Как доказать что пирамида правильная треугольная. Пирамида. Правильная пирамида. Сбор и использование персональной информации

Пирамида — это многогранник , у которого одна грань — основание пирамиды — произвольный многоугольник, а остальные — боковые грани — треугольники с общей вершиной, называемой вершиной пирамиды. Перпендикуляр опущенный из вершины пирамиды на ее основание, называется высотой пирамиды . Пирамида называется треугольной, четырехугольной, и т.д., если основанием пирамиды является треугольник, четырехугольник и т.д. Треугольная пирамида есть четырехгранник — тетраэдр. Четырехугольная — пятигранник и т.д.

Пирамида , Усеченная Пирамида

Правильная пирамида

Если основание пирамиды — правильный многоугольник , а высота опускается в центр основания, то — пирамида правильная. В правильной пирамиде все боковые ребра равны, все боковые грани равные равнобедренные треугольники. Высота треугольника боковой грани правильной пирамиды называется — апофема правильной пирамиды .

Усеченная пирамида

Сечение параллельное основанию пирамиды делит пирамиду на две части. Часть пирамиды между ее основанием и этим сечением — это усеченная пирамида . Это сечение для усеченной пирамиды является одним из её оснований. Расстояние между основаниями усеченной пирамиды называется высотой усеченной пирамиды. Усеченная пирамида называется правильной, если пирамида, из которой она была получена, была правильной. Все боковые грани правильной усеченной пирамиды — это равные равнобокие трапеции. Высота трапеции боковой грани правильной усеченной пирамиды называется — апофема правильной усеченной пирамиды .

Определение

Пирамида – это многогранник, составленный из многоугольника \(A_1A_2...A_n\) и \(n\) треугольников с общей вершиной \(P\) (не лежащей в плоскости многоугольника) и противолежащими ей сторонами, совпадающими со сторонами многоугольника.
Обозначение: \(PA_1A_2...A_n\) .
Пример: пятиугольная пирамида \(PA_1A_2A_3A_4A_5\) .

Треугольники \(PA_1A_2, \ PA_2A_3\) и т.д. называются боковыми гранями пирамиды, отрезки \(PA_1, PA_2\) и т.д. – боковыми ребрами , многоугольник \(A_1A_2A_3A_4A_5\) – основанием , точка \(P\) – вершиной .

Высота пирамиды – это перпендикуляр, опущенный из вершины пирамиды на плоскость основания.

Пирамида, в основании которой лежит треугольник, называется тетраэдром .

Пирамида называется правильной , если в ее основании лежит правильный многоугольник и выполнено одно из условий:

\((a)\) боковые ребра пирамиды равны;

\((b)\) высота пирамиды проходит через центр описанной около основания окружности;

\((c)\) боковые ребра наклонены к плоскости основания под одинаковым углом.

\((d)\) боковые грани наклонены к плоскости основания под одинаковым углом.

Правильный тетраэдр – это треугольная пирамида, все грани которой – равные равносторонние треугольники.

Теорема

Условия \((a), (b), (c), (d)\) эквивалентны.

Доказательство

Проведем высоту пирамиды \(PH\) . Пусть \(\alpha\) – плоскость основания пирамиды.


1) Докажем, что из \((a)\) следует \((b)\) . Пусть \(PA_1=PA_2=PA_3=...=PA_n\) .

Т.к. \(PH\perp \alpha\) , то \(PH\) перпендикулярна любой прямой, лежащей в этой плоскости, значит, треугольники – прямоугольные. Значит, эти треугольники равны по общему катету \(PH\) и гипотенузам \(PA_1=PA_2=PA_3=...=PA_n\) . Значит, \(A_1H=A_2H=...=A_nH\) . Значит, точки \(A_1, A_2, ..., A_n\) находятся на одинаковом расстоянии от точки \(H\) , следовательно, лежат на одной окружности с радиусом \(A_1H\) . Эта окружность по определению и есть описанная около многоугольника \(A_1A_2...A_n\) .

2) Докажем, что из \((b)\) следует \((c)\) .

\(PA_1H, PA_2H, PA_3H,..., PA_nH\) прямоугольные и равны по двум катетам. Значит, равны и их углы, следовательно, \(\angle PA_1H=\angle PA_2H=...=\angle PA_nH\) .

3) Докажем, что из \((c)\) следует \((a)\) .

Аналогично первому пункту треугольники \(PA_1H, PA_2H, PA_3H,..., PA_nH\) прямоугольные и по катету и острому углу. Значит, равны и их гипотенузы, то есть \(PA_1=PA_2=PA_3=...=PA_n\) .

4) Докажем, что из \((b)\) следует \((d)\) .

Т.к. в правильном многоугольнике совпадают центры описанной и вписанной окружности (вообще говоря, эта точка называется центром правильного многоугольника), то \(H\) – центр вписанной окружности. Проведем перпендикуляры из точки \(H\) на стороны основания: \(HK_1, HK_2\) и т.д. Это – радиусы вписанной окружности (по определению). Тогда по ТТП (\(PH\) – перпендикуляр на плоскость, \(HK_1, HK_2\) и т.д. – проекции, перпендикулярные сторонам) наклонные \(PK_1, PK_2\) и т.д. перпендикулярны сторонам \(A_1A_2, A_2A_3\) и т.д. соответственно. Значит, по определению \(\angle PK_1H, \angle PK_2H\) равны углам между боковыми гранями и основанием. Т.к. треугольники \(PK_1H, PK_2H, ...\) равны (как прямоугольные по двум катетам), то и углы \(\angle PK_1H, \angle PK_2H, ...\) равны.

5) Докажем, что из \((d)\) следует \((b)\) .

Аналогично четвертому пункту треугольники \(PK_1H, PK_2H, ...\) равны (как прямоугольные по катету и острому углу), значит, равны отрезки \(HK_1=HK_2=...=HK_n\) . Значит, по определению, \(H\) – центр вписанной в основание окружности. Но т.к. у правильных многоугольников центры вписанной и описанной окружности совпадают, то \(H\) – центр описанной окружности. Чтд.

Следствие

Боковые грани правильной пирамиды – равные равнобедренные треугольники.

Определение

Высота боковой грани правильной пирамиды, проведенная из ее вершины, называется апофемой .
Апофемы всех боковых граней правильной пирамиды равны между собой и являются также медианами и биссектрисами.

Важные замечания

1. Высота правильной треугольной пирамиды падает в точку пересечения высот (или биссектрис, или медиан) основания (основание – правильный треугольник).

2. Высота правильной четырехугольной пирамиды падает в точку пересечения диагоналей основания (основание – квадрат).

3. Высота правильной шестиугольной пирамиды падает в точку пересечения диагоналей основания (основание – правильный шестиугольник).

4. Высота пирамиды перпендикулярна любой прямой, лежащей в основании.

Определение

Пирамида называется прямоугольной , если одно ее боковое ребро перпендикулярно плоскости основания.


Важные замечания

1. У прямоугольной пирамиды ребро, перпендикулярное основанию, является высотой пирамиды. То есть \(SR\) – высота.

2. Т.к. \(SR\) перпендикулярно любой прямой из основания, то \(\triangle SRM, \triangle SRP\) – прямоугольные треугольники.

3. Треугольники \(\triangle SRN, \triangle SRK\) – тоже прямоугольные.
То есть любой треугольник, образованный этим ребром и диагональю, выходящей из вершины этого ребра, лежащей в основании, будет прямоугольным.

\[{\Large{\text{Объем и площадь поверхности пирамиды}}}\]

Теорема

Объем пирамиды равен трети произведения площади основания на высоту пирамиды: \

Следствия

Пусть \(a\) – сторона основания, \(h\) – высота пирамиды.

1. Объем правильной треугольной пирамиды равен \(V_{\text{прав.треуг.пир.}}=\dfrac{\sqrt3}{12}a^2h\) ,

2. Объем правильной четырехугольной пирамиды равен \(V_{\text{прав.четыр.пир.}}=\dfrac13a^2h\) .

3. Объем правильной шестиугольной пирамиды равен \(V_{\text{прав.шест.пир.}}=\dfrac{\sqrt3}{2}a^2h\) .

4. Объем правильного тетраэдра равен \(V_{\text{прав.тетр.}}=\dfrac{\sqrt3}{12}a^3\) .

Теорема

Площадь боковой поверхности правильной пирамиды равна полупроизведению периметра основания на апофему.

\[{\Large{\text{Усеченная пирамида}}}\]

Определение

Рассмотрим произвольную пирамиду \(PA_1A_2A_3...A_n\) . Проведем через некоторую точку, лежащую на боковом ребре пирамиды, плоскость параллельно основанию пирамиды. Данная плоскость разобьет пирамиду на два многогранника, один из которых – пирамида (\(PB_1B_2...B_n\) ), а другой называется усеченная пирамида (\(A_1A_2...A_nB_1B_2...B_n\) ).


Усеченная пирамида имеет два основания – многоугольники \(A_1A_2...A_n\) и \(B_1B_2...B_n\) , которые подобны друг другу.

Высота усеченной пирамиды – это перпендикуляр, проведенный из какой-нибудь точки верхнего основания к плоскости нижнего основания.

Важные замечания

1. Все боковые грани усеченной пирамиды – трапеции.

2. Отрезок, соединяющий центры оснований правильной усеченной пирамиды (то есть пирамиды, полученной сечением правильной пирамиды), является высотой.

Рассмотрим, какими свойствами обладают пирамиды, в которых боковые грани перпендикулярны основанию.

Если две смежные боковые грани пирамиды перпендикулярны основанию , то общее боковое ребро этих граней является высотой пирамиды . Если в задаче сказано, что ребро пирамиды является ее высотой , то речь идет именно об этом виде пирамид.

Грани пирамиды, перпендикулярные основанию — прямоугольные треугольники.

Если основание пирамиды — треугольник

Боковую поверхность такой пирамиды в общем случае ищем как сумму площадей всех боковых граней.

Основание пирамиды является ортогональной проекцией грани, не перпендикулярной основанию (в данном случае, SBC). А значит, по теореме о площади ортогональной проекции, площадь основания равна произведению площади этой грани на косинус угла между нею и плоскостью основания.

Если основание пирамиды — прямоугольный треугольник

В этом случае все грани пирамиды — прямоугольные треугольники .

Треугольники SAB и SAС прямоугольные, так как SA — высота пирамиды. Треугольник ABC прямоугольный по условию.

То, что треугольник SBC прямоугольный, следует из теоремы о трех перпендикулярах (AB — проекция наклонной SB на плоскость основания. Так как AB перпендикулярна BC по условию, то и SB перпендикулярна BC).

Угол между боковой гранью SBC и основанием в этом случае — угол ABS.

Площадь боковой поверхности равна сумме площадей прямоугольных треугольников:

Так как в данном случае

Если основание пирамиды — равнобедренный треугольник

В этом случае угол между плоскостью боковой грани BCS и плоскостью основания — это угол AFS, где AF — высота, медиана и биссектриса равнобедренного треугольника ABC.

Аналогично — если в основании пирамиды лежит равносторонний треугольник ABC.

Если основание пирамиды — параллелограмм

В этом случае основание пирамиды является ортогональной проекцией боковых граней, не перпендикулярных основанию.

Если разбить основание на два треугольника, то

где α и β — соответственно углы между плоскостями ADS и CDS и плоскостью основания.

Если BF и BK — высоты параллелограмма, то угол BFS — это угол наклона боковой грани CDS к плоскости основания, а угол BKS — угол наклона грани ADS.

(чертеж сделан для случая, когда B — тупой угол).

Если в основании пирамиды лежит ромб ABCD, то углы BFS и BKS равны. Треугольники ABS и CBS, а также ADS и CDS в этом случае также равны.

Если основание пирамиды — прямоугольник

В этом случае угол между плоскостью боковой грани SAD и плоскостью основания есть угол SAB,

а угол между плоскостью боковой грани SCD и плоскостью основания — угол SCB

(по теореме о трех перпендикулярах).

Данный видеоурок поможет пользователям получить представление о теме Пирамида. Правильная пирамида. На этом занятии мы познакомимся с понятием пирамиды, дадим ей определение. Рассмотрим, что такое правильная пирамида и какими свойствами она обладает. Затем докажем теорему о боковой поверхности правильной пирамиды.

На этом занятии мы познакомимся с понятием пирамиды, дадим ей определение.

Рассмотрим многоугольник А 1 А 2 ...А n , который лежит в плоскости α, и точку P , которая не лежит в плоскости α (рис. 1). Соединим точку P с вершинами А 1 , А 2 , А 3 , … А n . Получим n треугольников: А 1 А 2 Р , А 2 А 3 Р и так далее.

Определение . Многогранник РА 1 А 2 …А n , составленный из n -угольника А 1 А 2 ...А n и n треугольников РА 1 А 2 , РА 2 А 3 РА n А n -1 , называется n -угольной пирамидой. Рис. 1.

Рис. 1

Рассмотрим четырехугольную пирамиду PABCD (рис. 2).

Р - вершина пирамиды.

ABCD - основание пирамиды.

РА - боковое ребро.

АВ - ребро основания.

Из точки Р опустим перпендикуляр РН на плоскость основания АВСD . Проведенный перпендикуляр является высотой пирамиды.

Рис. 2

Полная поверхность пирамиды состоит из поверхности боковой, то есть площади всех боковых граней, и площади основания:

S полн = S бок + S осн

Пирамида называется правильной, если:

  • ее основание - правильный многоугольник;
  • отрезок, соединяющий вершину пирамиды с центром основания, является ее высотой.

Пояснение на примере правильной четырехугольной пирамиды

Рассмотрим правильную четырехугольную пирамиду PABCD (рис. 3).

Р - вершина пирамиды. Основание пирамиды АВСD - правильный четырехугольник, то есть квадрат. Точка О , точка пересечения диагоналей, является центром квадрата. Значит, РО - это высота пирамиды.

Рис. 3

Пояснение : в правильном n -угольнике центр вписанной и центр описанной окружности совпадает. Этот центр и называется центром многоугольника. Иногда говорят, что вершина проектируется в центр.

Высота боковой грани правильной пирамиды, проведенная из ее вершины, называется апофемой и обозначается h а .

1. все боковые ребра правильной пирамиды равны;

2. боковые грани являются равными равнобедренными треугольниками.

Доказательство этих свойств приведем на примере правильной четырехугольной пирамиды.

Дано : РАВСD - правильная четырехугольная пирамида,

АВСD - квадрат,

РО - высота пирамиды.

Доказать :

1. РА = РВ = РС = РD

2. ∆АВР = ∆ВCР =∆СDР =∆DAP См. Рис. 4.

Рис. 4

Доказательство .

РО - высота пирамиды. То есть, прямая РО перпендикулярна плоскости АВС , а значит, и прямым АО, ВО, СО и , лежащим в ней. Значит, треугольники РОА, РОВ, РОС, РОD - прямоугольные.

Рассмотрим квадрат АВСD . Из свойств квадрата следует, что АО = ВО = СО = DО.

Тогда у прямоугольных треугольников РОА, РОВ, РОС, РОD катет РО - общий и катеты АО, ВО, СО и равны, значит, эти треугольники равны по двум катетам. Из равенства треугольников вытекает равенство отрезков, РА = РВ = РС = РD. Пункт 1 доказан.

Отрезки АВ и ВС равны, так как являются сторонами одного квадрата, РА = РВ = РС . Значит, треугольники АВР и ВCР - равнобедренные и равны по трем сторонам.

Аналогичным образом получаем, что треугольники АВР, ВCР, СDР, DAP равнобедренны и равны, что и требовалось доказать в пункте 2.

Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему:

Для доказательства выберем правильную треугольную пирамиду.

Дано : РАВС - правильная треугольная пирамида.

АВ = ВС = АС.

РО - высота.

Доказать : . См. Рис. 5.

Рис. 5

Доказательство.

РАВС - правильная треугольная пирамида. То есть АВ = АС = ВС . Пусть О - центр треугольника АВС , тогда РО - это высота пирамиды. В основании пирамиды лежит равносторонний треугольник АВС . Заметим, что .

Треугольники РАВ, РВC, РСА - равные равнобедренные треугольники (по свойству). У треугольной пирамиды три боковые грани: РАВ, РВC, РСА . Значит, площадь боковой поверхности пирамиды равна:

S бок = 3S РАВ

Теорема доказана.

Радиус окружности, вписанной в основание правильной четырехугольной пирамиды, равен 3 м, высота пирамиды равна 4 м. Найдите площадь боковой поверхности пирамиды.

Дано : правильная четырехугольная пирамида АВСD ,

АВСD - квадрат,

r = 3 м,

РО - высота пирамиды,

РО = 4 м.

Найти : S бок. См. Рис. 6.

Рис. 6

Решение .

По доказанной теореме, .

Найдем сначала сторону основания АВ . Нам известно, что радиус окружности, вписанной в основание правильной четырехугольной пирамиды, равен 3 м.

Тогда, м.

Найдем периметр квадрата АВСD со стороной 6 м:

Рассмотрим треугольник BCD . Пусть М - середина стороны DC . Так как О - середина BD , то (м).

Треугольник DPC - равнобедренный. М - середина DC . То есть, РМ - медиана, а значит, и высота в треугольнике DPC . Тогда РМ - апофема пирамиды.

РО - высота пирамиды. Тогда, прямая РО перпендикулярна плоскости АВС , а значит, и прямой ОМ , лежащей в ней. Найдем апофему РМ из прямоугольного треугольника РОМ .

Теперь можем найти боковую поверхность пирамиды:

Ответ : 60 м 2 .

Радиус окружности, описанной около основания правильной треугольной пирамиды, равен м. Площадь боковой поверхности равна 18 м 2 . Найдите длину апофемы.

Дано : АВСP - правильная треугольная пирамиды,

АВ = ВС = СА,

R = м,

S бок = 18 м 2 .

Найти : . См. Рис. 7.

Рис. 7

Решение .

В правильном треугольнике АВС дан радиус описанной окружности. Найдем сторону АВ этого треугольника с помощью теоремы синусов.

Зная сторону правильного треугольника ( м), найдем его периметр.

По теореме о площади боковой поверхности правильной пирамиды , где h а - апофема пирамиды. Тогда:

Ответ : 4 м.

Итак, мы рассмотрели, что такое пирамида, что такое правильная пирамида, доказали теорему о боковой поверхности правильной пирамиды. На следующем уроке мы познакомимся с усечённой пирамидой.

Список литературы

  1. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. - 5-е изд., испр. и доп. - М.: Мнемозина, 2008. - 288 с.: ил.
  2. Геометрия. 10-11 класс: Учебник для общеобразовательных учебных заведений / Шарыгин И. Ф. - М.: Дрофа, 1999. - 208 с.: ил.
  3. Геометрия. 10 класс: Учебник для общеобразовательных учреждений с углубленным и профильным изучением математики /Е. В. Потоскуев, Л. И. Звалич. - 6-е изд., стереотип. - М.: Дрофа, 008. - 233 с.: ил.
  1. Интернет портал «Якласс» ()
  2. Интернет портал «Фестиваль педагогических идей «Первое сентября» ()
  3. Интернет портал «Slideshare.net» ()

Домашнее задание

  1. Может ли правильный многоугольник быть основанием неправильной пирамиды?
  2. Докажите, что непересекающиеся ребра правильной пирамиды перпендикулярны.
  3. Найдите величину двугранного угла при стороне основания правильной четырехугольной пирамиды, если апофема пирамиды равна стороне ее основания.
  4. РАВС - правильная треугольная пирамида. Постройте линейный угол двугранного угла при основании пирамиды.

), четырёхугольные и т. д. Пирамида является частным случаем конуса .

История развития пирамиды в геометрии

Начало геометрии пирамиды было положено в Древнем Египте и Вавилоне, однако активное развитие получило в Древней Греции. Объем пирамиды был известен древним египтянам. Первым греческим математиком, кто установил, чему равен объём пирамиды, был Демокрит , а доказал Евдокс Книдский . Древнегреческий математик Евклид систематизировал знания о пирамиде в XII томе своих «Начал» , а также вывел первое определение пирамиды: телесная фигура, ограниченная плоскостями, которые от одной плоскости сходятся в одной точке (книга XI, определение 12 ).

Элементы пирамиды

Развёртка пирамиды

Развёрткой называется плоская фигура, полученная при совмещении поверхности геометрического тела с одной плоскостью (без наложения граней или иных элементов поверхности друг на друга). Приступая к изучению развёртки поверхности, последнюю целесообразно рассматривать как гибкую, нерастяжимую плёнку. Некоторые из представленных таким образом поверхностей можно путём изгибания совместить с плоскостью. При этом, если отсек поверхности может быть совмещён с плоскостью без разрывов и склеивания, то такую поверхность называют развёртывающейся, а полученную плоскую фигуру - её развёрткой.

Свойства пирамиды

Если все боковые рёбра равны , то:

  • вокруг основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр;
  • боковые рёбра образуют с плоскостью основания равные углы;
  • также верно и обратное, то есть если боковые рёбра образуют с плоскостью основания равные углы, или если около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр, то все боковые рёбра пирамиды равны.

Если боковые грани наклонены к плоскости основания под одним углом , то:

  • в основание пирамиды можно вписать окружность, причём вершина пирамиды проецируется в её центр;
  • высоты боковых граней равны;
  • площадь боковой поверхности равна половине произведения периметра основания на высоту боковой грани.

Теоремы, связывающие пирамиду с другими геометрическими телами

Описание сферы вокруг правильной пирамиды:
SD - высота пирамиды.
AD - радиус окружности, описывающей основание.
В - середина ребра боковой грани
С - точка пересечения плоскостей проходящих через середину рёбер перпендикулярно им.
AC=CS - радиус сферы описывающей пирамиду

Сфера, вписанная в правильную пирамиду:
D - центр основания
SF - апофема
ASD - биссекторная плоскость угла между боковыми гранями
BCE - биссекторная плоскость угла между основанием и боковой гранью
С - точка пересечения всех биссекторных плоскостей
CK=CD - радиус сферы вписанной в пирамиду

Сфера

Конус

Цилиндр

  • Цилиндр называется вписанным в пирамиду, если одно его основание совпадает с окружностью вписанной в сечение пирамиды плоскостью, параллельной основанию, а другое основание принадлежит основанию пирамиды.
  • Цилиндр называется описанным около пирамиды, если вершина пирамиды принадлежит его одному основанию, а другое его основание описано около основания пирамиды. Причём описать цилиндр около пирамиды можно только тогда, когда в основании пирамиды - вписанный многоугольник (необходимое и достаточное условие).

Формулы, связанные с пирамидой

  • Объём пирамиды может быть вычислен по формуле:
V = 1 3 S h , {\displaystyle V={\frac {1}{3}}Sh,} где S {\displaystyle \ S} - площадь основания и h {\displaystyle \ h} - высота; V = 1 6 V p , {\displaystyle V={\frac {1}{6}}V_{p},} где V p {\displaystyle \ V_{p}} - объём параллелепипеда; V = 1 6 a 1 a 2 d sin ⁡ φ , {\displaystyle V={\frac {1}{6}}a_{1}a_{2}d\sin \varphi ,} где a 1 , a 2 {\displaystyle a_{1},a_{2}} - скрещивающиеся рёбра, d {\displaystyle d} - расстояние между и , φ {\displaystyle \varphi } - угол между a 1 {\displaystyle a_{1}} и a 2 {\displaystyle a_{2}} ;
  • Боковая поверхность - это сумма площадей боковых граней:
S b = ∑ i S i {\displaystyle S_{b}=\sum _{i}^{}S_{i}}
  • Полная поверхность - это сумма площади боковой поверхности и площади основания:
S p = S b + S o {\displaystyle \ S_{p}=S_{b}+S_{o}}
  • Для нахождения площади боковой поверхности в правильной пирамиде можно использовать формулы:
S b = 1 2 P a = n 2 b 2 sin ⁡ α {\displaystyle S_{b}={\frac {1}{2}}Pa={\frac {n}{2}}b^{2}\sin \alpha } где a {\displaystyle a} - апофема , P {\displaystyle \ P} -