Правила округления после запятой 5. Легкие правила округления чисел после запятой

Посмотрим на примерах, как округлить до десятых числа, используя правила округления.

Правило округления числа до десятых.

Чтобы округлить десятичную дробь до десятых, надо оставить после запятой только одну цифру, а все остальные следующие за ней цифры отбросить.

Если первая из отброшенных цифр 0, 1, 2, 3 или 4, то предыдущую цифру не изменяем.

Если первая из отброшенных цифр 5, 6, 7, 8 или 9, то предыдущую цифру увеличиваем на единицу.

Примеры .

Округлить до десятых числа:

Чтобы округлить число до десятых, оставляем после запятой первую цифру, а остальное отбрасываем. Так как первая отброшенная цифра 5, то предыдущую цифру увеличиваем на единицу. Читают: «Двадцать три целых семьдесят пять сотых приближенно равно двадцать три целых восемь десятых».

Чтобы округлить до десятых данное число, оставляем после запятой лишь первую цифру, остальное — отбрасываем. Первая отброшенная цифра 1, поэтому предыдущую цифру не изменяем. Читают: «Триста сорок восемь целых тридцать одна сотая приближенно равно триста сорок одна целая три десятых».

Округляя до десятых, оставляем после запятой одну цифру, а остальные — отбрасываем. Первая из отброшенных цифр — 6, значит, предыдущую увеличиваем на единицу. Читают: «Сорок девять целых, девятьсот шестьдесят две тысячных приближенно равно пятьдесят целых, нуль десятых».

Округляем до десятых, поэтому после запятой оставляем только первую из цифр, остальные — отбрасываем. Первая из отброшенных цифр — 4, значит предыдущую цифру оставляем без изменений. Читают: «Семь целых двадцать восемь тысячных приближенно равно семь целых нуль десятых».

Чтобы округлить до десятых данное число, после запятой оставляет одну цифру, а все следующие за ней — отбрасываем. Так как первая отброшенная цифра — 7, следовательно, к предыдущей прибавляем единицу. Читают: «Пятьдесят шесть целых восемь тысяч семьсот шесть десятитысячных приближенно равно пятьдесят шесть целых, девять десятых».

И еще пара примеров на округление до десятых:

Научившись умножать многозначные числа «в столбик», мы убедились, что это весьма муторное занятие. К счастью, мы будем этим заниматься недолго. В скором времени все сколь-нибудь сложные вычисления мы будем делать с помощью калькулятора. Сейчас мы практикуемся в счете исключительно в учебных целях, чтобы лучше понять и почувствовать «поведение» чисел. Впрочем, понимание и чутье можно с неменьшим успехом оттачивать на приближенных вычислениях, которые являются значительно более простыми. К ним-то мы теперь и приступим.

Допустим, мы хотим купить пять шоколадок по 19 рублей. Мы смотрим в свой кошелек и хотим быстро сообразить, хватит ли нам на это денег. Мы рассуждаем так: 19 это примерно 20, а 20 умножить на 5 это 100. Вот тут у нас в кошельке как раз есть сто рублей с небольшим. Значит, денег достаточно. Математик бы сказал, что мы округлили девятнадцать до двадцати и проделали приближенные вычисления. Но начнем всё по порядку.

Прежде всего оговоримся, что на первых порах мы будем заниматься округлением только положительных чисел. Делать это можно по-разному. Например, так:

Значок «≈» читается как «приближенно равно». Здесь мы, как говорится, округлили числа вниз и, соотвественно, получили оценку снизу. Делается это очень просто: мы оставляем первую цифру числа такой, как она есть, а все последующие заменяем на нули. Ясно, что результат такого округления всегда оказывается меньше или равен исходному числу.

С другой стороны, числа можно также округлять и вверх, получая, таким образом, оценку сверху:

При таком округлении все цифры, начиная со второй, обращаются в нули, а первая цифра увеличивается на единицу. Особый случай возникает, когда первая цифра равна девятке, которая заменяется сразу на две цифры, 1 и 0:

Результат округления вверх всегда больше или равен исходному числу.

Таким образом, у нас есть выбор, в какую сторону округлять: вверх или вниз. Обычно округляют в ту сторону, в которую ближе. Очевидно, что в большинстве случаев 11 лучше округлить до 10-ти, а 19 - до 20-ти. Формальные правила таковы: если вторая цифра у нашего числа находится в пределах от нуля до 4-х, то округляем вниз. Если же эта цифра оказывается в пределах от 5-ти до 9-ти, то вверх. Таким образом:

98 765 ≈ 100 000.

Отдельно надо отметить ситуацию, когда у числа вторая цифра - пять, а все последующие равны нулю, например 1500. Это число находится на одинаковом расстоянии как от 2000, так и от 1000:

2000 − 1500 = 500,

1500 − 1000 = 500.

Поэтому, казалось бы, всё равно, в какую сторону его округлять. Однако его принято округлять не куда-нибудь, а только вверх - для того, чтобы правила округления можно было сформулировать как можно проще. Если мы видим на втором месте пятерку, то этого уже достаточно для принятия решения о том, куда округлять: последующими цифрами можно уже совершенно не интересоваться.

Пользуясь округлением чисел, мы теперь можем быстро, хотя и приближенно, решать примеры на умножение какой угодно сложности. Пусть требуется вычислить:

Округляем оба сомножителя и за пару секунд получаем:

6879 ∙ 267 ≈ 7000 ∙ 300 = 2 100 000 ≈ 2 000 000 = 2 миллиона.

Для сравнения приведу точный ответ, который мы вычисляли, когда учились умножать в столбик:

6879 ∙ 267 = 1 836 693.

Что надо теперь сделать, чтобы понять, близко или далеко приближенный ответ отстоит от точного? - Конечно же, округлить точный ответ:

6879 ∙ 267 = 1 836 693 ≈ 2 000 000 = 2 миллиона.

У нас получилось, что после округления точный ответ стал равен приближенному. Значит, наш приближенный ответ не так уж и плох. Впрочем, надо заметить, что такая точность достигается далеко не всегда. Пусть надо вычислить 1497∙143. Приближенные вычисления выглядят так:

1497 ∙ 143 ≈ 1000 ∙ 100 = 100 000 = 100 тысяч.

А вот точный ответ (с последующим его округлением):

1497 ∙ 143 = 214 071 ≈ 200 000 = 200 тысяч.

Таким образом, точный ответ после округления оказался в 2 раза больше, чем приближенный. Это, конечно, не очень хорошо. Но признаюсь честно: я специально взял один из самых худших случаев. Обычно точность приближенных расчетов бывает всё же лучше.

Впрочем, мы до сих пор округляли числа и делали приближенные рассчеты лишь в самой, так сказать, грубой форме. Из всех разрядов числа мы оставляли незануленным только один - самый старший. Говорят, что мы округляли числа с точностью до одной значащей цифры. Однако мы можем округлять и поаккуратней, например, до двух значащих цифр:

Правило тут почти такое же, как и раньше. Все разряды, кроме двух самых старших, зануляем. Если в первом из зануленных разрядов стояла цифра в пределах от нуля до 4-х, то ничего больше не делаем. Если же эта цифра была в пределах от 5-ти до 9-ти, то в последний из незануленных разрядов добавляем единицу. Заметим, что если в разряде, в который добавляется единица, стоит девятка, то этот разряд переполняется и скидывается в ноль, а единицу «наследует» более старший разряд. То есть получается вот что:

195 ≈ 190 + 10 = 200,

или даже:

995 ≈ 990 + 10 = 1000.

Подобным же образом определяется и округление до трех значащих цифр и так далее.

Возвращаемся к нашему примеру. Посмотрим, что будет, если округлять числа не до одной, а до двух значащих цифр:

1497 ∙ 143 ≈ 1500 ∙ 140 = 210 000 = 210 тысяч.

И еще раз сравним с точным ответом:

1497 ∙ 143 = 214 071 ≈ 210 000 ≈ 210 тысяч.

Не правда ли, наше приближенное вычисление стало заметно точнее?

А вот еще один знакомый пример, для которого мы напишем два варианта приближенных ответов и сопоставим их с ответом точным:

6879 ∙ 267 ≈ 7 000 ∙ 3 00 = 2 100 000 ≈ 2 000 000,

6879 ∙ 267 ≈ 69 00 ∙ 27 0 = 1 863 000 ≈ 1 9 00 000,

6879 ∙ 267 = 1836693 ≈ 1 8 00 000 ≈ 2 000 000.

Тут самое время упомянуть о таком правиле: Если сомножители округлены до одной значащей цифры, то и приближенный ответ следует сразу же округлить до одной значащей цифры. Если сомножители округлены до двух значащих цифр, то и ответ надо округлять до двух значащих цифр. Вообще, сколько значащих цифр у сомножителей, столько же значащих цифр должно остаться у произведения. Поэтому в первой строчке, едва получив 2 100 000, мы тут же округлили это число до 2 000 000. Так же и во второй строчке: мы не стали останавливаться на промежуточном результате 1 863 000, а сразу же округлили его до 1 9 00 000. Почему так? Потому что в числе 2 100 000 все разряды, кроме самого первого, всё равно вычислены неверно. Подобным же образом, в числе 1 863 000 неверно вычислены все разряды, кроме первых двух. Давайте взглянем на соответствующие расчеты, сделанные «в столбик»:

Здесь слева воспроизведены точные вычисления, а справа - приближенные, выполненные после округления сомножителей до двух значащих цифр. Вместо нулей мы написали кружочки, чтобы подчеркнуть, что на самом деле за этими кружочками-нулями стоят какие-то другие цифры, которые после округления стали нам неизвестны. Не зная всех цифр в первых двух строчках, мы также не можем вычислить всех цифр и в последующих строчках - поэтому там тоже встречаются кружочки. Теперь всмотримся внимательнее: в двух самых старших разрядах нам кружочки нигде не попадаются. Значит, в ответной строке эти разряды вычислены более или менее точно. Но уже в третьем по старшинству разряде есть один кружочек, под которым подразумевается неизвестная нам цифра. Поэтому третий разряд в ответной строке мы, на самом деле, вычислить не можем. Тем более это относится к четвертому и последующим разрядам. Вот эти-то все разряды с неизвестными значениями и должны быть занулены в ходе последующего округления.

А что, интересно, будет, если один из сомножителей округлен с точностью до трех значащих цифр, а другой - только до одной? Давайте посмотрим, как будет выглядеть расчет в этом случае:

Мы видим, что сколь-нибудь надежно определен только самый старший разряд, поэтому округлять ответ надо до одной значащей цифры:

6879 ∙ 267 ≈ 6880 ∙ 3 00 = 2 064 000 ≈ 2 000 000

Мы видим также, что значащая цифра (в данном случае, 2) может отличаться от истинной (в данном случае, 1), но, как правило, не больше чем на единицу.

В общем случае, мы должны ориентироваться на сомножитель с наименьшим числом значащих цифр: точно до такого же числа значащих цифр следует округлять ответ.

До сих пор мы говорили только о приближенном умножении. А как насчет сложения? - Разумеется, сложение тоже может быть приближенным. Только округлять слагаемые, подготавливая их к приближенному сложению, надо не совсем так, как мы округляли сомножители, подготавливая их к приближенному умножению. Рассмотрим пример:

61 238 + 349 = 61 587.

Округлим, для начала, каждое из слагаемых до одной значащей цифры:

61 238 + 349 ≈ 60 000 + 300 = 60 300 ≈ 60 000.

Или, если записать в столбик:

61 238 + 349 ≈ 60 000 + 000 = 60 000.

Мы можем тут вместо второго слагаемого написать 0, или, как еще говорится, полностью пренебречь им по сравнению с первым слагаемым. Попробуем увеличить точность наших расчетов. Округляем теперь до двух значащих цифр:

61 238 + 349 ≈ 61 000 + 350 = 61 350 ≈ 61 000.

И снова мы могли бы сразу пренебречь вторым слагаемым и написать:

61 238 + 349 ≈ 61 000 + 0 = 61 000.

Лишь когда мы увеличиваем точность округления до трех значащих цифр, второе слагаемое начинает играть какую-то роль:

61 238 + 349 ≈ 61 200 + 349 = 61 549 ≈ 61 500.

Однако мы снова перестарались с точностью второго слагаемого: для него вполне было бы досточно и одной значащей цифры:

61 238 + 349 ≈ 61 200 + 300 = 61 500.

Тут действует такое правило: слагаемые, в отличие от сомножителей, следует округлять не до одинакового числа значащих цифр, а до одного и того же разряда. Округлить до разряда десятков - значит, округлить так, чтобы последняя значащая цифра результата округления находилась в разряде десятков. При округлении до разряда сотен последняя значащая цифра находится в разряде сотен и так далее. Приближенный ответ сразу же оказывается округлен с нужной точностью и дальнейшего округления не требует. Выпишем еще раз наш пример, посчитав его с различной точностью:

61 238 + 349 = 61 587 (точный расчет),

61 238 + 349 ≈ 61 240 + 350 = 61 590 (округление до десятков),

61 238 + 349 ≈ 61 200 + 300 = 61 500 (до сотен),

61 238 + 349 ≈ 61 000 + 0 = 61 000 (до тысяч),

61 238 + 349 ≈ 60 000 + 0 = 60 000 (до десятков тысяч),

61 238 + 349 ≈ 100 000 + 0 = 100 000 (до сотен тысяч).

Следует отметить, что при округлении второго слагаемого (349) до тысяч (и, тем более, до более старших разрядов) получается ноль. Здесь в последней строке мы встречаемся также с еще одним примечательным случаем:

61 238 ≈ 100 000,

когда число округляется до более высокого разряда, чем те, которые содержатся в нем самом, - и всё же результат такого округления оказывается отличным от нуля.

Рассмотрим теперь приближенное вычитание. Мы знаем, что вычитание можно рассматривать просто как одну из разновидностей сложения. Поэтому правила приближенного вычитания вообще-то совпадают с правилами приближенного сложения. Однако тут возможна особая ситуация, которая возникает, когда мы вычисляем разность близких друг к другу чисел. Допустим, требуется грубо оценить, чему равно значение выражения:

После грубого округления членов разности мы получаем:

Прямо скажем, получилось не очень-то хорошо. Точное значение, как нетрудно вычислить, таково:

7654 − 7643 = 11.

Всё-таки есть немалая разница между нулем и одиннадцатью! Поэтому даже при самых грубых оценках члены разности принято округлять до такого разряда, чтобы результат был всё же отличен от нуля:

7654 − 7643 ≈ 7650 − 7640 = 10.

А вот еще одна неприятность, которая может случиться при приближенном вычитании:

Мы получили в ответе аж тысячу, в то время как точное значение разности равно всего лишь единице! Тут уж надо смотреть внимательно и не допускать, что называется, формалистского подхода.

Впрочем, возможны такие ситуации, когда значение разности требуется вычислить с точностью до какого-то заранее предопределенного разряда, например, до разряда тысяч. В этом случае вполне допустимо именно так и писать:

7654 − 7643 ≈ 8000 − 8000 = 0.

2500 − 2499 ≈ 3000 − 2000 = 1000.

Формально мы совершенно правы. Мы ошибаемся в разряде тысяч не более, чем на одну единицу, а это - совершенно обычное дело, когда мы работаем с такой точностью, при которой последняя значащая цифра приходится как раз на разряд тысяч. Подобным же образом, с точностью до сотен:

7654 − 7643 ≈ 7700 − 7600 = 100.

2500 − 2499 ≈ 2500 − 2500 = 0.

Хотя приближенные вычисления - вещь довольно простая, подходить к ней совсем уж бездумно нельзя. Всякий раз точность приближения надо выбирать исходя из поставленной задачи и здравого смысла.

Нам осталось рассмотреть приближенное деление. Забегая вперед, скажу, что деление можно рассматривать как разновидность умножения. Поэтому правила приближенного деления - те же самые, как и в случае умножения: делимое и делитель надо округлить до одинакового числа значащих цифр, и это же самое число значащих цифр должно оставаться в ответе.

Но мы до сих пор не проходили деление по-настоящему. Мы умеем делить нацело и делить с остатком, но поделить «по-взрослому», без остатка, одно произвольное число на другое мы еще не можем. Поэтому мы пока выработаем, так сказать, временные правила приближенного деления, отвечающие нашему сегодняшнему пониманию предмета. Делить мы пока будем только грубо, с точностью до одной значащей цифры.

Пусть требуется приближенно вычислить:

Прежде всего округлим делитель (324) до одной значащей цифры:

76 464 / 324 ≈ 76 464 / 300.

Теперь сравним единственную значащую цифру делителя (3) с первой цифрой делимого (7). Тут, в принципе, возможно два случая. Первый случай заключается в том, что первая цифра делимого оказывается больше или равна единственной значащей цифре делителя. Этот случай мы сейчас и рассмотрим, потому что именно он реализуется в данном примере, так как 7 ≥ 3. Теперь мы зануляем все разряды делимого, кроме самого старшего, а значение старшего разряда округляем до ближайшего числа, делящегося нацело на значащую цифру делителя:

76 464 / 324 ≈ 76 464 / 300 ≈ 90 000 / 300.

Заметим, что, по стандартным правилам округления, 76 464 ≈ 80 000, однако, поскольку 8 не делится нацело на 3, мы «пошли еще дальше вверх», так что у нас оказалось 76 464 ≈ 90 000. Далее, у делимого и у делителя убираем одновременно «с хвоста» одинаковое число «лишних нулей»:

76 464 / 324 ≈ 76 464 / 300 ≈ 90 000 / 300 = 900 / 3.

После этого выполнить деление не составляет никакого труда:

76 464 / 324 ≈ 76 464 / 300 ≈ 90 000 / 300 = 900 / 3 = 300.

Приближенный ответ готов. Приведу для сравнения точный ответ:

76 464 / 324 = 236 ≈ 200.

Как видно, расхождение в единственной значащей цифре приближенного ответа составляет одну единицу, что вполне приемлемо.

Пусть теперь надо закончить такие приближенные вычисления:

35 144 / 764 ≈ 35 144 / 800.

Это второй из упомянутых нами случаев, когда первая цифра делимого меньше единственной значащей цифры округленного делителя (3 < 8). В этом случае мы зануляем все разряды делимого, кроме двух самых старших, а то число, которое образует эти два старших разряда, «подтягиваем» к ближайшему числу, которое можно поделить нацело на единственную значащую цифру делителя:

35 144 / 764 ≈ 35 144 / 800 ≈ 32 000 / 800.

(Если «подтянуть» можно с равным успехом в обе стороны, то «подтягиваем», для определенности, вверх.) Теперь убираем «лишние» нули и выполняем деление:

35 144 / 764 ≈ 35 144 / 800 ≈ 32 000 / 800 = 320 / 8 = 40.

Точный расчет таков:

35 144 / 764 = 46 ≈ 50.

И опять точность приближенного результата вполне приемлема.

Следует отметить, что делить приближенно можно даже такие числа, которые нацело друг на друга не делятся. Важно лишь (пока), чтобы делимое было больше или равно делителю.

В заключение этого урока нам осталось разобраться с тем, как округлять отрицательные числа и как делать с ними приближенные вычисления. На самом деле, для любого отрицательного числа мы всегда можем написать что-то в этом роде:

−3456 = −(+3456).

Здесь у нас в скобке стоит положительное число. Его-то мы и округлим по тем правилам, которые мы выработали для положительных чисел. Например, если его требуется округлить до двух значащих цифр, то мы получим:

−3456 = −(+3456) ≈ −(+3500) = −3500.

Так же просто все вычисления с отрицательными числами подменить на вычисления с участием только положительных чисел. Например,

−234 − 567 = −(234 + 567) ≈ −(200 + 600) = −(800) = −800,

234 − 567 = −(567 − 234) ≈ −(600 − 200) = −(400) = −400,

234 ∙ (−567) = −(234 ∙ 567) ≈ −(200 ∙ 600) = −(120 000) = −120 000.

В математике округлением называют операцию, которая позволяет уменьшить в числе количество знаков при помощи их замены, учитывая определенные правила. Если вас интересует вопрос о том, до сотых, то для начала следует разобраться со всеми существующими правилами округления. Существует несколько вариантов того, как можно округлять числа:

  1. Статистический - используют при уточнении численности жителей города. Говоря о количестве граждан, называют лишь приближенное значение, а не точную цифру.
  2. Половинный - округление половины происходит до ближайшего четного числа.
  3. Округление до меньшего числа (округление к нулю) - это самое легкое округление, при котором происходит отбрасывание всех «лишних» цифр.
  4. Округление до большего числа - если знаки, которые хотят округлить, не равны нулю, то число округляют в большую сторону. Такой способ используют провайдеры или операторы сотовой связи.
  5. Ненулевое округление - числа округляются по всем правилам, но когда результатом должен стать 0, то округление совершается «от нуля».
  6. Чередующееся округление - когда N+1 равняется 5-ти, число поочередно округляют то в меньшую, то в большую сторону.

К примеру, вам нужно округлить число 21,837 до сотых. После округления вашим правильным ответом должно стать 21,84. Объясним, почему. Цифра 8 входит в разряд десятых, следовательно, 3 в разряд сотых, а 7 - тысячных. 7 больше 5-ти, поэтому мы увеличиваем 3-ку на 1, то есть до 4-х. Это совсем несложно, если знать несколько правил:

1. Последняя сохраняемая цифра увеличивается на один в том случае, если первая отбрасываемая перед ней - больше чем 5. Если же эта цифра равняется 5-ти и за ней имеются еще какие-либо другие цифры, то предыдущая также увеличивается на 1.

Например, нам нужно округлить до десятых: 54,69=54,7, или 7,357=7,4.

Если вам задали вопрос о том, как округлить число до сотых, действуйте аналогично представленному выше варианту.

2. Последняя сохраняемая цифра остается неизменной, если первая из отбрасываемых, которая стоит перед ней меньше чем 5.

Пример: 96,71=96,7.

3. Последняя из сохраняемых цифр остается неизменной при условии, что она четная, и если первая из отбрасываемых - это число 5, и за ним нет больше никаких цифр. Если же оставляемая цифра - нечетная, то она увеличивается на 1.

Примеры: 84,45=84,4 или 63,75=63,8.

Примечание. Во многих школах ученикам дают упрощенную версию правил округления, так что стоит иметь это в виду. В них все цифры остаются неизменными, если после них идут числа от 0 до 4 и увеличиваются на 1 при условии, что после стоит число от 5 до 9. Грамотно решать задачи с округлением по строгим правилам, но если в школе заведен упрощенный вариант, то во избежание недоразумений стоит придерживаться его. Надеемся, вы поняли, как округлить число до сотых.

Округление в жизни необходимо для удобства работы с числами и указания точности измерений. В настоящее время появилось такое определение, как анти-округление. Например, при подсчете голосов какого-либо исследования круглые числа считаются дурным тоном. Магазины тоже используют анти-округление для создания у покупателей впечатления более выгодной цены (к примеру, пишут 199, а не 200). Надеемся, что на вопрос о том, как округлить число до сотых или десятых, теперь вы сможете ответить и сами.

Чтобы округлить число до какого-либо разряда – подчеркнем цифру этого разряда, а затем все цифры, стоящие за подчеркнутой, заменяем нулями, а если они стоят после запятой – отбрасываем. Если первая замененная нулем или отброшенная цифра равна 0, 1, 2, 3 или 4, то подчеркнутую цифру оставляем без изменения . Если первая замененная нулем или отброшенная цифра равна 5, 6, 7, 8 или 9, то подчеркнутую цифру увеличиваем на 1.

Примеры.

Округлить до целых:

1) 12,5; 2) 28,49; 3) 0,672; 4) 547,96; 5) 3,71.

Решение. Подчеркиваем цифру, стоящую в разряде единиц (целых) и смотрим на цифру, стоящую за ней. Если это цифра 0, 1, 2, 3 или 4, то подчеркнутую цифру оставляем без изменения, а все цифры после нее отбрасываем. Если же за подчеркнутой цифрой стоит цифра 5 или 6 или 7 или 8 или 9, то подчеркнутую цифру увеличим на единицу.

1) 12 ,5≈13;

2) 28 ,49≈28;

3) 0 ,672≈1;

4) 547 ,96≈548;

5) 3 ,71≈4.

Округлить до десятых:

6) 0, 246; 7) 41,253; 8) 3,81; 9) 123,4567; 10) 18,962.

Решение. Подчеркиваем цифру, стоящую в разряде десятых, а затем поступаем согласно правилу: все стоящие после подчеркнутой цифры отбросим. Если за подчеркнутой цифрой была цифра 0 или 1 или 2 или 3 или 4, то подчеркнутую цифру не изменяем. Если за подчеркнутой цифрой шла цифра 5 или 6 или 7 или 8 или 9, то подчеркнутую цифру увеличим на 1.

6) 0, 2 46≈0,2;

7) 41,2 53≈41,3;

8) 3,8 1≈3,8;

9) 123,4 567≈123,5;

10) 18,9 62≈19,0. За девяткой стоит шестерка, поэтому, девятку увеличиваем на 1. (9+1=10) нуль пишем, 1 переходит в следующий разряд и будет 19. Просто 19 мы в ответе записать не можем, так как должно быть понятно, что мы округляли до десятых — цифра в разряде десятых должна быть. Поэтому, ответ: 19,0.

Округлить до сотых:

11) 2, 045; 12) 32,093; 13) 0, 7689; 14) 543, 008; 15) 67, 382.

Решение. Подчеркиваем цифру в разряде сотых и, в зависимости от того, какая цифра стоит после подчеркнутой, оставляем подчеркнутую цифру без изменения (если за ней 0, 1, 2, 3 или 4) или увеличиваем подчеркнутую цифру на 1 (если за ней стоит 5, 6, 7, 8 или 9).

11) 2, 04 5≈2,05;

12) 32,09 3≈32,09;

13) 0, 76 89≈0,77;

14) 543, 00 8≈543,01;

15) 67, 38 2≈67,38.

Важно: в ответе последней должна стоять цифра в том разряде, до которого вы округляли.

Математика. 6 класс. Тест 5 . Вариант 1 .

1. Бесконечные десятичные непериодические дроби называют... числами.

А) положительными; В) иррациональными; С) четными; D) нечетными; Е) рациональными.

2 . При округлении числа до какого-либо разряда все следующие за этим разрядом цифры заменяют нулями, а если они стоят после запятой — отбрасывают. Если первая замененная нулем или отброшенная цифра равна 0, 1, 2, 3 или 4, то стоящую перед ней цифру не изменяют. Если первая замененная нулем или отброшенная цифра равна 5, 6, 7, 8 или 9, то стоящую перед ней цифру увеличивают на единицу. Округлить до десятых число 9,974.

A) 10,0; B) 9,9; C) 9,0; D) 10; E) 9,97.

3. Округлить до десятков число 264,85 .

A) 270; B) 260; C) 260,85; D) 300; E) 264,9.

4 . Округлить до целых число 52,71.

A) 52; B) 52,7; C) 53,7; D) 53; E) 50.

5. Округлить до тысячных число 3, 2573 .

A) 3,257; B) 3,258; C) 3,28; D) 3,3; E) 3.

6. Округлить до сотен число 49,583 .

A) 50; B) 0; C) 100; D) 49,58; E) 49.

7. Бесконечная периодическая десятичная дробь равна обыкновенной дроби, в числителе которой разность между всем числом после запятой и числом после запятой до периода; а знаменатель состоит из девяток и нулей, причем, девяток столько, сколько цифр в периоде, а нулей столько, сколько цифр после запятой до периода. 0,58 (3) в обыкновенную.

8. Обратить бесконечную периодическую десятичную дробь 0,3 (12) в обыкновенную.

9. Обратить бесконечную периодическую десятичную дробь 1,5 (3) в смешанное число.

10. Обратить бесконечную периодическую десятичную дробь 5,2 (144) в смешанное число.

11. Любое рациональное число можно записать Записать число 3 в виде бесконечной периодической десятичной дроби.

А) 3,0 (0); В) 3,(0); С) 3; D) 2,(9); E) 2,9 (0).

12 . Записать обыкновенную дробь ½ в виде бесконечной периодической десятичной дроби.

A) 0,5; B) 0,4 (9); C) 0,5 (0); D) 0,5 (00); E) 0,(5).

Ответы к тестам Вы найдете на странице «Ответы».

Страница 1 из 1 1

Многие люди интересуются, как округлять числа. Эта необходимость часто возникает у людей, которые свою жизнь связывают с бухгалтерией или другими видами деятельности, где требуются расчеты. Округление может производиться до целых, десятых и так далее. И необходимо знать, как это делать правильно, чтобы расчеты были более менее точными.

А что такое вообще круглое число? Это то, которое заканчивается на 0 (по большей части). В обыденной жизни умение округлять числа значительно облегчает походы по магазинам. Стоя у кассы, можно приблизительно прикинуть общую стоимость покупок, сравнить, сколько стоит килограмм одноименного товара в различных по весу пакетах. С числами, приведенными к удобной форме, легче производить устные расчеты, не прибегая к помощи калькулятора.

Зачем округляются числа?

Любые цифры человек склонен округлять в тех случаях, когда нужно выполнять более упрощенные операции. Например, дыня весит 3,150 килограммов. Когда человек будет рассказывать своим знакомым о том, сколько граммов имеет южный плод, он может прослыть не очень интересным собеседником. Значительно лаконичнее звучат фразы типа "Вот я купил трехкилограмовую дыню" без вникания во всякие ненужные детали.

Интересно, что даже в науке нет необходимости всегда иметь дело с максимально точными числами. А если речь идет о периодических бесконечных дробях, которые имеют вид 3,33333333...3, то это становится невозможным. Поэтому самым логичным вариантом будет обычное округление их. Как правило, результат после этого искажается незначительно. Итак, как округлять числа?

Несколько важных правил при округлении чисел

Итак, если вы захотели округлить число, важно понимать основные принципы округления? Это операция изменения направленная на уменьшение количества знаков после запятой. Чтобы осуществлять данное действие, необходимо знать несколько важных правил:

  1. Если число нужного разряда находится в пределах 5-9, округление осуществляется в большую сторону.
  2. Если число нужного разряда находится в пределах 1-4, округление производится в меньшую сторону.

Например, у нас есть число 59. Нам его нужно округлить. Чтобы это сделать, надо взять число 9 и добавить к нему единицу, чтобы получилось 60. Вот и ответ на вопрос, как округлять числа. А теперь рассмотрим частные случаи. Собственно, мы разобрались, как округлить число до десятков с помощью этого примера. Теперь осталось всего лишь использовать эти знания на практике.

Как округлить число до целых

Очень часто случается так, что имеется необходимость округлить, например, число 5,9. Данная процедура не составляет большого труда. Нужно для начала опустить запятую, и перед нашим взором предстает при округлении уже знакомое нам число 60. А теперь ставим запятую на место, и получаем 6,0. А поскольку нули в десятичных дробях, как правило, опускаются, то получаем в итоге цифру 6.

Аналогичную операцию можно производить и с более сложными числами. Например, как округлять числа типа 5,49 до целых? Здесь все зависит от того, какие цели вы поставите перед собой. Вообще, по правилам математики, 5,49 - это все-таки не 5,5. Поэтому округлить его в большую сторону нельзя. Но можно его округлить до 5,5, после чего уже законным становится округление до 6. Но такая уловка не всегда срабатывает, так что нужно быть предельно осторожным.

В принципе, выше уже был рассмотрен пример правильного округления числа до десятых, поэтому сейчас важно отобразить только основной принип. По сути, все происходит приблизительно таким же образом. Если цифра, которая находится на второй позиции после запятой, находится в пределах 5-9, то она вообще убирается, а стоящая перед ней цифра увеличивается на один. Если же меньше 5, то данная цифра убирается, а предыдущая остается на своем месте.

Например, при 4,59 до 4,6 цифра "9" уходит, а к пятерке прибавляется единица. А вот при округлении 4,41 единица опускается, а четверка остается в незименном виде.

Как используют маркетологи неумение массового потребителя округлять цифры?

Оказывается, большая часть людей на свете не имеет привычки оценить реальную стоимость продукта, что активно эксплуатируют маркетологи. Все знают слоганы акций типа "Покупайте всего за 9,99". Да, мы сознательно понимаем, что это уже по сути десять долларов. Тем не менее наш мозг устроен так, что воспринимает только первую цифру. Так что нехитрая операция приведения числа в удобный вид должно войти в привычку.

Очень часто округление позволяет лучше оценить промежуточные успехи, выражающиеся в численной форме. Например, человек стал зарабатывать 550 долларов в месяц. Оптимист скажет, что это почти 600, пессимист - что это чуть больше 500. Вроде бы разница есть, но мозгу приятнее "видеть", что объект достиг чего-то большего (или наоборот).

Можно привести огромное количество примеров, когда умение округлять оказывается невероятно полезным. Важно проявлять изобретательность и по возможности на загружаться ненужной информацией. Тогда успех будет незамедлительным.