Опровержение "Парадокса Монти Холла" (мнимое опровержение, как выяснилось). Парадокс Монти Холла: формулировка и объяснение Три двери за одной из них автомобиль

Экология познания. Одной из задач теории вероятностей является интереснейший и, казалось бы, противоречащий здравому смыслу парадокс Монти Холла, названный так в честь ведущего американского телешоу «Let’s Make A Deal».

Многие из нас наверняка слышали о теории вероятностей – особом разделе математики, который изучает закономерности в случайных явлениях, случайные события, а также их свойства. И как раз одной из задач теории вероятностей является интереснейший и, казалось бы, противоречащий здравому смыслу парадокс Монти Холла, названный так в честь ведущего американского телешоу «Let’s Make A Deal». С этим парадоксом мы и хотим вас сегодня познакомить.

Определение парадокса Монти Холла

Как задача парадокс Монти Холла определяется в виде описаний вышеназванной игры, наиболее распространённым среди которых является формулировка, которая была опубликована журналом «Parade Magazine» в 1990 году.

Согласно ей, человек должен представить себя участником игры, где нужно выбрать одну дверь из трёх.

За одной дверью скрывается автомобиль, а за остальными – козы. Игрок должен выбрать одну дверь, к примеру, дверь №1.

А ведущий, знающий о том, что находится за каждой дверью, открывает одну из двух дверей, которые остались, например, дверь №3, за которой стоит коза.

После этого ведущий интересуется у игрока, не желает ли он изменить свой изначальный выбор и выбрать дверь №2?

Вопрос: повысятся ли шансы игрока на выигрыш, если он изменит свой выбор?

Но после публикации этого определения выяснилось, что задача игрока сформулирована несколько неверно, т.к. не обговорены все условия.

К примеру, ведущий игры может выбрать стратегию «адского Монти», предлагая изменить выбор только в том случае, если игрок изначально угадал дверь, за которой находится автомобиль.

И становится ясно, что изменение выбора приведёт к стопроцентному проигрышу.

Поэтому, наибольшую популярность получила постановка задачи с особым условием №6 из специальной таблицы:

  • Автомобиль может с одинаковой вероятностью находиться за каждой дверью
  • Ведущий всегда обязан открывать дверь с козой, кроме той которую выбрал игрок, и предлагать игроку возможность изменения выбора
  • Ведущий, имея возможность открыть одну из двух дверей, выбирает любую с одинаковой вероятностью

Представленный ниже разбор парадокса Монти Холла рассматривается именно с учётом этого условия. Итак, разбор парадокса.

Разбор парадокса Монти Холла

Есть три варианта развития событий:

Дверь 1

Дверь 2

Дверь 3

Результат, если менять выбор

Результат, если не менять выбор

Авто

Коза

Коза

Коза

Авто

Коза

Авто

Коза

Авто

Коза

Коза

Коза

Авто

Авто

Коза

Во время решения представленной задачи обычно приводятся такие рассуждения: ведущий в каждом случае убирает одну дверь с козой, следовательно, вероятность нахождения автомобиля за одной из двух закрытых дверей приравнивается к ½, независимо от того, какой выбор был сделан изначально. Однако это не так.

Смысл в том, что, делая первый выбор, участник разделяет двери на A (выбранную), B и C (оставшиеся). Шансы (P) на то, что машина стоит за дверью A, равны 1/3, а на то, что она за дверьми B и C равны 2/3. И шансы на успех при выборе дверей B и C вычисляются так:

P(B) = 2/3 * ½ = 1/3

P(C) = 2/3 * ½ = 1/3

Где ½ является условной вероятностью того, что машина находится именно за этой дверью, при условии, что машина не за той дверью, что выбрал игрок.

Ведущий, открывая заведомо проигрышную дверь из двух оставшихся, сообщает игроку 1 бит информации и изменяет тем самым условные вероятности для дверей B и C на значения 1 и 0. Теперь шансы на успех будут вычисляться так:

P(B) = 2/3*1 = 2/3

P(C) = 2/3*0 = 0

И получается, что если игрок изменит свой изначальный выбор, то его шанс на успех будет равен 2/3.

Объясняется это следующим образом: изменяя свой выбор после манипуляций ведущего, игрок выиграет, если изначально он выбрал дверь с козой, т.к. ведущий открывает вторую дверь с козой, а игроку остаётся лишь поменять двери. Выбрать же изначально дверь с козой можно двумя способами (2/3), соответственно, если игрок заменит двери, то выиграет с вероятностью 2/3. Именно из-за противоречия такого вывода интуитивному восприятию задача и получила статус парадокса.

Интуитивное восприятие говорит о следующем: когда ведущий открывает проигрышную дверь, перед игроком встаёт новая задача, на первый взгляд не связанная с изначальным выбором, т.к. коза за открываемой ведущим дверью будет там в любом случае, независимо от того, проигрышную или выигрышную дверь изначально выбрал игрок.

После открытия ведущим двери игрок должен снова сделать выбор – либо остановиться на прежней двери, либо выбрать новую. Это значит, что игрок делает именно новый выбор, а не меняет изначальный. И математическим решением рассматриваются две последовательные и связанные друг с другом задачи ведущего.

Но нужно иметь в виду, что ведущий открывает дверь именно из тех двух, которые остались, но не ту, что выбрал игрок. А значит, шанс на то, что машина находится за оставшейся дверью, увеличиваются, т.к. ведущий её не выбрал. Если же ведущий знает, что за выбранной игроком дверью стоит коза, всё-таки её откроет, он тем самым заведомо снизит вероятность того, что игрок выберет правильную дверь, ведь вероятность успеха станет равна ½. Но это уже игра по иным правилам.

А вот ещё одно объяснение: допустим, игрок играет по представленной выше системе, т.е. из дверей B или C всегда выбирает ту, что отличается от изначального выбора. Проиграет он в том случае, если изначально выбрал дверь с автомобилем, т.к. впоследствии выберет дверь с козой. В любом другом случае игрок выиграет, если изначально выбрал проигрышный вариант. Однако вероятность того, что изначально он выберет его, равна 2/3, из чего следует, что для успеха в игре сначала нужно сделать ошибку, вероятность которой в два раза больше вероятности правильного выбора.

Третье объяснение: представим, что дверей не 3, а 1000. После того как игрок сделал выбор, ведущий убирает 998 ненужных дверей – остаются только две двери: выбранная игроком и ещё одна. Но шанс на то, что машина за каждой из дверей совсем не ½. Скорее всего (0,999%) машина будет за той дверью, которую игрок не выбрал изначально, т.е. за дверью, отобранной из оставшихся после первого выбора 999 других. Примерно так же нужно и рассуждать при выборе из трёх дверей, пусть шансы на успех и снижаются и становятся 2/3.

И последнее объяснение – замена условий. Допустим, что вместо того, чтобы делать изначальный выбор, например, двери №1, и вместо открытия двери №2 или №3 ведущим, игрок должен сделать верный выбор с первого раза, если ему известно, что вероятность успеха с дверью №1 равна 33%, но об отсутствии машины за дверьми №2 и №3 он не знает ничего. Из этого следует, что шанс на успех с последней дверью будет составлять 66%, т.е. вероятность победы увеличивается вдвое.

Но каково будет положение дел, если ведущий станет вести себя иначе?

Разбор парадокса Монти Холла при другом поведении ведущего

В классической версии парадокса Монти Холла говорится, что ведущий шоу должен обязательно предоставить игроку выбор двери, вне зависимости от того, угадал игрок или нет. Но ведущий может и усложнить своё поведение. Например:

  • Ведущий предлагает игроку изменить свой выбор, если он изначально верный – игрок всегда проиграет, если согласится изменить выбор;
  • Ведущий предлагает игроку изменить свой выбор, если он изначально не верный – игрок всегда победит, если согласится;
  • Ведущий открывает дверь наугад, не зная, что где стоит – шансы игрока на выигрыш при смене двери всегда будут составлять ½;
  • Ведущий открывает дверь с козой, если игрок, действительно, выбрал дверь с козой – шансы игрока на выигрыш при смене двери всегда будут составлять ½;
  • Ведущий всегда открывает дверь с козой. Если игрок выбрал дверь с машиной, левая дверь с козой будет открываться с вероятностью (q) равной p, а правая - с вероятностью q = 1-p. Если ведущий открыл дверь слева, то вероятность выигрыша рассчитывается как 1/(1+p). Если ведущий открыл дверь справа, то: 1/(1+q).Но вероятность того, что будет открыта дверь справа, равна: (1+q)/3;
  • Условия из примера выше, но p=q=1/2 - шансы игрока на выигрыш при смене двери всегда будут составлять 2/3;
  • Условия из примера выше, но p=1, а q=0. Если ведущий откроет дверь справа, то изменение игроком выбора приведёт к победе, если будет открыта дверь слева, то вероятность победы станет равна ½;
  • Если ведущий всегда будет открывать дверь с козой, когда игроком выбрана дверь с автомобилем, и с вероятностью ½, если игроком выбрана дверь с козой, то шансы игрока на выигрыш при смене двери всегда будут составлять ½;
  • Если игра повторяется множество раз, а машина находится за той или иной дверью всегда с одинаковой вероятностью, плюс с одинаковой вероятностью ведущим открывается дверь, но ведущий знает, где машина и всегда ставит игрока перед выбором, открывая дверь с козой, то вероятность победы будет равна 1/3;
  • Условия из примера выше, но ведущий вообще может не открывать дверь - шансы игрока на выигрыш будут составлять 1/3.

Таков парадокс Мотни Холла. Проверить его классический вариант на практике довольно просто, но гораздо сложнее будет провести эксперименты с изменением поведения ведущего. Хотя для дотошных практиков и это возможно. Но не важно, станете вы проверять парадокс Монти Холла на личном опыте или нет, теперь вы знаете некоторые секреты игр, проводящихся с людьми на разных шоу и телепередачах, а также интересные математические закономерности.

Кстати, это интересно: парадокс Монти Холла упоминается в фильме Роберта Лукетича «Двадцать одно», романе Сергея Лукьяненко «Недотёпа», телесериале «4исла», повести Марка Хэддона «Загадочное ночное убийство собаки», комиксе «XKCD», а также был «героем» одной из серий телешоу «Разрушители легенд». опубликовано

Присоединяйтесь к нам в

Теория вероятностей - раздел математики, который готов запутать самих математиков. В отличие от остальных, точных и незыблемых догм этой науки, данная область кишит странностями и неточностями. В этот раздел совсем недавно добавили так сказать новый параграф - парадокс Монти Холла. Это, в общем, задача, но решается она совсем не так, как привычные нам школьные или университетские.

История происхождения

Над парадоксом Монти Холла люди ломают свои головы, начиная с далекого 1975 года. Но начать стоит с 1963. Именно тогда на экраны вышло телешоу под названием Let"s make a deal, что переводится как "Давайте заключим сделку". Его ведущим стал никто иной как Монти Холл, который подкидывал зрителям порой неразрешимые задачки. Одной из наиболее ярких стала та, которую он представил в 1975 году. Задача стала частью математической теории вероятности и парадоксов, которые укладываются в ее рамки. Стоит также отметить, что данное явление стало причиной сильных дискуссий и жесткой критики со стороны ученых. Парадокс Монти Холла был опубликован в журнале Parade в 1990 году, и с тех пор стал еще более обсуждаемым и спорным вопросом всех времен и народов. Ну а теперь переходим непосредственно к его формулировке и трактовке.

Формулировка проблемы

Существует множество трактовок данного парадокса, но мы решили представить вам классическую, которая была показана в самой программе. Итак, перед вами три двери. За одной из них находится автомобиль, за двумя другими по одной козе. Ведущий предлагает вам выбрать одну из дверей, и, допустим, вы останавливаетесь на номере 1. Пока что вы не знаете, что за этой самой первой дверью, так как вам открывают третью, и показывают, что за ней коза. Следовательно, вы пока что не проиграли, ведь вы не выбрали ту дверь, которая скрывает проигрышный вариант. Следовательно, ваши шансы на получение машины возрастают.

Но тут ведущий предлагает вам изменить решение. Перед вами уже две двери, за одной коза, за другой желанный приз. Именно в этом и заключается суть проблемы. Кажется, что какую бы дверь из двух вы ни выбрали, шансы будут 50 на 50. Но на самом деле, если вы поменяете решение, вероятность того, что вы победите, станет больше. Как так?

Первый выбор, который вы делаете в этой игре - случайный. Вы никак не можете даже отдаленно догадываться, за какой из трех дверей спрятан приз, поэтому рандомно указываете на первую попавшуюся. Ведущий же в свою очередь знает, где что находится. У него есть дверь с призом, дверь, на которую указали вы, и третья без приза, которую он вам и открывает в качестве первой подсказки. Вторая же подсказка кроется в самом его предложении сменить выбор.

Теперь вы уже будете выбирать не наугад одну из трех, а сможете даже изменить свое решение, чтобы получить желаемый приз. Именно предложение ведущего дает человеку веру в то, что автомобиль находится действительно не за той дверью, которую он выбрал, а за другой. В этом и заключается вся суть парадокса, так как, по сути, выбирать (хоть уже из двух, а не из трех) все равно приходится наугад, но шансы на победу возрастают. Как показывает статистика, из 30-ти игроков, которые поменяли свое решение, машину выиграли 18. А это 60%. А из тех же 30-ти человек, которые решение не изменили - всего 11, то есть 36%.

Трактовка в цифрах

Теперь дадим парадоксу Монти Холла более точное определение. Первый выбор игрока разбивает двери на две группы. Вероятность того, что приз расположен за дверью, которую вы выбрали, составляет 1/3, а за теми дверьми, что остались 2/3. Ведущий далее открывает одну из дверей второй группы. Таким образом он переносит всю оставшуюся вероятность, 2/3, на одну дверь, которую вы не выбрали и которую он не открывал. Логично, что после таких расчетов выгоднее будет сменить свое решение. Но при этом важно помнить, что шанс проиграть все-таки имеется. Порой ведущие лукавят, так как вы изначально можете ткнуть на правильную, призовую дверь, а после от нее добровольно отказаться.

Все мы привыкли к тому, что математика, как точная наука, идет рука об руку со здравым смыслом. Тут дело делают цифры, а не слова, точные формулы, а не туманные размышления, координаты, а не относительные данные. Но ее новый раздел под названием теория вероятностей взорвал весь привычный шаблон. Задачи из этой области, как нам кажется, не вкладываются в рамки здравого смысла и полностью противоречат всем формулам и вычислениям. Предлагаем ниже ознакомиться с другими парадоксами теории вероятности, которые имеют нечто общее с тем, который был описан выше.

Парадокс мальчика и девочки

Задачка, на первый взгляд, абсурдная, но она строго подчиняется математической формуле и имеет два варианта решения. Итак, у некого мужчины двое детей. Один из них наверняка мальчик. Какова вероятность того, что мальчиком окажется второй?

Вариант 1. Мы рассматриваем все комбинации двоих детей в семье:

  • Девочка/девочка.
  • Девочка/мальчик.
  • Мальчик/девочка.
  • Мальчик/мальчик.

Первая комбинации нам очевидно не подходит, поэтому, исходя из трех последних, мы получаем вероятность в 1/3 того, что вторым ребенком окажется маленький мужчина.

Вариант 2. Если же представить себе такой случай на практике, откинув дроби и формулы, то, исходя из того факта, что на Земле есть только два пола, вероятность того, что вторым ребенком будет мальчик, составляет 1/2.

Этот опыт показывает нам, как лихо можно манипулировать статистикой. Итак, "спящей красавице" вкалывают снотворное и кидают монетку. Если выпадает орел, то ее будят и эксперимент прекращается. Если же выпадает решка, то ее будят, сразу делая второй укол, и она забывает о том, что просыпалась, а после этого вновь пробуждают лишь на второй день. После полного пробуждения "красавице" неизвестно, в какой день она открыла глаза, или какова вероятность того, что монета упала решкой. По первому варианту решения вероятность выпадения решки (или орла) составляет 1/2. Суть второго варианта заключается в том, что, если проводить эксперимент 1000 раз, то в случае с орлом "красавицу" будут будить 500 раз, а с редкой - 1000. Теперь уже вероятность выпадения решки составляет 2/3.

Представьте, что вы стали участником игры, в которой вам нужно выбрать одну из трёх дверей. За одной из дверей находится автомобиль, за двумя другими дверями — козы. Вы выбираете одну из дверей, например, номер 1, после этого ведущий, который знает, где находится автомобиль, а где — козы, открывает одну из оставшихся дверей, например, номер 3, за которой находится коза. После этого он спрашивает вас, не желаете ли вы изменить свой выбор и выбрать дверь номер 2. Увеличатся ли ваши шансы выиграть автомобиль, если вы примете предложение ведущего и измените свой выбор?

Решение. Сразу же заметим, данная задача никакого парадокса не содержит. Обычная задача (начальный уровень) на формулу Байеса, которая вытекает из определения условной вероятности.

Формула Байеса

Обозначим через А, событие - вы выиграли авто.

Выдвигаем две гипотезы: H 1 - вы не меняете дверь, и H 2 - меняете дверь.

P(H 1)= 1/3 - априорная (априорная - значит до проведения опыта, ведущий еще не открывал дверь) вероятность гипотезы, что вы меняете дверь.

P H1 (A) - условная вероятность, что вы угадаете дверь, за которой находится авто, если произошла первая гипотеза H 1

P H2 (A) - условная вероятность, что вы угадаете дверь, за которой находится авто, если произошла вторая гипотеза H 2

Находим вероятность события А, если произошла гипотеза H 1 (вероятность того, что вы выиграли автомобиль, если не меняли дверь):

Находим вероятность события А, если произошла гипотеза H 2 (вероятность того, что вы выиграли автомобиль, если меняли дверь):

Таким образом, участнику следует изменить свой первоначальный выбор — в этом случае вероятность его выигрыша будет равна 2 ⁄ 3 .

Статистическая проверка парадокса Монти Холла

Здесь: «стратегия 1» — не менять выбор, «стратегия 2» — изменить выбор. Теоретически, для случая с 3-мя дверями, распределение вероятностей — 33,(3)% и 66,(6)%. При численной симуляции должны бы получаться похожие результаты.

Встретил её под названием "Парадокс Монти Холла" , и надо же, решил её иначе, а именно: доказал, что это псевдопарадокс .

Друзья, буду рад выслушать критику моему опровержению данного пародокса (псевдопарадокса, если я прав). И тогда я воочию убежусь, что логика моя хромает, перестану мнить себя мыслителем и задумаюсь о смене вида деятельности на более лирический:о). Итак, вот содержание задачи. Предлагаемое решение и моё опровержение ниже.

Представьте, что вы стали участником игры, в которой вы находитесь перед тремя дверями. Ведущий, о котором известно, что он честен, поместил за одной из дверей автомобиль, а за двумя другими дверями - по козе. У вас нет никакой информации о том, что за какой дверью находится.

Ведущий говорит вам: «Сначала вы должны выбрать одну из дверей. После этого я открою одну из оставшихся дверей, за которой находится коза. Затем я предложу вам изменить свой первоначальный выбор и выбрать оставшуюся закрытую дверь вместо той, которую вы выбрали вначале. Вы можете последовать моему совету и выбрать другую дверь, либо подтвердить свой первоначальный выбор. После этого я открою дверь, которую вы выбрали, и вы выиграете то, что находится за этой дверью.»

Вы выбираете дверь номер 3. Ведущий открывает дверь номер 1 и показывает, что за ней находится коза. Затем ведущий предлагает вам выбрать дверь номер 2.

Увеличатся ли ваши шансы выиграть автомобиль, если вы последуете его совету?
Парадокс Монти Холла - одна из известных задач теории вероятностей, решение которой, на первый взгляд, противоречит здравому смыслу.
При решении этой задачи обычно рассуждают примерно так: после того, как ведущий открыл дверь, за которой находится коза, автомобиль может быть только за одной из двух оставшихся дверей. Поскольку игрок не может получить никакой дополнительной информации о том, за какой дверью находится автомобиль, то вероятность нахождения автомобиля за каждой из дверей одинакова, и изменение первоначального выбора двери не дает игроку никаких преимуществ. Однако такой ход рассуждений неверен.
Если ведущий всегда знает, за какой дверью что находится, всегда открывает ту из оставшихся дверей, за которой находится коза, и всегда предлагает игроку изменить свой выбор, то вероятность того, что автомобиль находится за выбранной игроком дверью, равна 1/3, и, соответственно, вероятность того, что автомобиль находится за оставшейся дверью, равна 2/3. Таким образом, изменение первоначального выбора увеличивает шансы игрока выиграть автомобиль в 2 раза. Этот вывод противоречит интуитивному восприятию ситуации большинством людей, поэтому описанная задача и называется парадоксом Монти Холла.

Мне кажется, что шансы не изменятся, т.е. никакого парадокса нет.

И вот почему: первый и второй выборы дверей - это независимые события. Всё равно что кидать монетку 2 раза: то, что выпадет во 2-й раз, никак не зависит от того, что выпало в 1-й.

Так и здесь: после открытия двери с козой игрок оказывается в новой ситуации , когда у него 2 двери и вероятность выбора машины или козы 1/2.

Ещё раз: после открытия одной двери из трёх вероятность того, что автомобиль находится за оставшейся дверью, не равна 2/3 , т.к. 2/3 -- это вероятность того, что авто находится за какими-либо 2-мя дверьми. Неверно приписывать эту вероятность неоткрытой дверьи и открытой. До открытия дверей был такой расклад вероятностей, но после открытия одной двери, все эти вероятности становятся ничтожными, т.к. ситуация изменилась, а потому нужен новый подсчёт вероятности , который обычные люди правильно проводят, отвечая, что ничего от перемены выбора не изменится.

Добавление: 1) рассуждение, что:

а) вероятность найти машину за выбранной дверью составляет 1/3,

б) вероятность, что машина за двумя другими невыбранными дверьми, 2/3,

в) т.к. ведущий открыл дверь с козой, то вероятность 2/3 целиком переходит на одну невыбранную (и неоткрытую) дверь,

а потому надо менять выбор на другую дверь, чтобы вероятность с 1/3 стала 2/3, не верно, но ложно, а именно: в пункте "в" , ибо изначально вероятность 2/3 касается любых двух дверей, включая 2 оставшиеся не открытыми, а раз одну дверь открыли, то эта вероятность поделится поровну между 2 не открытыми, т.е. вероятность будет равная, а выбор другой двери её не увеличит.

2) условные вероятности рассчитывают, если есть 2 и более случайных событий, и для каждого события отдельно рассчитывают вероятность, а уже затем высчитывают вероятность совместного наступления 2 и более событий. Тут сначала вероятность угадать была 1/3, но чтобы рассчитать вероятность того, что машина не за той дверью, которая была выбрана, но за другой не открытой, не нужно рассчитывают условную вероятность, а нужно вычислить простую вероятность, которая равна 1 из 2, т.е. 1/2.

3) Таким образом, это не парадокс, а заблуждение! (19.11.2009)

Добавление 2 : Вчера додумался до простейшего объяснения, что стратегия перевыбора всё же является более выигрышной (парадокс верен!): при первом выборе попасть в козу в 2 раза более вероятно, чем в авто, ведь коз две, а потому при втором выборе надо менять выбор. Это же так очевидно:о)

Или иначе: надо не метить в авто, но отбраковать коз, и в этом помогает даже ведущий, открывая козу. А в начале игры с вероятность 2 из 3 это получится и у играющего, так что, отбраковав коз, надо менять выбор. И это тоже очень очевидно вдруг стало:о)

Так что всё, что я писал до сих пор, было псевдоопровержением. Что ж, вот ещё одна иллюстрация к тому, что надо быть скромнее, уважать чужую точку зрения и не доверять уверениям своей логики, что её решения кристалльно логичны .

В декабре 1963 года на американском телеканале NBC впервые вышла программа Let’s Make a Deal («Заключим сделку!»), в которой участники, выбранные из зрителей в студии, торговались друг с другом и с ведущим, играли в небольшие игры или просто угадывали ответ на вопрос. В конце передачи участники могли сыграть в «сделку дня». Перед ними было три двери, про которые было известно, что за одной из них - Главный Приз (например, автомобиль), а за двумя другими - менее ценные или вовсе абсурдные подарки (например, живые козы). После того как игрок делал свой выбор, ведущий программы Монти Холл (Monty Hall) открывал одну из двух оставшихся дверей, показывая, что за ней Приза нет и давая участнику порадоваться тому, что он сохраняет шансы на выигрыш.

В 1975 году учёный из Калифорнийского университета Стив Селвин (Steve Selvin) задался вопросом о том, что будет, если в этот момент, после открытия двери без Приза, предложить участнику поменять свой выбор. Изменятся ли в этом случае шансы игрока получить Приз, а если да, то в какую сторону? Он отправил соответствующий вопрос в виде задачи в журнал The American Statistician («Американский статистик»), а также - самому Монти Холлу, который дал на него довольно любопытный ответ. Несмотря на этот ответ (а может, и благодаря ему) задача получила распространение под именем «задача Монти Холла».

Наиболее распространённая формулировка этой задачи, опубликованная в 1990 году в журнале Parade Magazine, звучит следующим образом:

«Представьте, что вы стали участником игры, в которой вам нужно выбрать одну из трёх дверей. За одной из дверей находится автомобиль, за двумя другими дверями - козы. Вы выбираете одну из дверей, например, номер 1, после этого ведущий, который знает, где находится автомобиль, а где - козы, открывает одну из оставшихся дверей, например, номер 3, за которой находится коза. После этого он спрашивает вас, не желаете ли вы изменить свой выбор и выбрать дверь номер 2. Увеличатся ли ваши шансы выиграть автомобиль, если вы примете предложение ведущего и измените свой выбор?»


После публикации немедленно выяснилось, что задача сформулирована некорректно: не все условия оговорены. Например, ведущий может придерживаться стратегии «адский Монти»: предлагать сменить выбор тогда и только тогда, когда игрок первым ходом выбрал автомобиль. Очевидно, что смена первоначального выбора будет вести в такой ситуации к гарантированному проигрышу.

Наиболее популярной является задача с дополнительным условием - участнику игры заранее известны следующие правила:

  1. автомобиль равновероятно размещён за любой из 3 дверей;
  2. ведущий в любом случае обязан открыть дверь с козой (но не ту, которую выбрал игрок) и предложить игроку изменить выбор;
  3. если у ведущего есть выбор, какую из двух дверей открыть, он выбирает любую из них с одинаковой вероятностью.
Подсказка

Попробуйте рассмотреть людей, выбравших в одном и том же случае (то есть когда Приз находится, например, за дверью №1) разные двери. Кто будет в выигрыше от изменения своего выбора, а кто - нет?

Решение

Как и было предложено в подсказке, рассмотрим людей, сделавших разный выбор. Предположим, что Приз находится за дверью №1, а за дверями №2 и №3 - козы. Пусть у нас есть шесть человек, причём каждую дверь выбрали по два человека, и из каждой пары один впоследствии изменил решение, а другой - нет.

Заметим, что выбравшим дверь №1 Ведущий откроет одну из двух дверей на свой вкус, при этом, независимо от этого, Автомобиль получит тот, кто не изменит своего выбора, изменивший же свой первоначальный выбор останется без Приза. Теперь посмотрим на выбравших двери №2 и №3. Поскольку за дверью №1 стоит Автомобиль, открыть её Ведущий не может, что не оставляет ему выбора - он открывает им двери №3 и №2 соответственно. При этом изменивший решение в каждой паре в результате выберет Приз, а не изменивший - останется ни с чем. Таким образом, из троих людей, изменивших решения, двое получат Приз, а один - козу, в то время как из троих, оставивших свой изначальный выбор неизменным, Приз достанется лишь одному.

Необходимо отметить, что если бы Автомобиль оказался за дверью №2 или №3, результат был бы тем же, изменились бы лишь конкретные победители. Таким образом, предполагая, что изначально каждая дверь выбирается с равной вероятностью, мы получаем, что меняющие свой выбор выигрывают Приз в два раза чаще, то есть вероятность выигрыша в этом случае больше.

Посмотрим на эту задачу с точки зрения математической теории вероятностей. Будем предполагать, что вероятность изначального выбора каждой из дверей одинакова, равно как и вероятность нахождения за каждой из дверей Автомобиля. Кроме того, полезно сделать оговорку, что Ведущий, когда он может открыть две двери, выбирает каждую из них с равной вероятностью. Тогда окажется, что после первого принятия решения вероятность того, что Приз за выбранной дверью, равна 1/3, в то время как вероятность того, что он - за одной из двух других дверей, равна 2/3. При этом, после того как Ведущий открыл одну из двух «невыбранных» дверей, вся вероятность 2/3 приходится лишь на одну из оставшихся дверей, создавая тем самым основание для смены решения, которая увеличит вероятность выигрыша в 2 раза. Что, конечно, его нисколько не гарантирует в одном конкретном случае, но приведёт к более удачным результатам в случае многократного повторения эксперимента.

Послесловие

Задача Монти Холла - это не первая из известных формулировок данной проблемы. В частности, в 1959 году Мартин Гарднер опубликовал в журнале Scientific American аналогичную задачу «о трёх узниках» (Three Prisoners problem) со следующей формулировкой: «Из трёх узников одного должны помиловать, а двоих - казнить. Узник A уговаривает стражника назвать ему имя того из двух других, которого казнят (любого, если казнят обоих), после чего, получив имя B, считает, что вероятность его собственного спасения стала не 1/3, а 1/2. В то же время, узник C утверждает, что это вероятность его спасения стала 2/3, а для A ничего не изменилось. Кто из них прав?»

Однако и Гарднер был не первым, так как ещё в 1889 году в своём «Исчислении вероятностей» французский математик Жозеф Бертран (не путать с англичанином Бертраном Расселом!) предлагает похожую задачу (см. Bertrand"s box paradox): «Есть три ящика, в каждом из которых лежат две монеты: две золотых в первом, две серебряных во втором, и две разных - в третьем. Из наугад выбранного ящика наугад вытащили монету, которая оказалась золотой. Какова вероятность того, что оставшаяся монета в ящике - золотая?»

Если понять решения всех трёх задач, легко заметить схожесть их идей; математически же все их объединяет понятие условной вероятности, то есть вероятности события A, если известно, что событие B произошло. Простейший пример: вероятность того, что на обычном игральном кубике выпала единица, равна 1/6; однако если известно, что выпавшее число - нечётно, то вероятность того, что это - единица, будет уже 1/3. Задача Монти Холла, как и две другие приведённые задачи, показывают, что обращаться с условными вероятностями нужно аккуратно.

Эти задачи также нередко называют парадоксами: парадокс Монти Холла, парадокс ящиков Бертрана (последний не следует путать с настоящим парадоксом Бертрана, приведённым в той же книге, который доказывал неоднозначность существовавшего на тот момент понятия вероятности) - что подразумевает некоторое противоречие (например, в «парадоксе Лжеца» фраза «это утверждение - ложно» противоречит закону исключённого третьего). В данном случае, однако, никакого противоречия со строгими утверждениями нет. Зато есть явное противоречие с «общественным мнением» или просто «очевидным решением» задачи. Действительно, большинство людей, глядя на задачу, полагают, что после открытия одной из дверей вероятность нахождения Приза за любой из двух оставшихся закрытыми равна 1/2. Тем самым они утверждают, что нет разницы, соглашаться или не соглашаться изменить своё решение. Более того, многие люди с трудом осознают ответ, отличный от этого, даже после того, как им было рассказано подробное решение.

Ответ Монти Холла Стиву Селвину

Г-ну Стиву Селвину,
доценту биостатистики,
Калифорнийский университет, Беркли.

Уважаемый Стив,

Благодарю Вас за то, что прислали мне задачу из «Американского статистика».

Хотя я и не изучал статистику в университете, я знаю, что цифры всегда можно использовать в свою пользу, если бы я хотел ими манипулировать. Ваши рассуждения не учитывают одного существенного обстоятельства: после того как первый ящик оказывается пустым, участник уже не может поменять свой выбор. Так что вероятности остаются теми же: один из трёх, не так ли? Ну и, конечно, после того как один из ящиков оказывается пустым, шансы не становятся 50 на 50, а остаются теми же - один из трёх. Участнику только кажется, что, избавившись от одного ящика, он получает больше шансов. Вовсе нет. Два к одному против него, как было, так и осталось. И если Вы вдруг придёте ко мне на шоу, правила останутся теми же и для Вас: никакой смены ящиков после выбора.