд Тейлора.

Приведем разложения в ряд Тейлора следующих функций:

1)

2)

7)

8) биномиальный ряд:

Это последнее разложение применимо в следующих случаях:

при
если

при
если

при
если
.

В общем случае разложение функций в степенные ряды основано на использовании рядов Тейлора или Маклорена. На практике степенные ряды многих функций можно найти формально, используя ряды (1-8) или формулу для суммы членов геометрической прогрессии. Иногда при разложении полезно пользоваться почленным дифференцированием или интегрированием рядов. В интервале сходимости ряды сходятся к соответствующим функциям.

1.Разложить по степеням разности
функцию
.

Решение. Для того, чтобы воспользоваться формулой Тейлора при
, найдем:

и т.д.

Следовательно,

2.Разложить
в ряд по степеням
.

Решение. Воспользуемся равенством
. Правую часть этого равенства можно рассматривать как сумму бесконечно убывающей геометрической прогрессии с первым членом
и знаменателем
. Отсюда получаем

Так как
, то

3. Разложить в ряд Маклорена функцию

Решение. Разложим данную функцию на сумму простейших рациональных дробей:

Поскольку

то

Так как ряд
сходится при
, а ряд
сходится при
, то ряд
сходится к данной функции при
.

4.Разложить в степенной ряд функцию
.

Решение. Найдем значения функции и ее производных при

Так как
, то при фиксированномимеет место неравенство
при любом. Следовательно, функция может быть представлена в виде суммы ряда Тейлора:

.

В данном случае

Это разложение можно получить и иначе: достаточно в разложении
заменитьна
.

5. Разложить в степенной ряд функцию

.

Решение. В разложении

заменяем на
, получаем

6. Разложить
в ряд по степеням
.

Решение. В разложении

заменяем на
, получаем

7. Разложить в степенной ряд функцию
.

Решение. Заметим, что
.Рассмотрим ряд

Данный ряд сходится при
, значит, его можно почленно интегрировать на любом отрезке
. Следовательно,

, т.е получили ряд, сходящийся к данной функции при

8. Разложить по степеням
многочлен

9. Разложить по степеням
функцию
и найти область сходимости полученного ряда.

Ответ:

10. Разложить по степеням
функцию
и найти область сходимости этого ряда.

11. Разложить по степеням
функцию
. Найти область сходимости этого ряда.

Ответ

Разложить в ряд Маклорена функцию
. Указать область сходимости полученного ряда к этой функции.

12.
. Ответ:

13.
Ответ:
.

14.
. Ответ:
.

15.
. Ответ:

16.
Ответ:
.

17.
. Ответ:
.

18.
Ответ:

19.
.Ответ:
.

6.16. Применение степенных рядов в приближённых вычислениях

Вычисление значений функции . Пусть дан степенной ряд функции
. Задача вычисления значения этой функции заключается в отыскании суммы ряда при заданном значении аргумента. Ограничиваясь определенным числом членов ряда, находим значение функции с точностью, которую можно установить путем оценивания остатка числового ряда либо остаточного члена
формул Тейлора или Маклорена. Если данный ряд знакопостоянный, то ряд, составленный из отброшенных членов, сравнивают с бесконечно убывающей геометрической прогрессией. В случае знакочередующегося ряда используется оценка
, где
- первый из отброшенных членов ряда.

Пример 1. Вычислить с точностью до 0,0001 значение ln1,1.

Решение.

Для вычисления приближённых значений функции с заданной точностью удобно пользоваться рядами в том случае, когда соответствующий ряд является знакочередующимся; для знакочередующегося сходящегося ряда легко оценить погрешность приближённого значения суммы – она меньше абсолютного значения первого из отброшенных членов.

    Возьмём ряд для функции ln(1+x):

Который сходится к ln(1+x) в интервале (-1,1], и, полагая, x=0,1 , получим ряд для вычисления ln1,1 с любой точностью.

Абсолютное значение четвёртого члена этого ряда меньше 0,0001. Поэтому, согласно свойству знакочередующегося сходящегося ряда, для вычисления приближённого значения ln1,1 с точностью до 0,0001 достаточно взять сумму трёх первых членов ряда

.

Точность: 0,001.

В прикладных задачах важна оценка погрешности приближения.

Определение: Точность вычисления не превышает первого из отброшенных элементов ряда.

1.Оценить погрешность приближенного равенства

Решение. Погрешность этого приближенного равенства определяется суммой членов, следующих после
в разложении:

,

Заменив каждый из сомножителей
,… меньшей величиной
, получим неравенство

Просуммируем бесконечно убывающую геометрическую прогрессию, получим:

, т.е.

2.Вычислить
с точностью до 0,00001.

Решение. Используя разложение в ряд, получаем

Определим число так, чтобы погрешность приближенного равенства

не превышала 0,00001. Воспользуемся оценкой погрешности, данной в предыдущем примере. Полагаем
, тогда:

т.е.
.

Путем подбора определим, при каком значении будет выполняться неравенство
. Пусть
, тогда
, т.е.
. Пусть
, тогда
, т.е.
. Принимаем
..

Вычисляем каждое слагаемое с точностью до 0,000001, для того чтобы при суммировании не получить погрешность, превышающую 0,00001. Окончательно получаем
.

3. Вычислить
с точностью до 0,00001.

Решение. Имеем

Получен знакочередующийся ряд, удовлетворяющий условиям сходимости признака Лейбница, поэтому допускаемая погрешность по абсолютной величине должна быть меньше первого из отброшенных членов ряда. Нетрудно видеть, что
, поэтому первый из отброшенных членов равен
и
. Вычисляем сумму и получаем
.

4. Пользуясь разложением
в ряд, вычислить
с точностью до 0,0001 .

Решение. .

Достаточно взять три члена ряда, так как Тогда


5. Вычислить
с точностью до 0,0001.


в ряд, полагая
. Имеем

Четвертый и следующие за ним члены отбрасываем, так как четвертый член меньше 0,0001. Итак

6. Вычислить
с точностью до 0,001.

Решение. Так как является ближайшим к числу 130 кубом целого числа, то целесообразно число 130 представить в виде суммы двух слагаемых:
. Тогда

Четвертый член меньше
, поэтому его и следующие за ним члены можно отбросить. Итак,, т.е.
.

7. Вычислить
с точностью до 0,0001.

Решение. Воспользуемся разложением
в ряд:

или , откуда

Вычислить указанную величину приближенно с заданной степенью точности , воспользовавшись разложением в степенной ряд соответствующим образом подобранной функции.

8.
. Ответ: 3,017.

9.
Ответ: 0,340.

10.
. Ответ: 0,84147.

11.
. Ответ: 1,3956.

12.
,
. Ответ: 1,140.

13.
Ответ: 0,302.

14.
Ответ: 0,464.

15.
Ответ: 1,0986.

16.
,
Ответ: 0,999.

17.
Ответ: 0,3679.

Вычисление интегралов . Так как степенные ряды сходятся равномерно на любом отрезке, лежащем внутри их интервала сходимости, то с помощью разложений функций в степенные ряды можно находить неопределенные интегралы в виде степенных рядов и приближенно вычислять соответствующие определенные интегралы.

18. Вычислить
с точностью

Решение. Воспользуемся разложением . Заменив в немна, получим ряд.

Данный ряд сходится на всей числовой прямой, поэтому его можно всюду почленно интегрировать. Следовательно,

поскольку уже третий член полученного знакочередующегося ряда меньше

19. Найти интеграл
в виде степенного ряда и указать область его сходимости.

Решение. Воспользуемся разложением , получим ряд для подынтегральной функции

Он сходится на всей числовой прямой, и, следовательно, его можно почленно интегрировать:

Поскольку при интегрировании степенного ряда его интервал сходимости не изменяется, то полученный ряд сходится также на всей числовой прямой.

Используя разложение подынтегральной функции в степенной ряд, вычислить указанный определенный интеграл с точностью до
.

20.
. Ответ: 0,070.

21.
. Ответ: 0,223.

22.
. Ответ: 0,162.

23.
. Ответ: 0,480.

24.
. Ответ: 0,054.

25.
. Ответ: 0,484.

26.
. Ответ: 0,487.

27.
. Ответ: 0,156.

28.
. Ответ: 0,059.

29.
Ответ: 0,103.

Приближенное решение дифференциальных уравнений .

В случае, когда точно проинтегрировать дифференциальное уравнение с помощью элементарных функций не удается, его решение удобно искать в виде степенного ряда, например ряда Тейлора или Маклорена.

При решении задачи Коши
, используется ряд Тейлора
, где, а остальные производные
находятся путем последовательного дифференцирования уравнения
и подстановки начальных данных в выражения для этих производных.

Решение задачи Коши
для дифференциального уравнения можно также искать в виде разложения в степенной ряд

с неопределенными коэффициентами
.

30. Найти пять первых членов разложения в степенной ряд решения
, если
.

Решение. Из данного уравнения находим, что
. Дифференцируем исходное уравнение:

и т.д. Подставляя найденные значения производных в ряд Тейлора, получаем

Рассмотрим задачу разложения некоторой функции в степенной ряд.

Пусть задана функция, имеющая на некотором отрезке производные всех порядков, тогда она разлагается на этом отрезке в ряд вида

который называется рядом Тейлора. Здесь-- заданное число.

Формально ряд Тейлора можно написать для всякой функции, которая в окрестности точки имеет производные любого порядка. Однако этот ряд будет сходиться к породившей ее функции только при тех значениях, при которых остаток ряда стремиться к нулю:

.

Остаток ряда Тейлора записывается в форме Лагранжа следующим образом:

,

где заключено междуи.

Если
, то получаем частный случай ряда Тейлора, который называетсярядом Маклорена:

Рассмотрим ряды Маклорена для некоторых элементарных функций.

данный ряд называется биномиальным, поскольку при натуральном
из него получается бином Ньютона.

Подчеркнем, что степенные ряды для функций сходятся к соответствующим функциям при
, а степенные ряды для функций
и
сходятся лишь при
.

Задача №1.
.

Решение. В качестве исходной формулы возьмем разложение в ряд Маклорена

функции
:

.

Заменим на:

Ответ:

Задача №2. Написать разложение в степенной ряд функции
.

Решение. Запишем биномиальный ряд

и сделаем в нем замену
:

По условию
, подставим это значение в предыдущую формулу:

Степенные ряды широко используются в приближенных вычислениях. Рассмотрим применение рядов Тейлора для приближенного вычисления значений функций, значений определенных интегралов и приближенного решения дифференциальных уравнений.

Задача №3. Вычислить

Решение . Для любогоимеет место формула:

.

При получим

Оценим погрешность вычислений с помощью остаточного члена в форме Лагранжа:

.

,

где лежит междуи.

При имеем

,

где
.

Учитывая, что
, получим

.

При

При

Таким образом, для достижения требуемой точности достаточно взять
(или более):

.

Каждое слагаемое вычислим с одним дополнительным знаком после запятой, чтобы к нашей ошибке не добавлялись ошибки от округления:

Ответ: с точностью 0,0001
.

Задача №4. Вычислить
приближенно с точностью 0,0001.

Решение. Для вычисления
будем использовать биномиальный ряд, который сходится только при
, поэтому сначала преобразуем данный корень:

.

В биномиальном ряде положим
:

Данный знакочередующийся числовой ряд является рядом Лейбница. Чтобы определить, сколько взять первых членов ряда для вычисления
с точностью 0,0001, вычислим последовательно несколько первых членов ряда:

Согласно свойству ряда Лейбница, если оставить первые три слагаемые, то ошибка искомого приближенного значения корня будет меньше
:

следовательно,

Ответ: с точностью 0,0001

от некоторой функции
, первообразная которой не вычисляется в элементарных функциях. Следовательно, формулу Ньютона-Лейбница применить не удается. Если
разложима в степенной ряд на отрезке
, принадлежащем области сходимости ряда, то интеграл может быть вычислен приближенно. Иногда приближенного вычисления бывает достаточно и при наличии первообразной функции. Для решения такой задачи используются ряды Тейлора. Рассмотрим примеры.

Задача №5.
с точностью 0,01.

Решение. Заметим, что этот широко используемый интеграл не выражается в элементарных функциях.

В ряде Маклорена для функции
сделаем замену
:

Теперь воспользуемся теоремой о том, что степенной ряд можно почленно интегрировать по любому отрезку, принадлежащему интервалу сходимости. Данный ряд сходится на всей числовой прямой, следовательно, его можно интегрировать по любому отрезку, в том числе по отрезку
:

Мы получили числовой ряд, который равен значению определенного интеграла.

Оценим погрешность вычислений. Данный ряд – это ряд Лейбница, следовательно, погрешность вычислений не превосходит по модулю первого отброшенного члена ряда. Поэтому, вычисляя по порядку члены ряда, первым отбросим тот, который окажется по модулю меньше заданной точности:

,

.

Тогда 024=0,743.

Ответ:
0,743.

Задача №6. Вычислить определенный интеграл
с точностью 0,001.

Решение. Вычислить этот интеграл по формуле Ньютона-Лейбница нельзя, поскольку первообразная функции
не выражается в элементарных функциях. Используем для решения задачи степенной ряд. Запишем разложение в ряд Маклорена функции
:

.

Сделаем в этой формуле замену
:

Данный ряд можно почленно проинтегрировать по отрезку
:

Таким образом, вычисляемый определенный интеграл равен сумме знакочередующегося числового ряда, который удовлетворяет условиям признака Лейбница, следовательно, погрешность вычислений не превосходит модуля первого из отброшенных членов ряда.

,
.

Поэтому для достижения заданной точности необходимо оставить первые 3 слагаемые.

Ответ:
.

Задача №7. . Вычислить определенный интеграл
с точностью 0,001.

Решение. Распишем ряд Маклорена для функции
.

.

Поделим левую и правую часть формулы на :

. Полученный степенной ряд можно почленно проинтегрировать по отрезку
.

Получившийся числовой ряд сходится по признаку Лейбница, поэтому отбрасываем первым слагаемое, которое меньше объявленной точности:

,
.

Ответ:
.

Рассмотрим еще одно приложение степенных рядов, к приближенному решению дифференциальных уравнений. Решение дифференциального уравнения не всегда можно выразить в элементарных функциях. Интегралы многих дифференциальных уравнений могут быть представлены в виде степенного ряда, сходящегося в некотором интервале значений независимой переменной. В таком случае ряд, являющийся решением дифференциального уравнения можно найти с помощью рядов Тейлора.

Пусть необходимо найти частное решение дифференциального уравнения с заданными начальными условиями, т.е. решить задачу Коши.

Проиллюстрируем решение на примере.

Задача №8. Найти первые пять членов разложения в степенной ряд решения дифференциального уравнения

.

Решение. Будем искать частное решение дифференциального уравнения в виде ряда

Мы выбрали разложение в ряд Маклорена, поскольку в условии задачи нам даны значения искомой функции и ее первой производной в точке
. Для того, чтобы найти приближенное значение функции
, нам необходимо знать значения ее второй, третьей и четвертой производных в точке
. Значения самой функции и первой производной в нуле даны по условию.

Значение второй производной при
найдем из дифференциального уравнения, подставив начальные условия:

.

Для нахождения третьей производной продифференцируем данное дифференциальное уравнение:

.

При этом необходимо учесть, что -- это функция, а-- независимая переменная:

Теперь можно вычислить значение третьей производной в точке
:

Аналогично вычислим значение четвертой производной:

, или

Подставив в найденное равенство значения

Осталось подставить вычисленные в заданной точке значения производных в ряд Маклорена:

Ответ:
.

Задача №9. Найти первые четыре члена разложения в степенной ряд решения дифференциального уравнения
, удовлетворяющего начальным условиям

.

Решение. Начальные условия заданы в точке
, поэтому решение будем искать в виде ряда Тейлора:

Значения самой функции и ее первой производной даны в условии задачи. Вторую производную в точке
найдем из дифференциального уравнения:

Вычислим третью производную, продифференцировав дифференциальное уравнение:

или

.

Тогда значение третьей производной равно

Осталось записать искомый ряд.

Степенные ряды широко используются в приближенных вычислениях. С их помощью с заданной точностью можно вычислять значения корней, тригонометрических функций, логарифмов чисел, определенных интегралов. Ряды применяются также при интегрировании дифференциальных уравнений.

Приближенное вычисление значений функций

Рассмотрим разложение функции в степенной ряд:

Для того, чтобы вычислить приближенное значение функции в заданной точке х , принадлежащей области сходимости указанного ряда, в ее разложении оставляют первые n членов (n – конечное число), а остальные слагаемые отбрасывают:

Для оценки погрешности полученного приближенного значения необходимо оценить отброшенный остаток r n (x ). Для этого применяют следующие приемы:

- если полученный ряд является знакочередующимся, то используется следующее свойство: для знакочередующегося ряда, удовлетворяющего условиям Лейбница, остаток ряда по абсолютной величине не превосходит первого отброшенного члена .

Если данный ряд знакопостоянный, то ряд, составленный из отброшенных членов, сравнивают с бесконечно убывающей геометрической прогрессией.

В общем случае для оценки остатка ряда Тейлора можно воспользоваться формулой Лагранжа: (или x).

Пример 1 . Пользуясь разложением в ряд sinx , вычислить sin20 o с точностью до 0,0001.

Решение . Чтобы можно было пользоваться формулой (2), необходимо выразить значение аргумента в радианной мере. Получаем . Подставляя это значение в формулу, получаем

Полученный ряд является знакочередующимся и удовлетворяет условиям Лейбница. Так как , то этот и все последующие члены ряда можно отбросить, ограничиваясь первыми двумя членами. Таким образом,

Пример 2 . Вычислить с точностью до 0,01.

Решение . Воспользуемся разложением , где (см. пример 5 в предыдущей теме):

Проверим, можем ли мы отбросить остаток после первых трех членов разложения, для этого оценим его с помощью суммы бесконечно убывающей геометрической прогрессии:

.

Таким образом, мы можем отбросить этот остаток и получаем

.

Пример 3 . Вычислить с точностью до 0,0001.

Решение . Воспользуемся биномиальным рядом. Так как 5 3 является ближайшим к 130 кубом целого числа, то целесообразно число 130 представить в виде 130=5 3 +5.

так как уже четвертый член полученного знакочередующегося ряда, удовлетворяющего признаку Лейбница, меньше требуемой точности:

, поэтому его и следующие за ним члены можно отбросить.

Приближенное вычисление определенных интегралов

Многие практически нужные определенные или несобственные интегралы не могут быть вычислены с помощью формулы Ньютона-Лейбница, ибо ее применение связано с нахождением первообразной, часто не имеющей выражения в элементарных функциях. Бывает также, что нахождение первообразной возможно, но излишне трудоемко. Однако если подинтегральная функция раскладывается в степенной ряд, а пределы интегрирования принадлежат интервалу сходимости этого ряда, то возможно приближенное вычисление интеграла с наперед заданной точностью.

Пример 4 : Вычислить интеграл с точностью до 0,00001.

Решение . Соответствующий неопределенный интеграл не может быть выражен в элементарных функциях, т.е. представляет собой «неберущийся интеграл». Применить формулу Ньютона-Лейбница здесь нельзя. Вычислим интеграл приближенно.

Разделив почленно ряд для sinx на x , получим:

Интегрируя этот ряд почленно (это возможно, так как пределы интегрирования принадлежат интервалу сходимости данного ряда), получаем:

Так как полученный ряд удовлетворяет условиям Лейбница и достаточно взять сумму первых двух членов, чтобы получить искомое значение с заданной точностью.

Таким образом, находим

.

Пример 5 . Вычислить интеграл с точностью до 0,001.

Проверим, можем ли мы отбросить остаток после второго члена полученного ряда.

Следовательно, .

Приближенное решение задачи Коши для обыкновенного

Дифференциального уравнения

В частых случаях, когда ОДУ не решается в общем виде, решить задачу Коши для него можно приближенно, в виде первых нескольких членов разложения решения в ряд Тейлора (в окрестности данной точки)

Пример Найти первые 3 члена разложения в ряд решения задачи Коши

Решение : Будем искать решение задачи в виде

Коэффициент у (1)=2 – это начальное условие задачи Коши.

Коэффициент найдем из уравнения, подставив в него начальные условия:

Продифференцируем обе части данного уравнения, чтобы найти :

Таким образом,

Решить : Вычислить приближенно с указанной точностью:

A 1) до 0,0001 2) до 0,0001 3) до 0,01 4) ln6 до 0,01

5) до 0,001 6) до 0,001 7) до 0,01

8) до 0,001 9) до 0,001 10) до 0,001

11) до 0,001 12) до 0,01 13) до 0,001

14) до 0,001 15) до 0,001 16) до 0,001

B Найти первые несколько членов разложения в ряд решения задачи Коши:

17) y¢-4y+xy 2 -e 2 x =0; y(0)=2 (4 члена) 18) y¢+ycosx-y 2 sinx=0; y(p)=1 (4 члена)

19) y¢¢=e y cosy¢; y(1)=1; y¢(1)=p/6 (5 членов)

20) y¢¢=xy 2 -1/y¢; y(0)=0, y¢(0)=1 (5 членов)

Ряд Фурье

Рядом Фурье функции f (x ) на интервале (-p;p)

, где

Рядом Фурье функции f (x ) на интервале (-l ;l ) называется тригонометрический ряд вида:

, где

Ряд Фурье кусочно-непрерывной, кусочно-монотонной и ограниченной на интервале (-l ;l ) функции сходится на всей числовой оси.

Сумма ряда Фурье S (x ):

Является периодической функцией с периодом 2l

На интервале (-l ;l ) совпадает с функцией f (x ), за исключением точек разрыва

В точках разрыва (первого рода, т.к. функция ограничена) функции f (x ) и на концах интервала принимает средние значения:

Говорят, что функция раскладывается в ряд Фурье на интервале(-l ;l ): .

Если f (x ) – четная функция, то в ее разложении участвуют только четные функции, то есть b n =0.

Если f (x ) – нечетная функция, то в ее разложении участвуют только нечетные функции, то есть а n =0

Рядом Фурье функции f (x ) на интервале (0;l ) по косинусам кратных дуг называется ряд:

, где .

Рядом Фурье функции f (x ) на интервале (0;l ) по синусам кратных дуг называется ряд:

, где .

Сумма ряда Фурье по косинусам кратных дуг является четной периодической функцией с периодом 2l , совпадающей с f (x ) на интервале (0;l ) в точках непрерывности.

Сумма ряда Фурье по синусам кратных дуг является нечетной периодической функцией с периодом 2l , совпадающей с f (x ) на интервале (0;l ) в точках непрерывности.

Ряд Фурье для данной функции на данном интервале обладает свойством единственности, то есть если разложение получено каким-либо иным способом, чем использование формул, например, при помощи подбора коэффициентов, то эти коэффициенты совпадают с вычисленными по формулам.

Примеры .

1. Разложить функцию f (x )=1:

а) в полный ряд Фурье на интервале (-p;p);

б) в ряд по синусам кратных дуг на интервале (0;p); построить график полученного ряда Фурье

Решение :

а) Разложение в ряд Фурье на интервале(-p;p) имеет вид:

,

причем все коэффициенты b n =0, т.к. данная функция – четная; таким образом,

Очевидно, равенство будет выполнено, если принять

а 0 =2, а 1 =а 2 =а 3 =…=0

В силу свойства единственности это и есть искомые коэффициенты. Таким образом, искомое разложение: или просто 1=1.

В таком случае, когда ряд тождественно совпадает со своей функцией, график ряда Фурье совпадает с графиком функции на всей числовой прямой.

б) Разложение на интервале (0;p) по синусам кратных дуг имеет вид:

Подобрать коэффициенты так, чтобы равенство тождественно выполнялось, очевидно, невозможно. Воспользуемся формулой для вычисления коэффициентов:

Таким образом, для четных n (n =2k ) имеем b n =0, для нечетных (n =2k -1) -

Окончательно, .

Построим график полученного ряда Фурье, воспользовавшись его свойствами (см. выше).

Прежде всего, строим график данной функции на заданном интервале. Далее, воспользовавшись нечетностью суммы ряда, продолжаем график симметрично началу координат:

Степенные ряды широко используются в приближенных вычислениях. С их помощью с заданной точностью можно вычислять значения корней, тригонометрических функций, логарифмов чисел, определенных интегралов. Ряды применяются также при интегрировании дифференциальных уравнений.

1. Приближенное вычисление значений функций

Рассмотрим разложение функции в степенной ряд:

Для того, чтобы вычислить приближенное значение функции в заданной точке х , принадлежащей области сходимости указанного ряда, в ее разложении оставляют первые n членов (n – конечное число), а остальные слагаемые отбрасывают:

Для оценки погрешности полученного приближенного значения необходимо оценить отброшенный остаток r n (x ). Для этого применяют следующие приемы:


Пример 1 . Пользуясь разложением в ряд sinx , вычислить sin20 o с точностью до 0,0001.

Решение . Чтобы можно было пользоваться формулой (2), необходимо выразить значение аргумента в радианной мере. Получаем
. Подставляя это значение в формулу, получаем

Полученный ряд является знакочередующимся и удовлетворяет условиям Лейбница. Так как
, то этот и все последующие члены ряда можно отбросить, ограничиваясь первыми двумя членами. Таким образом,

Пример 2 . Вычислить
с точностью до 0,01.

Решение . Воспользуемся разложением
, где(см. пример 5 в предыдущей теме):

Проверим, можем ли мы отбросить остаток после первых трех членов разложения, для этого оценим его с помощью суммы бесконечно убывающей геометрической прогрессии:

.

Таким образом, мы можем отбросить этот остаток и получаем

.

Пример 3 . Вычислить
с точностью до 0,0001.

Решение . Воспользуемся биномиальным рядом. Так как 5 3 является ближайшим к 130 кубом целого числа, то целесообразно число 130 представить в виде 130=5 3 +5.

так как уже четвертый член полученного знакочередующегося ряда, удовлетворяющего признаку Лейбница, меньше требуемой точности:

, поэтому его и следующие за ним члены можно отбросить.

2. Приближенное вычисление определенных интегралов

Многие практически нужные определенные или несобственные интегралы не могут быть вычислены с помощью формулы Ньютона-Лейбница, ибо ее применение связано с нахождением первообразной, часто не имеющей выражения в элементарных функциях. Бывает также, что нахождение первообразной возможно, но излишне трудоемко. Однако если подинтегральная функция раскладывается в степенной ряд, а пределы интегрирования принадлежат интервалу сходимости этого ряда, то возможно приближенное вычисление интеграла с наперед заданной точностью.

Пример 4 : Вычислить интеграл
с точностью до 0,00001.

Решение . Соответствующий неопределенный интеграл
не может быть выражен в элементарных функциях, т.е. представляет собой «неберущийся интеграл». Применить формулу Ньютона-Лейбница здесь нельзя. Вычислим интеграл приближенно.

Разделив почленно ряд для sinx на x , получим:

Интегрируя этот ряд почленно (это возможно, так как пределы интегрирования принадлежат интервалу сходимости данного ряда), получаем:

Так как полученный ряд удовлетворяет условиям Лейбница и достаточно взять сумму первых двух членов, чтобы получить искомое значение с заданной точностью.

Таким образом, находим

.

Пример 5 . Вычислить интеграл с точностью до 0,001.

Проверим, можем ли мы отбросить остаток после второго члена полученного ряда.

Следовательно,
.