Ядро, его строение и функции. Хроматин. Хромосомы. Кариотип. Хромосома и хроматин: что это и чем они отличаются

Хроматин – основной компонент клеточного ядра – достаточно легко получить из выделенных интерфазных ядер и из выделенных митотических хромосом. Для этого используют его свойство переходить в растворенное состояние при экстракции водными растворами с низкой ионной силой или просто деионизованной водой. При этом участки хроматина набухают и переходят в гель. Чтобы такие препараты перевести в настоящие растворы, необходимы сильные механические воздействия: встряхивание, перемешивание, дополнительная гомогенизация. Это, конечно, приводит к частичному разрушению исходной структуры хроматина, дробит его на мелкие фрагменты, но практически не меняет его химического состава.

Фракции хроматина, полученные из разных объектов, обладают довольно однообразным набором компонентов. Было найдено, что суммарный химический состав хроматина из интерфазных ядер и митотических хромосом мало отличаются друг от друга. Главными компонентами хроматина являются ДНК и белки, среди которых основную массу составляют гистоны и негистоновые белки (см табл. 3).

Таблица 3. Химический состав хроматина. Содержание белков и РНК дано по отношению к ДНК

В среднем в хроматине около 40% приходится на ДНК и около 60 % на белки, среди которых специфические ядерные белки-гистоны , составляют от 40 до 80% от всех белков, входящих в состав выделенного хроматина. Кроме того в состав хроматиновой фракциии входят мембранные компоненты, РНК, углеводы, липиды, гликопротеиды. Вопрос о том, насколько эти минорные компоненты входят в структуру хроматина еще не решен. Так, например, РНК может представлять собой транскрибируемую РНК, которая еще не потеряла связь с матрицей ДНК. Другие же минорные компоненты могут представлять собой вещества соосажденных фрагментов ядерной оболочки.

В структурном отношении хроматин представляет собой нитчатые комплексные молекулы дезоксирибонуклеопротеида (ДНП), которые состоят из ДНК, ассоциированной с гистонами (см. рис. 57). Поэтому укоренилось другое название хроматина – нуклеогистон . Именно за счет ассоциации гистонов с ДНК образуются очень лабильные, изменчивые нуклеиново-гистоновые комплексы, где отношения ДНК: гистон равно примерно единице, т.е. они присутствуют в равных весовых количествах. Эти нитчатые фибриллы ДНП и есть элементарные хромосомные или хроматиновые нити, толщина которых в зависимости от степени упаковки ДНК может колебаться от 10 до 30 нм. Эти фибриллы ДНП могут в свою очередь дополнительно компактизоваться с образованием более высоких уровней структуризации ДНП, вплоть до митотической хромосомы. Роль некоторых негистоновых белков заключается именно в образовании высоких уровней компактизации хроматина.

ДНК хроматина

В препарате хроматина на долю ДНК приходится обычно 30-40%. Эта ДНК представляет собой двухцепочечную спиральную молекулу подобно чистой выделенной ДНК в водных растворах. Об этом говорят многие экспериментальные данные. Так, при нагревании растворов хроматина наблюдается повышение оптической плотности раствора, так называемый гиперхромный эффект, связанный с разрывом межнуклеотидных водородных связей между цепями ДНК, подобно тому, что происходит при нагревании (плавлении) чистой ДНК.

Вопрос о размере, длине молекул ДНК в составе хроматина имеет важное значение для понимания структуры хромосомы в целом. При стандартных методах выделения ДНК хроматина обладает молекулярной массой 7-9 х 10 6 , что значительно меньше молекулярной массы ДНК из кишечной палочки (2,8 х 10 9). Такую сравнительно малую молекулярную массу ДНК из препаратов хроматина можно объяснить механическими повреждениями ДНК в процессе выделения хроматина. Если же выделять ДНК в условиях, исключающих встряхивание, гомогенизацию и другие воздействия, то удается из клеток получить молекулы ДНК очень большой длины. Длина молекул ДНК из ядер и хромосом эукариотических клеток может быть изучена с помощью метода светооптической радиоавтографии, подобно тому как это изучалось на прокариотических клетках.

Было обнаружено, что в составе хромосом длина индивидуальных линейных (в отличие от прокариотических хромосом) молекул ДНК может достигать сотен микрометров и даже нескольких сантиметров. Так, у разных объектов были получены молекулы ДНК от 0,5 мм до 2 см. Эти результаты показали, что есть близкое совпадение между расчетной длиной ДНК на хромосому и радиоавтографическим наблюдением.

Таблица 4. Содержание ДНК в клетках некоторых объектов (пг, 10 -12 г)

После мягкого лизиса клеток эукариот можно прямо определять молекулярные массы ДНК физико-химическими методами. Было показано, что максимальная молекулярная масса молекулы ДНК дрозофилы равна 41 х 10 9 , что соответствует длине около 2 см. У некоторых дрожжей на хромосому приходится молекула ДНК с молекулярной массой 1 х 10 8 -10 9 , которая имеет размеры около 0,5 мм.

Такие длинные ДНК представляют собой одну молекулу, а не несколько более коротких, сшитых гуськом с помощью белковых связок, как считали некоторые исследователи. К этому заключению пришли после того, как оказалось, что длина молекул ДНК не изменяется после обработки препаратов протеолитическими ферментами.

Общее количество ДНК, входящее в ядерные структуры клеток, в геном организмов, колеблется от вида к виду, хотя у микроорганизмов количество ДНК на клетку значительно ниже, чем у беспозвоночных, высших растений и животных. Так, у мыши на ядро приходится почти в 600 раз больше ДНК, чем у кишечной палочки. Сравнивая количество ДНК на клетку у эукариотических организмов, трудно уловить какие-либо корреляции между степенью сложности организма и количеством ДНК на ядро. Примерно одинаковое количество ДНК имеют такие различные организмы как лен, морской еж, окунь (1,4-1,9 пг) или рыба голец и бык (6,4 и 7 пг).

Значительны колебания количества ДНК в больших таксономических группах. Среди высших растений количество ДНК у разных видов может отличаться в сотни раз, так же, как и среди рыб, в десятки раз отличается количество ДНК у амфибий.

У некоторых амфибий в ядрах количество ДНК больше, чем в ядрах человека в 10-30 раз, хотя генетическая конституция человека несравненно сложнее, чем у лягушек. Следовательно, можно предполагать, что «избыточное» количество ДНК у более низко организованных организмов либо не связано с выполнением генетической роли, либо число генов повторяется то или иное число раз.

Разрешить эти вопросы оказалось возможным на основании изучения кинетики реакции ренатурации или гибридизации ДНК. Если фрагментированные молекулы ДНК в растворах подвергнуть тепловой денатурации, а затем инкубировать их при температуре несколько более низкой, чем та, при которой происходит денатурация, то идет восстановление исходной двуспиральной структуры фрагментов ДНК за счет воссоединения комплементарных цепей – ренатурация. Для ДНК вирусов и прокариотических клеток было показано, что скорость такой ренатурации прямо зависит от величины генома; чем больше геном, чем больше количество ДНК на частицу или клетку, тем больше нужно времени для случайного сближения комплементарных цепей и специфической реассоциации большего числа разных по нуклеотидной последовательности фрагментов ДНК (рис. 53). Характер кривой реассоциации ДНК прокариотических клеток указывает на отсутствие повторяющихся последовательностей оснований в геноме прокариот; все участки их ДНК несут уникальные последовательности, число и разнообразие которых отражает степень сложности генетической композиции объектов и, следовательно, их общей биологической организации.

Совсем другая картина реассоциации ДНК наблюдается у эукариотических организмов. Оказалось, что в состав их ДНК входят фракции, которые ренатурируют с гораздо более высокой скоростью, чем можно было бы предполагать на основании размера их генома, а также фракция ДНК, ренатурирующая медленно, подобно уникальным последовательностям ДНК прокариот. Однако для эукариот требуется значительно большее время для ренатурации этой фракции, что связано с общим большим размером их генома и с большим числом различных уникальных генов.

В той части ДНК эукариотов, которая отличается высокой скоростью ренатурации, различают две подфракции: 1) фракцию с высоко или часто повторяющимися последовательностями, где сходные участки ДНК могут быть повторены 10 6 раз; 2) фракцию умеренно повторяющихся последовательностей, встречающихся в геноме 10 2 -10 3 раз. Так, у мыши во фракцию ДНК с часто повторяющимися последовательностями входит 10% от общего количества ДНК на геном и 15% приходится на фракцию с умеренно повторяющимися последовательностями. Остальные 75% от всей ДНК мыши представлены уникальными участками, соответствующими большому числу различных неповторяющихся генов.

Фракции с часто повторяющимися последовательностями могут обладать иной плавучей плотностью, чем основная масса ДНК, и поэтому могут быть выделены в чистом виде, как так называемые фракции сателлитной ДНК . У мыши эта фракция имеет плотность, равную 1,691 г/мл, а основная часть ДНК - 1,700 г/мл. Эти различия плотности определяются различиями в нуклеотидном составе. Например, у мыши в этой фракции имеется 35% Г и Ц пар, а в основном пике ДНК - 42%.

Как оказалось, сателлитная ДНК, или фракция ДНК с часто повторяющимися последовательностями, не участвует в синтезе основных типов РНК в клетке, не связана с процессом синтеза белка. Этот вывод сделан был на основании того, что ни один из типов РНК клетки (тРНК, иРНК, рРНК) не гибридизируется с сателлитными ДНК. Следовательно, на этих ДНК нет последовательностей, отвечающих за синтез клеточных РНК, т.е. сателлитные ДНК не являются матрицами для синтеза РНК, не участвуют в транскрипции.

Существует гипотеза о том, что высокоповторяющиеся последовательности, не участвующие непосредственно в синтезе белков, могут нести информацию, играющую важную структурную роль в сохранении и функционировании хромосом. К ним могут быть отнесены многочисленные участки ДНК, связанные с белками остова интерфазного ядра (см. ниже), участки начала репликации или транскрипции, а также участки ДНК, регулирующие эти процессы.

Методом гибридизации нуклеиновых кислот прямо на хромосомах (in situ ) была изучена локализация этой фракции. Для этого на изолированной сателлитной ДНК с помощью бактериальных ферментов синтезировали меченую 3 Н-уридином РНК. Затем цитологический препарат с хромосомами подвергали такой обработке, при которой происходит денатурация ДНК (повышенная температура, щелочная среда и др.). После этого на препарат помещали меченную 3 Н РНК и добивались гибридизации между ДНК и РНК. Радиоавтографически было обнаружено, что большая часть метки локализуется в зоне первичных перетяжек хромосом, в зоне их центромерных участков. Метка обнаруживалась также и в других участках хромосом, но очень слабо (рис. 54).

За последние 10 лет сделаны большие успехи в изучении центромерных ДНК , особенно у дрожжевых клеток. Так у S. cerevisiae центромерная ДНК состоит из повторяющихся участков по 110 п.н. Она состоит из двух консервативных участков (I и III) и центрального элемента (II), обогащенного АТ-парами оснований. Сходное строение ДНК центромеры имеют хромосомы дрозофилы. Центромерная ДНК человека (альфоидная сателлитная ДНК) состоит из тандема мономеров по 170 п.н., организованных в группы димеров или пентамеров, которые в свою очередь образуют большие последовательности по 1-6 х 10 3 п.н. Такая самая большая единица повторена 100-1000 раз. С этой специфической центромерной ДНК комплексируются особые центромерные белки, участвующие в образовании кинетохора , структуры, обеспечивающей связь хромосом с микротрубочками веретена и в движении хромосом в анафазе (см. ниже).

ДНК с высокоповторяющимися последовательностями обнаружена также в теломерных участках хромосом многих эукариотических организмов (от дрожжей до человека). Здесь чаще всего встречаются повторы, в которые входят 3-4 гуаниновых нуклеотида. У человека теломеры содержат 500-3000 повторов TTAGGG. Эти участки ДНК выполняют особую роль - ограничивать хромосому с концов и предотвращать ее укорачивание в процессе многократной репликации.

Недавно было найдено, что высокоповторяющиеся последовательности ДНК интерфазных хромосом связываются специфически с белками - ламинами, подстилающими ядерную оболочку, и участвуют в заякоревании растянутых деконденсированных интерфазных хромосом, тем самым определяют порядок в локализации хромосом в объеме интерфазного ядра.

Сделано предположение, что сателлитная ДНК может участвовать в узнавании гомологичных районов хромосом при мейозе. По другим предположениям, участки с часто повторяющимися последовательностями играют роль разделителей (спейсеров) между различными функциональными единицами хромосомной ДНК, например между репликонами (см. ниже).

Как оказалось, фракция умеренно повторяющихся (от 10 2 до 10 5 раз) последовательностей принадлежит к пестрому классу участков ДНК, играющих важную роль в процессах создания аппарата белкового синтеза. В эту фракцию входят гены рибосомных ДНК, которые могут быть повторены у разных видов от 100 до 1000 раз. В эту фракцию входят многократно повторенные участки для синтеза всех тРНК. Более того, некоторые структурные гены, ответственные за синтез определенных белков, также могут быть многократно повторены, представлены многими копиями. Такими являются гены для белков хроматина - гистонов, повторяющихся до 400 раз.

Кроме того, в эту фракцию входят участки ДНК с разными последовательностями (по 100-400 нуклеотидных пар), также многократно повторенными, но рассеянными по всему геному. Их роль еще не до конца ясна. Высказывается предположение, что такие участки ДНК могут представлять собой акцепторные или регуляторные участки разных генов.

Итак, ДНК эукариотических клеток гетерогенна по составу, содержит несколько классов последовательностей нуклеотидов: часто повторяющиеся последовательности (> 10 6 раз), входящие во фракцию сателлитной ДНК и не транскрибирующиеся; фракция умеренно повторяющихся последовательностей (10 2 -10 5), представляющих блоки истинных генов, а также короткие последовательности, разбросанные по всему геному; фракция уникальных последовательностей, несущая информацию для большинства белков клетки.

Исходя из этих представлений становятся понятными те различия в количестве ДНК, которые наблюдаются у разных организмов: они могут быть связаны с неодинаковой долей тех или иных классов ДНК в геноме организмов. Так, например, у амфибии Amphiuma (у которой ДНК в 20 раз больше, чем у человека) на долю повторяющихся последовательностей приходится до 80% от всей ДНК, у луков - до 70, у лосося - до 60% и т.п. Истинное же богатство генетической информации должна отображать фракция уникальных последовательностей. Не нужно забывать, что в нативной, нефрагментированной молекуле ДНК хромосомы все участки, включающие уникальные, умеренно и часто повторяющиеся последовательности, связаны в единую гигантскую ковалентную цепь ДНК.

Молекулы ДНК гетерогенны не только по участкам разной нуклеотидной последовательности, но и различны в отношении их синтетической активности.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-15

Хроматин представляет собой белки (негистоновые и гистоновые) и комплекс нуклеиновых кислот (РНК и ДНК), которые своей совокупностью образуют в пространстве высокоупорядоченные структуры - хромосомы эукариот.

В хроматине соотношение белка и ДНК - приблизительно 1:1, основная масса белка представлена гистонами.

Виды хроматина

По своей структуре хроматин неоднороден. Условно весь хроматин подразделяется на две функциональные категории:

1) неактивная - гетерохроматин - содержит в себе в данный момент несчитываемую генетическую информацию;

2) активная - эухроматин - именно с него производится считывание генетической информации.

Соотношение содержания гетерохроматина и эухроматина постоянно находится в подвижной стадии. Зрелые клетки, к примеру крови, имеют ядра, характеризующиеся конденсированным, наиболее плотным хроматином, лежащим глыбками.

В ядрах соматических женских клеток глыбки хроматина сближены с мембраной ядра - это женский хроматин половой клетки.

Половой мужской хроматин представлен глыбкой в мужских соматических клетках, светящийся при окраске флюорохромами. Половой хроматин дает возможность устанавливать по клеткам, полученным из околоплодной жидкости беременной женщины, пол будущего ребенка.

Строение хроматина

Хроматин - нуклеопротеид клеточного ядра, который является основной составляющей хромосом.

Состав хроматина:

Гистоны - 30-50%;

Негистоновые белки - 4-33%;

ДНК - по массе 30-40%;

В зависимости от природы объекта, а также от способа выделения хроматина размеры молекул ДНК, число РНК, негистоновых белков колеблются в широких пределах.

Функции хроматина

Хроматин и хромосома по химической организации (комплекс ДНК с белками) друг от друга не отличаются, они переходят взаимно друг в друга.

В интерфазе различать отдельные хромосомы не представляется возможным. Они слабоспирализованны, образуют разрыхленный хроматин, распределяющийся по всему объему ядра. Как раз разрыхление структуры и считается требуемым условием для транскрипции, передачи информации наследственного характера, имеющейся в ДНК.

Кариотип

Кариотип (от карио... и греч. tэpos - образец, форма, тип), хромосомный набор, совокупность признаков хромосом (их число, размеры, форма и детали микроскопического строения) в клетках тела организма того или иного вида. Понятие кариотип введено сов. генетиком Г. А. Левитским (1924). Кариотип - одна из важнейших генетических характеристик вида, т.к. каждый вид имеет свой кариотип, отличающийся от кариотипа близких видов (на этом основана новая отрасль систематики - так называемая кариосистематика).



8.Особенности морфологического и функционального строения хромосом. Гетеро- и эухроматин. (один ответ на 2 вопроса).

Хромосомы: структура и классификация

Хромосомы (греч. – chromo – цвет, soma – тело) – это спирализованный хроматин. Их длина 0,2 – 5,0 мкм, диаметр 0,2 – 2 мкм.

Метафазная хромосома состоит из двух хроматид , которые соединяются центромерой (первичной перетяжкой ). Она делит хромосому на два плеча . Отдельные хромосомы имеют вторичные перетяжки . Участок, который они отделяют, называется спутником , а такие хромосомы – спутничными. Концевые участки хромосом называются теломеры . В каждую хроматиду входит одна непрерывная молекула ДНК в соединении с белками-гистонами. Интенсивно окрашивающиеся участки хромосом – это участки сильной спирализации (гетерохроматин). Более светлые участки – участки слабой спирализации (эухроматин).

Типы хромосом выделяют по расположению центромеры.

1. Метацентрические хромосомы – центромера расположена посередине, и плечи имеют одинаковую длину. Участок плеча около центромеры называется проксимальным, противоположный – дистальным.

2. Субметацентрические хромосомы – центромера смещена от центра и плечи имеют разную длину.

3. Акроцентрические хромосомы – центромера сильно смещена от центра и одно плечо очень короткое, второе плечо очень длинное.

В клетках слюнных желез насекомых (мух дрозофил) встречаются гигантские, политенные хромосомы (многонитчатые хромосомы).

Для хромосом всех организмов существует 4 правила:

1. Правило постоянства числа хромосом . В норме организмы определенных видов имеют постоянное, характерное для вида число хромосом. Например: у человека 46, у собаки 78, у мухи дрозофилы 8.

2. Парность хромосом . В диплоидном наборе в норме каждая хромосома имеет парную хромосому – одинаковую по форме и по величине.



3. Индивидуальность хромосом . Хромосомы разных пар отличаются по форме, строению и величине.

4. Непрерывность хромосом . При удвоении генетического материала хромосома образуется от хромосомы.

Набор хромосом соматической клетки, характерный для организма данного вида, называется кариотипом .

1. Хромосомы, одинаковые в клетках мужского и женского организмов, называются аутосомами

идиограммой

Классификацию хромосом проводят по разным признакам.

1. Хромосомы, одинаковые в клетках мужского и женского организмов,называются аутосомами . У человека в кариотипе 22 пары аутосом. Хромосомы, различные в клетках мужского и женского организмов, называются гетерохромосомами, или половыми хромосомами . У мужчины это Х и Y хромосомы, у женщины – Х и Х.

2. Расположение хромосом по убывающей величине называется идиограммой . Это систематизированный кариотип. Хромосомы располагаются парами (гомологичные хромосомы). Первая пара – самые большие, 22-я пара – маленькие и 23-я пара – половые хромосомы.

3. В 1960г. была предложена Денверская классификация хромосом. Она строится на основании их формы, размеров, положения центромеры, наличия вторичных перетяжек и спутников. Важным показателем в этой классификации является центромерный индекс (ЦИ). Это отношение длины короткого плеча хромосомы ко всей ее длине, выраженное в процентах. Все хромосомы разделены на 7 групп. Группы обозначаются латинскими буквами от А до G.

Группа А включает 1 – 3 пары хромосом. Это большие метацентрические и субметацентрические хромосомы. Их ЦИ 38-49%.

Группа В . 4-я и 5-я пары – большие метацентрические хромосомы. ЦИ 24-30%.

Группа С . Пары хромосом 6 – 12: средней величины, субметацентрические. ЦИ 27-35%. В эту группу входит и Х-хромосома.

Группа D . 13 – 15-я пары хромосом. Хромосомы акроцентрические. ЦИ около 15%.

Группа Е . Пары хромосом 16 – 18. Сравнительно короткие, метацентрические или субметацентрические. ЦИ 26-40%.

Группа F . 19 – 20-я пары. Короткие, субметацентрические хромосомы. ЦИ 36-46%.

Группа G . 21-22-я пары. Маленькие, акроцентрические хромосомы. ЦИ 13-33%. К этой группе относится и Y-хромосома.

4. Парижская классификация хромосом человека создана в 1971 году. С помощью этой классификации можно определять локализацию генов в определенной паре хромосом. Используя специальные методы окраски, в каждой хромосоме выявляют характерный порядок чередования темных и светлых полос (сегментов). Сегменты обозначают по названию методов, которые их выявляют: Q – сегменты – после окрашивания акрихин-ипритом; G – сегменты – окрашивание красителем Гимза; R – сегменты – окрашивание после тепловой денатурации и другие. Короткое плечо хромосомы обозначают буквой p, длинное – буквой q. Каждое плечо хромосомы делят на районы и обозначают цифрами от центромеры к теломеру. Полосы внутри районов нумеруют по порядку от центромеры. Например, расположение гена эстеразы D – 13p14 – четвертая полоса первого района короткого плеча 13-й хромосомы.

Функция хромосом : хранение, воспроизведение и передача генетической информации при размножении клеток и организмов.

Генетический материал эукариотических организмов имеет очень сложную организацию. Молекулы ДНК, находящиеся в клеточном ядре, входят в состав особого многокомпонентного вещества - хроматина.

Определение понятия

Хроматином называется содержащий наследственную информацию материал клеточного ядра, представляющий собой сложный функциональный комплекс ДНК со структурными белками и другими элементами, обеспечивающими упаковку, хранение и реализацию кариотического генома. В упрощенной трактовке это вещество, из которого состоят хромосомы. Термин происходит от греческого "хрома" - цвет, краска.

Понятие было введено Флемингом еще в 1880 году, но до сих пор идут споры о том, что такое хроматин, с точки зрения биохимического состава. Неопределенность касается небольшой части компонентов, не участвующих в структурировании генетических молекул (некоторые ферменты и рибонуклеиновые кислоты).

На электронной фотографии интерфазного ядра хроматин визуализируется как многочисленные участки темной материи, которые могут быть мелкими и разрозненными или объединяться в крупные плотные скопления.

Конденсация хроматина во время клеточного деления приводит к образованию хромосом, которые видны даже в обычном световом микроскопе.

Структурные и функциональные компоненты хроматина

С целью определить, что такое хроматин на биохимическом уровне, ученые экстрагировали это вещество из клеток, переводили в раствор и в таком виде изучали компонентный состав и структуру. При этом использовались как химические, так и физические методы, включая технологии электронной микроскопии. Выяснилось, что химический состав хроматина на 40% представлен длинными молекулами ДНК и почти на 60% - различными белками. Последние подразделяются на две группы: гистоны и негистоновые.

Гистонами называют большое семейство основных ядерных белков, которые прочно связываются с ДНК, формируя структурный скелет хроматина. Их количество примерно равно процентному содержанию генетических молекул.

Остальная часть (до 20%) протеиновой фракции приходится на ДНК-связывающие и пространственно-модифицирующие белки, а также ферменты, принимающие участие в процессах считывания и копирования генетической информации.

Помимо основных элементов, в составе хроматина в небольшом количестве обнаруживаются рибонуклеиновые кислоты (РНК), гликопротеиды, углеводы и липиды, однако вопрос об их ассоциации с ДНК-упаковочным комплексом до сих пор открыт.

Гистоны и нуклеосомы

Молекулярная масса гистонов варьирует в пределах от 11 до 21 кДа. Большое количество остатков основных аминокислот лизина и аргинина придают этим белкам положительный заряд, способствуя формированию ионных связей с противоположно заряженными фосфатными группами двойной спирали ДНК.

Выделяют 5 разновидностей гистонов: H2A, H2B, H3, H4 и H1. Первые четыре типа участвуют в формировании основной структурной единицы хроматина - нуклеосомы, которая состоит из кора (белковой сердцевины) и обмотанной вокруг него ДНК.

Нуклеосомный кор представлен октамерным комплексом из восьми молекул гистонов, в который входят тетрамер H3-H4 и димер Н2A-H2B. Участок ДНК протяженностью около 146 нуклеотидных пар накручивается на поверхность белковой частицы, образуя 1,75 витка, и переходит в линкерную последовательность (примерно 60 н. п.), соединяющую нуклеосомы друг с другом. Молекула H1 связывается с линкерной ДНК, защищая ее от действия нуклеаз.

Гистоны могут подвергаться различным модификациям, таким как ацетилирование, метилирование, фосфорилирование, ADP-рибозилирование и взаимодействие с убивиктиновым белком. Эти процессы влияют на пространственную конфигурацию и плотность упаковки ДНК.

Негистоновые белки

Существует несколько сотен разновидностей негистоновых белков с различными свойствами и функциями. Их молекулярная масса варьирует от 5 до 200 кДа. Особую группу составляют сайт-специфические белки, каждый из которых комплементарен определенному участку ДНК. В эту группу входят 2 семейства:

Лучше всего изучены так называемые белки высокой подвижности (HGM-белки), постоянно ассоциированые с хроматином. Такое наименование семейство получило из-за высокой скорости перемещения белковых молекул в электрофорезном геле. Эта группа занимает большую часть негистоновой фракции и включает в себя четыре основных типа HGM-белков: HGM-1, HGM-14, HGM-17 и HMO-2. Они выполняют структурную и регуляторную функции.

К негистоновым белкам относят также ферменты, обеспечивающие транскрипцию (процесс синтеза матричной РНК), репликацию (удвоение ДНК) и репарацию (устранение повреждений в генетической молекуле).

Уровни компактизации ДНК

Особенность структуры хроматина такая, что позволяет нитям ДНК с суммарной длиной более метра поместиться в ядро диаметром около 10 мкм. Такое возможно благодаря многоступенчатой системе упаковки генетических молекул. Общая схема компактизации включает пять уровней:

  1. нуклеосомная нить диаметром 10-11 нм;
  2. фибрилла 25-30 нм;
  3. петлевые домены (300 нм);
  4. волокно толщиной 700 нм;
  5. хромосомы (1200 нм).

Такая форма организации обеспечивает уменьшение длины исходной молекулы ДНК в 10 тысяч раз.

Нить диаметром 11 нм образована рядом нуклеосом, связанных линкерными участками ДНК. На электронной микрофотографии такая структура напоминает нанизанные на леску бусы. Нуклеосомная нить сворачивается в спираль по типу соленоида, образуя фибриллу толщиной 30 нм. В ее формировании участвует гистон H1.

Соленоидная фибрилла складывается в петли (иначе - домены), которые закрепляются на поддерживающем внутриядерном матриксе. Каждый домен содержит от 30 до 100 тысяч пар нуклеотидов. Такой уровень компактизации характерен для интерфазного хроматина.

Структура толщиной 700 нм образуется при спирализации доменной фибриллы и называется хроматидой. В свою очередь, две хроматиды формируют пятый уровень организации ДНК - хромосому диаметром 1400 нм, которая становится видна на стадии митоза или мейоза.

Таким образом, хроматин и хромосома - это формы упаковки генетического материала, зависящие от жизненного цикла клетки.

Хромосомы

Хромосома состоит из двух идентичных друг другу сестринских хроматид, каждая из которых образована одной суперспирализованной молекулой ДНК. Половинки соединяются особым фибриллярным тельцем, называемым центромерой. Одновременно эта структура является перетяжкой, разделяющей каждую хроматиду на плечи.

В отличие хроматина, представляющего собой структурный материал, хромосома - это дискретная функциональная единица, характеризующаяся не только структурой и составом, но и уникальным генетическим набором, а также определенной ролью в реализации механизмов наследственности и изменчивости на клеточном уровне.

Эухроматин и гетерохроматин

Хроматин в ядре существует в двух формах: менее спирализованной (эухроматин) и более компактной (гетерохроматин). Первая форма соответствует транскрипционно-активным участкам ДНК и поэтому структурирована не так плотно. Гетерохроматин подразделяется на факультативный (может переходить из активной формы в плотную неактивную в зависимости от стадии жизненного цикла клетки и необходимости реализовать те или иные гены) и конститутивный (постоянно уплотнен). Во время митотического или мейотического деления весь хроматин неактивен.

Конститутивный гетерохроматин обнаружен возле центромер и в концевых участках хромосомы. Результаты электронной микроскопии показывают, что такой хроматин сохраняет высокую степень конденсации не только на стадии деления клетки, но и во время интерфазы.

Биологическая роль хроматина

Основная функция хроматина заключается в плотной упаковке большого количества генетического материала. Однако просто уместить ДНК в ядре для жизнедеятельности клетки недостаточно. Необходимо, чтобы эти молекулы должным образом "работали", то есть, могли передавать заключенную в них информацию по системе ДНК-РНК-белок. Кроме этого, клетке нужно распределять генетический материал во время деления.

Устройство хроматина полностью отвечает этим задачам. Белковая часть содержит все необходимые ферменты, а особенности структуры позволяют им взаимодействовать с определенными участками ДНК. Поэтому, второй важной функцией хроматина является обеспечение всех процессов, связанных с реализацией ядерного генома.

Генетический материал эукариотических организмов имеет очень сложную организацию. Молекулы ДНК, находящиеся в клеточном ядре, входят в состав особого многокомпонентного вещества – хроматина.

Определение понятия

Хроматином называется содержащий наследственную информацию материал клеточного ядра, представляющий собой сложный функциональный комплекс ДНК со структурными белками и другими элементами, обеспечивающими упаковку, хранение и реализацию кариотического генома. В упрощенной трактовке это вещество, из которого состоят хромосомы. Термин происходит от греческого "хрома" – цвет, краска.

Понятие было введено Флемингом еще в 1880 году, но до сих пор идут споры о том, что такое хроматин, с точки зрения биохимического состава. Неопределенность касается небольшой части компонентов, не участвующих в структурировании генетических молекул (некоторые ферменты и рибонуклеиновые кислоты).

На электронной фотографии интерфазного ядра хроматин визуализируется как многочисленные участки темной материи, которые могут быть мелкими и разрозненными или объединяться в крупные плотные скопления.

Конденсация хроматина во время клеточного деления приводит к образованию хромосом, которые видны даже в обычном световом микроскопе.

Структурные и функциональные компоненты хроматина

С целью определить, что такое хроматин на биохимическом уровне, ученые экстрагировали это вещество из клеток, переводили в раствор и в таком виде изучали компонентный состав и структуру. При этом использовались как химические, так и физические методы, включая технологии электронной микроскопии. Выяснилось, что химический состав хроматина на 40% представлен длинными молекулами ДНК и почти на 60% – различными белками. Последние подразделяются на две группы: гистоны и негистоновые.

Гистонами называют большое семейство основных ядерных белков, которые прочно связываются с ДНК, формируя структурный скелет хроматина. Их количество примерно равно процентному содержанию генетических молекул.

Остальная часть (до 20%) протеиновой фракции приходится на ДНК-связывающие и пространственно-модифицирующие белки, а также ферменты, принимающие участие в процессах считывания и копирования генетической информации.

Помимо основных элементов, в составе хроматина в небольшом количестве обнаруживаются рибонуклеиновые кислоты (РНК), гликопротеиды, углеводы и липиды, однако вопрос об их ассоциации с ДНК-упаковочным комплексом до сих пор открыт.

Гистоны и нуклеосомы

Молекулярная масса гистонов варьирует в пределах от 11 до 21 кДа. Большое количество остатков основных аминокислот лизина и аргинина придают этим белкам положительный заряд, способствуя формированию ионных связей с противоположно заряженными фосфатными группами двойной спирали ДНК.

Выделяют 5 разновидностей гистонов: H2A, H2B, H3, H4 и H1. Первые четыре типа участвуют в формировании основной структурной единицы хроматина – нуклеосомы, которая состоит из кора (белковой сердцевины) и обмотанной вокруг него ДНК.

Нуклеосомный кор представлен октамерным комплексом из восьми молекул гистонов, в который входят тетрамер H3-H4 и димер Н2A-H2B. Участок ДНК протяженностью около 146 нуклеотидных пар накручивается на поверхность белковой частицы, образуя 1,75 витка, и переходит в линкерную последовательность (примерно 60 н. п.), соединяющую нуклеосомы друг с другом. Молекула H1 связывается с линкерной ДНК, защищая ее от действия нуклеаз.


Гистоны могут подвергаться различным модификациям, таким как ацетилирование, метилирование, фосфорилирование, ADP-рибозилирование и взаимодействие с убивиктиновым белком. Эти процессы влияют на пространственную конфигурацию и плотность упаковки ДНК.

Негистоновые белки

Существует несколько сотен разновидностей негистоновых белков с различными свойствами и функциями. Их молекулярная масса варьирует от 5 до 200 кДа. Особую группу составляют сайт-специфические белки, каждый из которых комплементарен определенному участку ДНК. В эту группу входят 2 семейства:

  • "цинковые пальцы" – узнают фрагменты длиной в 5 нуклеотидных пар;
  • гомодимеры – характеризуются структурой "спираль-поворот-спираль" во фрагменте, связанном с ДНК.

Лучше всего изучены так называемые белки высокой подвижности (HGM-белки), постоянно ассоциированые с хроматином. Такое наименование семейство получило из-за высокой скорости перемещения белковых молекул в электрофорезном геле. Эта группа занимает большую часть негистоновой фракции и включает в себя четыре основных типа HGM-белков: HGM-1, HGM-14, HGM-17 и HMO-2. Они выполняют структурную и регуляторную функции.

К негистоновым белкам относят также ферменты, обеспечивающие транскрипцию (процесс синтеза матричной РНК), репликацию (удвоение ДНК) и репарацию (устранение повреждений в генетической молекуле).

Уровни компактизации ДНК

Особенность структуры хроматина такая, что позволяет нитям ДНК с суммарной длиной более метра поместиться в ядро диаметром около 10 мкм. Такое возможно благодаря многоступенчатой системе упаковки генетических молекул. Общая схема компактизации включает пять уровней:

  1. нуклеосомная нить диаметром 10–11 нм;
  2. фибрилла 25–30 нм;
  3. петлевые домены (300 нм);
  4. волокно толщиной 700 нм;
  5. хромосомы (1200 нм).

Такая форма организации обеспечивает уменьшение длины исходной молекулы ДНК в 10 тысяч раз.


Нить диаметром 11 нм образована рядом нуклеосом, связанных линкерными участками ДНК. На электронной микрофотографии такая структура напоминает нанизанные на леску бусы. Нуклеосомная нить сворачивается в спираль по типу соленоида, образуя фибриллу толщиной 30 нм. В ее формировании участвует гистон H1.


Соленоидная фибрилла складывается в петли (иначе – домены), которые закрепляются на поддерживающем внутриядерном матриксе. Каждый домен содержит от 30 до 100 тысяч пар нуклеотидов. Такой уровень компактизации характерен для интерфазного хроматина.

Структура толщиной 700 нм образуется при спирализации доменной фибриллы и называется хроматидой. В свою очередь, две хроматиды формируют пятый уровень организации ДНК – хромосому диаметром 1400 нм, которая становится видна на стадии митоза или мейоза.

Таким образом, хроматин и хромосома – это формы упаковки генетического материала, зависящие от жизненного цикла клетки.

Хромосомы

Хромосома состоит из двух идентичных друг другу сестринских хроматид, каждая из которых образована одной суперспирализованной молекулой ДНК. Половинки соединяются особым фибриллярным тельцем, называемым центромерой. Одновременно эта структура является перетяжкой, разделяющей каждую хроматиду на плечи.


В отличие хроматина, представляющего собой структурный материал, хромосома – это дискретная функциональная единица, характеризующаяся не только структурой и составом, но и уникальным генетическим набором, а также определенной ролью в реализации механизмов наследственности и изменчивости на клеточном уровне.

Эухроматин и гетерохроматин

Хроматин в ядре существует в двух формах: менее спирализованной (эухроматин) и более компактной (гетерохроматин). Первая форма соответствует транскрипционно-активным участкам ДНК и поэтому структурирована не так плотно. Гетерохроматин подразделяется на факультативный (может переходить из активной формы в плотную неактивную в зависимости от стадии жизненного цикла клетки и необходимости реализовать те или иные гены) и конститутивный (постоянно уплотнен). Во время митотического или мейотического деления весь хроматин неактивен.

Конститутивный гетерохроматин обнаружен возле центромер и в концевых участках хромосомы. Результаты электронной микроскопии показывают, что такой хроматин сохраняет высокую степень конденсации не только на стадии деления клетки, но и во время интерфазы.

Биологическая роль хроматина

Основная функция хроматина заключается в плотной упаковке большого количества генетического материала. Однако просто уместить ДНК в ядре для жизнедеятельности клетки недостаточно. Необходимо, чтобы эти молекулы должным образом "работали", то есть, могли передавать заключенную в них информацию по системе ДНК-РНК-белок. Кроме этого, клетке нужно распределять генетический материал во время деления.

Устройство хроматина полностью отвечает этим задачам. Белковая часть содержит все необходимые ферменты, а особенности структуры позволяют им взаимодействовать с определенными участками ДНК. Поэтому, второй важной функцией хроматина является обеспечение всех процессов, связанных с реализацией ядерного генома.

Хроматин - это сложная смесь веществ, из которых построены хромосомы эукариот. Основными компонентами хроматина являются ДНК и хромосомных белков, в состав которых входят гистоны и негистоновые белки, образующие высокоупорядоченные в пространстве структуры. Соотношение ДНК и белка в хроматине составляет ~1:1, а основная масса белка хроматина представлена гистонами. Термин «Х» введен У. Флеммингом в 1880 г. для описания окрашиваемых специальными красителями внутриядерных структур.

Хроматин - основной компонент клеточного ядра; его достаточно легко получить из выделенных интерфазных ядер и из выделенных митотических хромосом. Для этого используют его свойство переходить в растворенное состояние при экстракции водными растворами с низкой ионной силой или просто деионизованной водой.

Фракции хроматина, полученные из разных объектов, обладают довольно однообразным набором компонентов. Было найдено, что по суммарному химическому составу хроматин из интерфазных ядер мало отличается от хроматина из митотических хромосом. Главными компонентами хроматина являются ДНК и белки, среди которых основную массу составляют гистоны и негистоновые белки.

Слайд 3. Различают две разновидности хроматина: гетерохроматин и эухроматин. Первый отвечает конденсированным во время интерфазы участкам хромосом, он является функционально неактивным. Этот хроматин хорошо окрашивается, именно его можно видеть на гистологическом препарате. Гетерохроматин делится на структурный (это участки хромосом, которые постоянно конденсированные) и факультативный (может деконденсуватись и переходить в эухроматин). Эухроматин соответствует деконденсованим в интерфазе участкам хромосом. Это рабочий, функционально активный хроматин. Он не окрашивается, его не видно на гистологическом препарате. Во время митоза весь эухроматин конденсируется и включается в состав хромосом.

В среднем в хроматине около 40% приходится на ДНК и около 60% - на белки, среди которых специфические ядерные белки-гистоны составляют от 40 до 80% от всех белков, входящих в состав выделенного хроматина. Кроме того, в состав хроматиновой фракциям входят мембранные компоненты, РНК, углеводы, липиды, гликопротеиды. Вопрос о том, насколько эти минорные компоненты входят в структуру хроматина, еще не решен. Так, РНК может представлять собой транскрибируемую РНК, которая еще не потеряла связь с матрицей ДНК. Другие же минорные компоненты могут относиться к веществам соосажденных фрагментов ядерной оболочки.

БЕЛКИ - класс биологических полимеров, присутствующих в каждом живом организме. С участием белков проходят основные процессы, обеспечивающие жизнедеятельность организма: дыхание, пищеварение, мышечное сокращение, передача нервных импульсов.

Белки являются полимерами, а аминокислоты - их мономерные звенья.

Аминокислоты - это органические соединения, содержащие в своем составе (в соответствии с названием) аминогруппу NH2 и органическую кислотную, т.е. карбоксильную, группу СООН.

Белковая молекула образуется в результате последовательного соединения аминокислот, при этом карбоксильная группа одной кислоты взаимодействует с аминогруппой соседней молекулы, в результате образуется пептидная связь - CO-NH- и выделяется молекула воды. Слайд 9

Белковые молекулы содержат от 50 до 1500 аминокислотных остатков. Индивидуальность белка определяется набором аминокислот, из которых составлена полимерная цепь и, что не менее важно, порядком их чередования вдоль цепи. Например, молекула инсулина состоит из 51 аминокислотного остатка.

Химический состав гистонов. Особенности физических свойств и взаимодействие с ДНК

Гистоны - относительно небольшие белки с очень большой долей положительно заряженных аминокислот (лизина и аргинина); положительный заряд помогает гистонам крепко связываться с ДНК (которая заряжена сильно отрицательно) независимо от ее нуклеотидной последовательности. Комплекс обоих классов белков с ядерной ДНК эукариотических клеток называется хроматином. Гистоны являются уникальной характеристикой эукариот и присутствуют в огромных количествах на клетку (около 60 миллионов молекул каждого типа на клетку). Типы гистонов распадаются на две главных группы - нуклеосомные гистоны и Н1 гистоны, образуя семейство высококонсервативных основных белков, состоящее из пяти больших классов - H1 и H2A, H2B, H3 и H4. Гистоны H1 более крупные (около 220 аминокислот) и оказались менее консервативными в ходе эволюции. Размер полипептидных цепей гистонов лежит в пределах от 220 (H1) до 102 (H4) аминокислотных остатков. Гистон H1 сильно обогащен остатками Lys, для гистонов H2A и H2B характерно умеренное содержание Lys, полипептидные цепи гистонов H3 и H4 богаты Arg. Внутри каждого класса гистонов (за исключением H4) на основании аминокислотных последовательностей различают несколько субтипов этих белков. Такая множественность особенно характерна для гистонов класса H1 млекопитающих. В этом случае различают семь субтипов, названных H1.1-H1.5, H1o и H1t. Гистоны H3 и Н4 принадлежат к наиболее консервативным белкам. Такая эволюционная консервативность предполагает, что для функции данных гистонов важны почти что все их аминокислоты. N - концевая часть данных гистонов может быть обратимо одифицирована в клетке за счет ацетилирования отдельных остатков лизина, что убирает положительный заряд лизинов.

Ядро область хвоста гистона.

Бусинки на струне Ля

Малая дальность взаимодействия

Гистоны компоновщика

Волокно на 30 нм

Волокно хромонемы

Взаимодействия волокна волокна дальнего действия

нуклеосома хроматин гистон

Роль гистонов в свертывании ДНК важна по следующим причинам:

  • 1) Если бы хромосомы состояли только из вытянутой ДНК, трудно вообразить, как они могли бы реплицироваться и разделяться по дочерним клеткам, не запутываясь или не ломаясь при этом.
  • 2) В вытянутом состоянии двойная спираль ДНК каждой человеческой хромосомы пересекла бы клеточное ядро тысячи раз; таким образом, гистоны упорядоченным образом упаковывают очень длинную молекулу ДНК в ядро, имеющее несколько микрометров в диаметре;
  • 3) Не вся ДНК свернута одинаковым образом, и характер упаковки района генома в хроматин, вероятно, влияет на активность генов, содержащихся в данном районе.

В хроматине ДНК простирается как непрерывная двуспиральная нить от одной нуклеосомы к другой. Каждая нуклеосома отделена от следующей участком линкерной ДНК, который варьирует в размерах от 0 до 80 нуклеотидных пар. В среднем повторяющиеся нуклеосомы имеют нуклеотидный интервал, составляющий около 200 нуклеотидных пар. На электронных микрофотографиях такое чередование гистонового октамера с намотанной ДНК и линкерной ДНК придает хроматину вид «бусин на нитке» (после обработок, развертывающих упаковку высшего порядка).

Метилирование как ковалентная модификация гистонов является более сложной, чем любая другая, поскольку оно может происходить как по лизинам, так и по аргининам. Кроме того, в отличие от любой другой модификации в группе 1, последствия метилирования могут быть как позитивными, так и негативными по отношению к транскрипционной экспрессии в зависимости от положения остатка в гистоне (табл. 10.1). Еще один уровень сложности связан с тем фактом, что по каждому остатку могут быть множественные метилированные состояния. Лизины могут быть моно - (me1), ди - (me2) или три - (meЗ) метилированными, тогда как аргинины могут быть моно - (me1) или ди - (me2) метилированными.

Фосфорилирование - лучше всего известная РТМ, поскольку уже давно поняли, что киназы регулируют проведение сигнала с клеточной поверхности через цитоплазму и в ядро, приводя к изменениям в экспрессии генов. Гистоны были одними из первых белков, фосфорилирование которых было обнаружено. К 1991 году открыли, что когда клетки стимулировали к пролиферации, происходила индукция так называемых «немедленных-ранних» («immediate-early») генов, и они становились транскрипционно активными и функционировали, стимулируя клеточный цикл. Эта повышенная экспрессия генов коррелирует с фосфорилированием гистона НЗ (Mahadevan et al., 1991). Остаток серина 10 гистона НЗ (Н3S10) оказался важным сайтом фосфорилирования для транскрипции от дрожжей до человека и, по-видимому, особенно важен у Drosophila (Nowak and Corces, 2004)

Убиквитинирование процесс присоединения к белку «цепочки» молекул убиквитина (см. Убиквитин). При У. происходит соединение С-конца убиквитина с боковыми остатками лизина в субстрате. Полиубиквитиновая цепочка навешивается в строго определенный момент и является сигналом, свидетельствующим о том, что данный белок подлежит деградации.

Ацетилирование гистонов играет важную роль в модуляции структуры хроматина при активации транскрипции , увеличивая доступность хроматина для транскрипционного аппарата. Полагают, что ацетилированные гистоны менее прочно связаны с ДНК и поэтому транскрипционной машине легче преодолевать сопротивление упаковки хроматина. В частности ацетилирование может облегчать доступ и связывание факторов транскрипции к их элементам узнавания на ДНК. Сейчас идентифицированы ферменты, которые осуществляют процесс ацетилирования и деацетилирования гистонов, и, наверное, скоро мы узнаем больше о том, как это увязывается с активацией транскрипции.

Известно что ацетилированные гистоны признак транскрипционно активного хроматина.

Гистоны - наиболее хорошо биохимически изученные белки.

Организация нуклеосом

Нуклеосома является элементарной единицей упаковки хроматина. Она состоит из двойной спирали ДНК, обмотанной вокруг специфического комплекса из восьми нуклеосомных гистонов (гистонового октамера). Нуклеосома представляет собой дисковидную частицу с диаметром около 11 нм, содержащую по две копии каждого из нуклеосомных гистонов (Н2A, Н2В, НЗ, Н4). Гистоновый октамер образует белковую сердцевину, вокруг которой дважды обмотана двуспиральная ДНК (146 нуклеотидных пар ДНК на гистоновый октамер).

Нуклеосомы, входящие в состав фибрилл, расположены более или менее равномерно вдоль молекулы ДНК на расстоянии 10-20 нм друг от друга.

Данные по структуре нуклеосом получены с использованием рентгеноструктурного анализа низкого и высокого разрешения кристаллов нуклеосом, межмолекулярных сшивок белок-ДНК и расщепления ДНК в составе нуклеосом с помощью нуклеаз или радикалов гидроксила. А. Клугом была построена модель нуклеосомы, в соответствии с которой ДНК (146 п.о.) в B-форме (правозакрученная спираль с шагом 10 п.о.) намотана на гистоновый октамер, в центральной части которого расположены гистоны Н3 и Н4, а на периферии - Н2а и Н2b. Диаметр такого нуклеосомного диска составляет 11 нм, а его толщина - 5,5 нм. Структура, состоящая из гистонового октамера и намотанной на него ДНК, получила название нуклеосомной кoровой частицы. Кoровые частицы отделены друг от друга сегментами линкерной ДНК. Общая длина участка ДНК, включенного в нуклеосому животных, составляет 200 (+/-15) п.о.

Полипептидные цепи гистонов содержат структурные домены нескольких типов. Центральный глобулярный домен и гибкие выступающие N- и С-концевые участки, обогащенные основными аминокислотами, получили название плеч (arm). С-концевые домены полипептидных цепей, участвующие в гистон-гистоновых взаимодействиях внутри кoровой частицы, находятся преимущественно в виде альфа-спирали с протяженным центральным спиральным участком, вдоль которого с двух сторон уложено по одной более короткой спирали. Все известные места обратимых посттрансляционных модификаций гистонов, происходящих на протяжении клеточного цикла или во время дифференцировки клеток, локализованы в гибких основных доменах их полипептидных цепей (табл. I.2). При этом N-концевые плечи гистонов H3 и H4 являются самыми консервативными участками молекул, а гистоны в целом - одними из наиболее эволюционно консервативных белков. С помощью генетических исследований дрожжей S. cerevisiae было установлено, что небольшие делеции и точковые мутации в N-концевых частях генов гистонов сопровождаются глубокими и разнообразными изменениями фенотипа дрожжевых клеток, что указывает на важность целостности молекул гистонов в обеспечении правильного функционирования эукариотических генов. В растворе гистоны Н3 и Н4 могут существовать в виде стабильных тетрамеров (Н3) 2 (Н4) 2, а гистоны Н2А и Н2В - в виде стабильных димеров. Постепенное повышение ионной силы в растворах, содержащих нативный хроматин, приводит к освобождению сначала димеров Н2А/Н2В, а затем тетрамеров Н3/Н4.

Уточнение тонкой структуры нуклеосом в кристаллах было проведено в работе К. Люгера с соавт. (1997 г.) с помощью рентгеноструктурного анализа высокого разрешения. Установлено, что выпуклая поверхность каждого гистонового гетеродимера в составе октамера огибается сегментами ДНК длиной 27-28 п.о., расположенными по отношению друг к другу под углом 140 градусов, которые разделены линкерными участками длиной в 4 п.о.

Уровни компактизации Днк: нуклеосомы, фибриллы, петли, митотическая хромосома

Первый уровень компактизации ДНК - нуклеосомный. Если подвергнуть действию нуклеазы хроматин, то он и ДНК, подвергаются распаду на регулярно повто­ряющиеся структуры. После нуклеазной обработки из хроматина путем центрифугирования вы­деляют фракцию частиц со скоростью седиментации 11S. Частицы 11S содержат ДНК около 200 нуклеотидных пар и восемь гистонов. Такая сложная нуклеопротеидная частица получила название Нуклеосомы. В ней гистоны образуют белковую основу-сердцевину, по поверхности которой располагается ДНК. ДНК образуют участок, с белками сердце­вины не связанный, - Линкер, Который, соединяя две соседние нуклеосомы, переходит в ДНК следующей нуклеосомы. Они образуют «бусины», глобулярные образования около 10 нм, сидящие друг за другом на вытянутых молекулах ДНК. Второй уровень компактизации-30 нм фибрилла. ПЕрвый, нуклеосомный, уровень компактизации хроматина играет регуляторную и структурную роль, обеспечивая плотность упаковки ДНК в 6-7 раз. В митотических хромосомах и в интерфазных ядрах выявляются фибриллы хроматина с диаметром 25-30 нм. Выделяют соленоидный тип укладки нуклеосом: нить плотно упакованных нуклеосом диаметром 10 нм образует витки с шагом спирали около 10 нм. На один виток такой суперспирали приходится 6-7 нуклеосом. В результате такой упаковки возникает фибрилла спирального типа с центральной полостью. Хроматин в составе ядер имеет 25-нм фибриллы, которая состоит из сближенных глобул того же размера - Нуклеомеров. Эти нуклеомеры называют сверхбусинами («супербиды»). Основная фибрилла хроматина диаметром 25 нм представляет собой линейное чередование нуклеомеров вдоль компактизованной молекулы ДНК. В составе нуклеомера образуются два витка нуклеосомной фибриллы, по 4 нуклеосомы в каждом. Нуклеомерный уровень укладки хроматина обеспечивает 40-кратное уплотнение ДНК. Нуклесомный и нуклеомерный (супербидный) уровни компактизации ДНК хроматина осуществляются за счет гистоновых белков. Петлевые домены ДНК - третий уровень структурной организации хроматина. В высших уровнях организации хроматина специфические белки связываются с особыми участками ДНК, которая в местах связывания образует большие петли, или домены. В некоторых местах есть сгустки конденсированного хроматина, розетковидные образования, состоящие из многих петель 30 нм-фибрилл, соединяющихся в плотном центре. Средний размер розеток достигает 100-150 нм. Розетки фибрилл хроматина-Хромомеры. Каждый хромомер состоит из нескольких содержащих нуклеосомы петель, которые связаны в одном центре. Хромомеры связаны друг с другом участками нуклеосомного хроматина. Такая петельнодоменная структура хроматина обеспечивает структурную компактизацию хроматина и организует функциональные единицы хромосом - репликоны и транскрибируемые гены.

Используя метод рассеяния нейтронов, удалось установить форму и точные размеры нуклеосом; при грубом приближении - это плоский цилиндр или шайба диаметром 11 нм и высотой 6 нм. Располагаясь на подложке для электронного микроскопирования, они образуют «бусины» - глобулярные образования около 10 нм, гуськом, тандемно сидящие на вытянутых молекулах ДНК. На самом же деле вытянутыми являются только линкерные участки, остальные три четверти длины ДНК спирально уложены по периферии гистонового октамера. Сам гистоновый октамер, как считают, имеет форму, напоминающую мяч для игры в регби, в состав которого входят тетрамер (НЗ·Н4) 2 и два независимых димера Н2А·Н2В. На рис. 60 представлена схема расположения гистонов в сердцевинной части нуклеосомы.

Состав центромер и теломер

Что такое хромосомы, сегодня известно почти каждому. Эти ядерные органеллы, в которых локализуются все гены, и составляют кариотип данного вида. Под микроскопом хромосомы выглядят как однородные, вытянутые темные палочкообразные структуры, и вряд ли увиденная картина покажется интригующим зрелищем. Тем более, что препараты хромосом великого множества живых существ, обитающих на Земле, отличаются разве что числом этих палочек да модификациями их формы. Однако есть два свойства, характерные для хромосом всех видов.

Обычно описывают пять стадий клеточного деления (митоза). Для простоты мы остановимся на трех основных этапах в поведении хромосом делящейся клетки. На первом этапе происходит постепенное линейное сжатие и утолщение хромосом, затем образуется веретено деления клетки, состоящее из микротрубочек. На втором хромосомы постепенно продвигаются к центру ядра и выстраиваются вдоль экватора, вероятно, чтобы облегчить присоединение микротрубочек к центромерам. При этом ядерная оболочка исчезает. На последнем этапе половинки хромосом - хроматиды - расходятся. Создается впечатление, что микротрубочки, прикрепленные к центромерам, как буксир, тянут хроматиды к полюсам клетки. С момента расхождения бывшие сестринские хроматиды называются дочерними хромосомами. Они достигают полюсов веретена и собираются вместе в параллельном порядке. Образуется ядерная оболочка.

Модель, объясняющая эволюцию центромер.

Вверху - центромеры (серые овалы) содержат специализированный набор белков (кинетохор), включающий гистоны CENH3 (H) и CENP-C (C), которые в свою очередь взаимодействуют с микротрубочками веретена деления (красные линии). В различных таксонах один из этих белков эволюционирует адаптивно и согласованно с дивергенцией первичной структуры ДНК центромер.

Внизу - изменения в первичной структуре или организации центромерной ДНК (темно-серый овал) может создавать более сильные центромеры, что выражается в большем количестве присоединяемых микротрубочек.

Теломеры

Термин «теломера» предложил Г. Мёллер еще в 1932 г. . В его представлении она означала не только физический конец хромосомы, но и присутствие «терминального гена со специальной функцией запечатывания (пломбирования) хромосомы», которое делало ее недоступной для вредных воздействий (хромосомных перестроек, делеций, действия нуклеаз и т.д.). Наличие терминального гена не подтвердилось в последующих исследованиях, однако функция теломеры была определена точно.

Позднее выявили еще одну функцию. Так как на концах хромосом обычный механизм репликации не работает, в клетке есть другой путь, поддерживающий стабильные размеры хромосом при клеточном делении. Эту роль выполняет специальный фермент, теломераза, которая действует подобно другому ферменту, обратной транскриптазе: использует одноцепочечную РНК-матрицу для синтеза второй цепи и восстановления концов хромосом. Таким образом, теломеры во всех организмах выполняют две важные задачи: защищают концы хромосом и поддерживают их длину и целостность.

Предложена модель белкового комплекса из шести теломер-специфических белков, формирующегося на теломерах хромосом человека . ДНК образует t-петлю, а одноцепочечный выступ внедряется в двухцепочечный участок ДНК, расположенный дистально (рис. 6). Белковый комплекс позволяет клеткам отличать теломеры от мест разрыва хромосом (ДНК). Не все белки теломер входят в состав комплекса, который избыточен на теломерах, но отсутствует в других районах хромосом. Защитные свойства комплекса вытекают из его способности воздействовать на структуру теломерной ДНК по крайней мере тремя способами: определять структуру самого кончика теломеры; участвовать в образовании t-петли; контролировать синтез теломерной ДНК теломеразой. Родственные комплексы найдены и на теломерах некоторых других видов эукариот.

Вверху - теломера в момент репликации хромосомы, когда ее конец доступен для комплекса теломеразы, который осуществляет репликацию (удвоение цепи ДНК на самом кончике хромосомы). После репликации теломерная ДНК (черные линии) вместе с находящимися на ней белками (показаны разноцветными овалами) образует t-петлю (нижняя часть рисунка ).

Время компактизации ДНК в клеточном цикле и основные факторы, стимулирующие процессы

Вспомним строение хромосом (из курса биологии) - их обычно отображают в виде пары букв X, где каждая хромосома является парной, а также каждая имеет две одинаковые части - левую и правую хроматиды. Такой набор хромосом характерен для клетки, уже начавшей свое деление, т.е. клетки, в которой прошел процесс удвоения ДНК. Удвоение количества ДНК называют синтетическим периодом, или S-периодом, клеточного цикла. Говорят, что количество хромосом в клетке остается прежним (2n), а число хроматид в каждой хромосоме - удвоенным (4c - 4 хроматиды на одну пару хромосом) - 2n4c. При делении в дочерние клетки от каждой хромосомы попадет одна хроматида и клетки получат полный диплоидный набор 2n2c.

Состояние клетки (точнее ее ядра) между двумя делениями называют интерфазным. В интерфазе различают три части - пресинтетический, синтетический и постсинтетический периоды.

Таким образом, весь клеточный цикл состоит из 4 отрезков времени: собственно митоза (M), пресинтетического (G1), синтетического (S) и постсинтетического (G2) периодов интерфазы (рис. 19). Буква G - от английского Gap - интервал, промежуток. В G1-периоде, наступающем сразу после деления, клетки имеют диплоидное содержание ДНК на одно ядро (2c). В период G1 начинается рост клеток главным образом за счет накопления клеточных белков, что определяется увеличением количества РНК на клетку. В этот период начинается подготовка клетки к синтезу ДНК (S-периоду).

Обнаружено, что подавление синтеза белка или иРНК в G1-периоде предотвращает наступление S-периода, так как в течение G1-периода происходят синтезы ферментов, необходимых для образования предшественников ДНК (например, нуклеотид-фосфокиназ), ферментов метаболизма РНК и белка. Это совпадает с увеличением синтеза РНК и белка. При этом резко повышается активность ферментов, участвующих в энергетическом обмене.

В следующем, S-периоде происходит удвоение количества ДНК на ядро и соответственно удваивается число хромосом. В разных клетках, находящихся в S-периоде, можно обнаружить разные количества ДНК - от 2c до 4c. Это связано с тем, что исследованию подвергаются клетки на разных этапах синтеза ДНК (только приступившие к синтезу и уже завершившие его). S-период является узловым в клеточном цикле. Без прохождения синтеза ДНК неизвестно ни одного случая вступления клеток в митотическое деление.

Постсинтетическая (G2) фаза еще называется премитотической. Последним термином подчеркивается ее большое значение для прохождения следующей стадии - стадии митотического деления. В данной фазе происходит синтез иРНК, необходимый для прохождения митоза. Несколько ранее этого синтезируется рРНК рибосом, определяющих деление клетки. Среди синтезирующихся в это время белков особое место занимают тубулины - белки микротрубочек митотического веретена.

В конце G2-периода или в митозе по мере конденсации митотических хромосом синтез РНК резко падает и полностью прекращается во время митоза. Синтез белка во время митоза понижается до 25% от исходного уровня и затем в последующих периодах достигает своего максимума в G2-периоде, в общем повторяя характер синтеза РНК.

В растущих тканях растений и животных всегда есть клетки, которые находятся как бы вне цикла. Такие клетки принято называть клетками G0-периода. Именно эти клетки представляют собой так называемые покоящиеся, временно или окончательно переставшие размножаться клетки. В некоторых тканях такие клетки могут находиться длительное время, не изменяя особенно своих морфологических свойств: они сохраняют в принципе способность к делению, превращаясь в камбиальные, стволовые клетки (например, в кроветворной ткани). Чаще потеря (хотя бы и временная) способности делиться сопровождается появлением способности к специализации, к дифференцировке. Такие дифференцирующиеся клетки выходят из цикла, но в особых условиях могут снова входить цикл. Например, большинство клеток печени находится в G0-периоде; они не участвуют в синтезе ДНК и не делятся. Однако при удалении части печени у экспериментальных животных, многие клетки начинают подготовку к митозу (G1-период), переходят к синтезу ДНК и могут делиться митотически. В других случаях, например в эпидермисе кожи, после выхода из цикла размножения и дифференцировки клетки некоторое время функционируют, а затем погибают (ороговевшие клетки покровного эпителия).