Ранг матрицы: определение, методы нахождения, примеры, решения. Ранг матрицы Когда ранг матрицы равен 1

Рассмотрим прямоугольную матрицу. Если в этой матрице выделить произвольно k строк и k столбцов, то элементы, стоящие на пересечении выделенных строк и столбцов, образуют квадратную матрицу k-го порядка. Определитель этой матрицы называется минором k-го порядка матрицы А. Очевидно, что матрица А обладает минорами любого порядка от 1 до наименьшего из чисел m и n. Среди всех отличных от нуля миноров матрицы А найдется по крайней мере один минор, порядок которого будет наибольшим. Наибольший из порядков миноров данной матрицы, отличных от нуля, называется рангом матрицы. Если ранг матрицы А равен r , то это означает, что в матрице А имеется отличный от нуля минор порядка r , но всякий минор порядка, большего чем r , равен нулю. Ранг матрицы А обозначается через r(A). Очевидно, что выполняется соотношение

Вычисление ранга матрицы с помощью миноров

Ранг матрицы находится либо методом окаймления миноров, либо методом элементарных преобразований. При вычислении ранга матрицы первым способом следует переходить от миноров низших порядков к минорам более высокого порядка. Если уже найден минор D k-го порядка матрицы А, отличный от нуля, то требуют вычисления лишь миноры (k+1)-го порядка, окаймляющие минор D, т.е. содержащие его в качестве минора. Если все они равны нулю, то ранг матрицы равен k .

Пример 1. Найти методом окаймления миноров ранг матрицы

.

Решение. Начинаем с миноров 1-го порядка, т.е. с элементов матрицы А. Выберем, например, минор (элемент) М 1 = 1, расположенный в первой строке и первом столбце. Окаймляя при помощи второй строки и третьего столбца, получаем минор M 2 = , отличный от нуля. Переходим теперь к минорам 3-го порядка, окаймляющим М 2 . Их всего два (можно добавить второй столбец или четвертый). Вычисляем их: = 0. Таким образом, все окаймляющие миноры третьего порядка оказались равными нулю. Ранг матрицы А равен двум.

Вычисление ранга матрицы с помощью элементарных преобразований

Элементарными называются следующие преобразования матрицы:

1) перестановка двух любых строк (или столбцов),

2) умножение строки (или столбца) на отличное от нуля число,

3) прибавление к одной строке (или столбцу) другой строки (или столбца), умноженной на некоторое число.

Две матрицы называются эквивалентными , если одна из них получается из другой с помощью конечного множества элементарных преобразований.

Эквивалентные матрицы не являются, вообще говоря, равными, но их ранги равны. Если матрицы А и В эквивалентны, то это записывается так: A ~ B.

Канонической матрицей называется матрица, у которой в начале главной диагонали стоят подряд несколько единиц (число которых может равняться нулю), а все остальные элементы равны нулю, например,

.

При помощи элементарных преобразований строк и столбцов любую матрицу можно привести к канонической. Ранг канонической матрицы равен числу единиц на ее главной диагонали.

Пример 2 Найти ранг матрицы

и привести ее к каноническому виду.

Решение. Из второй строки вычтем первую и переставим эти строки:

.

Теперь из второй и третьей строк вычтем первую, умноженную соответственно на 2 и 5:

;

из третьей строки вычтем первую; получим матрицу

которая эквивалентна матрице А, так как получена из нее с помощью конечного множества элементарных преобразований. Очевидно, что ранг матрицы В равен 2, а следовательно, и r(A)=2. Матрицу В легко привести к канонической. Вычитая первый столбец, умноженный на подходящие числа, из всех последующих, обратим в нуль все элементы первой строки, кроме первого, причем элементы остальных строк не изменяются. Затем, вычитая второй столбец, умноженный на подходящие числа, из всех последующих, обратим в нуль все элементы второй строки, кроме второго, и получим каноническую матрицу:

.

В данной статье пойдет речь о таком понятии, как ранг матрицы и необходимых дополнительных понятиях. Мы приведем примеры и доказательства нахождения ранга матрицы, а также расскажем, что такое минор матрицы, и почему он так важен.

Минор матрицы

Чтобы понять, что такое ранг матрицы, необходимо разобраться с таким понятием, как минор матрицы.

Определение 1

Минор k -ого порядка матрицы - определитель квадратной матрицы порядка k×k, которая составлена из элементов матрицы А, находящихся в заранее выбранных k-строках и k-столбцах, при этом сохраняется положение элементов матрицы А.

Проще говоря, если в матрице А вычеркнуть (p-k) строк и (n-k) столбцов, а из тех элементов, которые остались, составить матрицу, сохраняя расположение элементов матрицы А, то определитель полученной матрицы и есть минор порядка k матрицы А.

Из примера следует, что миноры первого порядка матрицы А и есть сами элементы матрицы.

Можно привести несколько примеров миноров 2-ого порядка. Выберем две строки и два столбца. Например, 1-ая и 2 –ая строка, 3-ий и 4-ый столбец.

При таком выборе элементов минором второго порядка будет - 1 3 0 2 = (- 1) × 2 - 3 × 0 = - 2

Другим минором 2-го порядка матрицы А является 0 0 1 1 = 0

Предоставим иллюстрации построения миноров второго порядка матрицы А:

Минор 3-го порядка получается, если вычеркнуть третий столбец матрицы А:

0 0 3 1 1 2 - 1 - 4 0 = 0 × 1 × 0 + 0 × 2 × (- 1) + 3 × 1 × (- 4) - 3 × 1 × (- 1) - 0 × 1 × 0 - 0 × 2 × (- 4) = - 9

Иллюстрация, как получается минор 3-го порядка матрицы А:

Для данной матрицы миноров выше 3-го порядка не существует, потому что

k ≤ m i n (p , n) = m i n (3 , 4) = 3

Сколько существует миноров k-ого порядка для матрицы А порядка p×n?

Число миноров вычисляют по следующей формуле:

C p k × C n k , г д е С p k = p ! k ! (p - k) ! и C n k = n ! k ! (n - k) ! - число сочетаний из p по k, из n по k соответственно.

После того, как мы определились, что такое миноры матрицы А, можно переходить к определению ранга матрицы А.

Ранг матрицы: методы нахождения

Определение 2

Ранг матрицы - наивысший порядок матрицы, отличный от нуля.

Обозначение 1

Rank (A), Rg (A), Rang (A).

Из определения ранга матрицы и минора матрицы становиться понятно, что ранг нулевой матрицы равен нулю, а ранг ненулевой матрицы отличен от нуля.

Нахождение ранга матрицы по определению

Определение 3

Метод перебора миноров - метод, основанный на определении ранга матрицы.

Алгоритм действий способом перебора миноров :

Необходимо найти ранг матрицы А порядка p × n . При наличии хотя бы одного элемента, отличного от нуля, то ранг матрицы как минимум равен единице (т.к. есть минор 1-го порядка, который не равен нулю ).

Далее следует перебор миноров 2-го порядка. Если все миноры 2-го порядка равны нулю, то ранг равен единице. При существовании хотя бы одного не равного нулю минора 2-го порядка, необходимо перейти к перебору миноров 3-го порядка, а ранг матрицы, в таком случае, будет равен минимум двум.

Аналогичным образом поступим с рангом 3-го порядка: если все миноры матрицы равняются нулю, то ранг будет равен двум. При наличии хотя бы одного ненулевого минора 3-го порядка, то ранг матрицы равен минимум трем. И так далее, по аналогии.

Пример 2

Найти ранг матрицы:

А = - 1 1 - 1 - 2 0 2 2 6 0 - 4 4 3 11 1 - 7

Поскольку матрица ненулевая, то ее ранг минимум равен единице.

Минор 2-го порядка - 1 1 2 2 = (- 1) × 2 - 1 × 2 = 4 отличен от нуля. Отсюда следует, что ранг матрицы А не меньше двух.

Перебираем миноры 3-го порядка: С 3 3 × С 5 3 = 1 5 ! 3 ! (5 - 3) ! = 10 штук.

1 1 - 1 2 2 6 4 3 11 = (- 1) × 2 × 11 + 1 × 6 × 4 + (- 1) × 2 × 3 - (- 1) × 2 × 4 - 1 × 2 × 11 - (- 1) × 6 × 3 = 0

1 - 1 - 2 2 6 0 4 11 1 = (- 1) × 6 × 1 + (- 1) × 0 × 4 + (- 2) × 2 × 11 - (- 2) × 6 × 4 - (- 1) × 2 × 1 - (- 1) × 0 × 11 = 0

1 1 - 2 2 2 0 4 3 1 = (- 1) × 2 × 1 + 1 × 0 × 4 + (- 2) × 2 × 3 - (- 2) × 2 × 4 - 1 × 2 × 1 - (- 1) × 0 × 3 = 0

1 - 1 0 2 6 - 4 4 11 - 7 = (- 1) × 6 × (- 7) + (- 1) × (- 4) × 4 + 0 × 2 × 11 - 0 × 6 × 4 - (- 1) × 2 × (- 7) - (- 1) × (- 4) × 11 = 0

1 - 1 0 2 6 - 4 3 11 - 7 = 1 × 6 × (- 7) + (- 1) × (- 4) × 3 + 0 × 2 × 11 - 0 × 6 × 3 - (- 1) × 2 × (- 7) - 1 × (- 4) × 11 = 0

1 - 2 0 2 0 - 4 3 1 - 7 = 1 × 0 × (- 7) + (- 2) × (- 4) × 3 + 0 × 2 × 1 - 0 × 0 × 3 - (- 2) × 2 × (- 7) - 1 × (- 4) × 1 = 0

1 - 2 0 6 0 - 4 11 1 - 7 = (- 1) × 0 × (- 7) + (- 2) × (- 4) × 11 + 0 × 6 × 1 - 0 × 0 × 11 - (- 2) × 6 × (- 7) - (- 1) × (- 4) × 1 = 0

Миноры 3-го порядка равны нулю, поэтому ранг матрицы равен двум.

Ответ : Rank (A) = 2.

Нахождение ранга матрицы методом окаймляющих миноров

Определение 3

Метод окаймляющих миноров - метод, который позволяет получить результат при меньшей вычислительной работе.

Окаймляющий минор - минор M o k (k + 1) -го порядка матрицы А, который окаймляет минор M порядка k матрицы А, если матрица, которая соответствует минору M o k , «содержит» матрицу, которая соответствует минору М.

Проще говоря, матрица, которая соответствует окаймляемому минору М, получается из матрицы, соответствующей окаймляющему минору M o k , вычеркиванием элементов одной строки и одного столбца.

Пример 3

Найти ранг матрицы:

А = 1 2 0 - 1 3 - 2 0 3 7 1 3 4 - 2 1 1 0 0 3 6 5

Для нахождения ранга берем минор 2-го порядка М = 2 - 1 4 1

Записываем все окаймляющие миноры:

1 2 - 1 - 2 0 7 3 4 1 , 2 0 - 1 0 3 7 4 - 2 1 , 2 - 1 3 0 7 1 4 1 1 , 1 2 - 1 3 4 1 0 0 6 , 2 0 - 1 4 - 2 1 0 3 6 , 2 - 1 3 4 1 1 0 6 5 .

Чтобы обосновать метод окаймляющих миноров, приведем теорему, формулировка которой не требует доказательной базы.

Теорема 1

Если все миноры, окаймляющие минор k-ого порядка матрицы А порядка p на n, равны нулю, то все миноры порядка (k+1) матрицы А равна нулю.

Алгоритм действий :

Чтобы найти ранг матрицы, необязательно перебирать все миноры, достаточно посмотреть на окаймляющие.

Если окаймляющие миноры равняются нулю, то ранг матрицы нулевой. Если существует хотя бы один минор, который не равен нулю, то рассматриваем окаймляющие миноры.

Если все они равны нулю, то Rank(A) равняется двум. При наличии хотя бы одного ненулевого окаймляющего минора, то приступаем к рассматриванию его окаймляющих миноров. И так далее, аналогичным образом.

Пример 4

Найти ранг матрицы методом окаймляющих миноров

А = 2 1 0 - 1 3 4 2 1 0 - 1 2 1 1 1 - 4 0 0 2 4 - 14

Как решить?

Поскольку элемент а 11 матрицы А не равен нулю, то возьмем минор 1-го порядка. Начнем искать окаймляющий минор, отличный от нуля:

2 1 4 2 = 2 × 2 - 1 × 4 = 0 2 0 4 1 = 2 × 1 - 0 × 4 = 2

Мы нашли окаймляющий минор 2-го порядка не равный нулю 2 0 4 1 .

Осуществим перебор окаймляющих миноров - (их (4 - 2) × (5 - 2) =6 штук).

2 1 0 4 2 1 2 1 1 = 0 ; 2 0 - 1 4 1 0 2 1 1 = 0 ; 2 0 3 4 1 - 1 2 1 - 4 = 0 ; 2 1 0 4 2 1 0 0 2 = 0 ; 2 0 - 1 4 1 0 0 2 4 = 0 ; 2 0 3 4 1 - 1 0 2 - 14 = 0

Ответ : Rank(A) = 2.

Нахождение ранга матрицы методом Гаусса (с помощью элементарных преобразований)

Вспомним, что представляют собой элементарные преобразования.

Элементарные преобразования :

  • путем перестановки строк (столбцов) матрицы;
  • путем умножение всех элементов любой строки (столбца) матрицы на произвольное ненулевое число k;

путем прибавления к элементам какой-либо строки (столбца) элементов, которые соответствуют другой стоки (столбца) матрицы, которые умножены на произвольное число k.

Определение 5

Нахождение ранга матрицы методом Гаусса - метод, который основывается на теории эквивалентности матриц: если матрица В получена из матрицы А при помощи конечного числа элементарных преобразований, то Rank(A) = Rank(B).

Справедливость данного утверждения следует из определения матрицы:

  • в случае перестановки строк или столбцов матрицы ее определитель меняет знак. Если он равен нулю, то и при перестановке строк или столбцов остается равным нулю;
  • в случае умножения всех элементов какой-либо строки (столбца) матрицы на произвольное число k, которое не равняется нулю, определитель полученной матрицы равен определителю исходной матрицы, которая умножена на k;

в случае прибавления к элементам некоторой строки или столбца матрицы соответствующих элементов другой строки или столбца, которые умножены на число k, не изменяет ее определителя.

Суть метода элементарных преобразований : привести матрицу,чей ранг необходимо найти, к трапециевидной при помощи элементарных преобразований.

Для чего?

Ранг матриц такого вида достаточно просто найти. Он равен количеству строк, в которых есть хотя бы один ненулевой элемент. А поскольку ранг при проведении элементарных преобразований не изменяется, то это и будет ранг матрицы.

Проиллюстрируем этот процесс:

  • для прямоугольных матриц А порядка p на n, число строк которых больше числа столбцов:

А ~ 1 b 12 b 13 ⋯ b 1 n - 1 b 1 n 0 1 b 23 ⋯ b 2 n - 2 b 2 n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 1 b n - 1 n 0 0 0 ⋯ 0 1 0 0 0 ⋯ 0 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 0 0 , R a n k (A) = n

А ~ 1 b 12 b 13 ⋯ b 1 k b 1 k + 1 ⋯ b 1 n 0 1 b 23 ⋯ b 2 k b 2 k + 1 ⋯ b 2 n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 1 b k k + 1 ⋯ b k n 0 0 0 ⋯ 0 0 ⋯ 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 0 0 ⋯ 0 , R a n k (A) = k

  • для прямоугольных матриц А порядка p на n, число строк которых меньше числа столбцов:

А ~ 1 b 12 b 13 ⋯ b 1 p b 1 p + 1 ⋯ b 1 n 0 1 b 23 ⋯ b 2 p b 2 p + 1 ⋯ b 2 n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 1 b p p + 1 ⋯ b p n , R a n k (A) = p

А ~ 1 b 12 b 13 ⋯ b 1 k b 1 k + 1 ⋯ b 1 n 0 1 b 23 ⋯ b 2 k b 2 k + 1 ⋯ b 2 n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 1 b k k + 1 ⋯ b k n 0 0 0 ⋯ 0 0 ⋯ 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 0 0 ⋯ 0

  • для квадратных матриц А порядка n на n:

А ~ 1 b 12 b 13 ⋯ b 1 n - 1 b 1 n 0 1 b 23 ⋯ b 2 n - 1 b 2 n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 1 b n - 1 n 0 0 0 ⋯ 0 1 , R a n k (A) = n

A ~ 1 b 12 b 13 ⋯ b 1 k b 1 k + 1 ⋯ b 1 n 0 1 b 23 ⋯ b 2 k b 2 k + 1 ⋯ b 2 n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 1 b k k + 1 ⋯ b k n 0 0 0 ⋯ 0 0 ⋯ 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 0 0 ⋯ 0 , R a n k (A) = k , k < n

Пример 5

Найти ранг матрицы А при помощи элементарных преобразований:

А = 2 1 - 2 6 3 0 0 - 1 1 - 1 2 - 7 5 - 2 4 - 15 7 2 - 4 11

Как решить?

Поскольку элемент а 11 отличен от нуля, то необходимо умножить элементы первой строки матрицы А на 1 а 11 = 1 2:

А = 2 1 - 2 6 3 0 0 - 1 1 - 1 2 - 7 5 - 2 4 - 15 7 2 - 4 11 ~

Прибавляем к элементам 2-ой строки соответствующие элементы 1-ой строки, которые умножены на (-3). К элементам 3-ей строки прибавляем элементы 1-ой строки, которые умножены на (-1):

~ А (1) = 1 1 2 - 1 3 3 0 0 - 1 1 - 1 2 - 7 5 - 2 4 - 15 7 2 - 4 11 ~ А (2) = = 1 1 2 - 1 3 3 + 1 (- 3) 0 + 1 2 (- 3) 0 + (- 1) (- 3) - 1 + 3 (- 3) 1 + 1 (- 3) - 1 + 1 2 (- 3) 2 + (- 1) (- 1) - 7 + 3 (- 1) 5 + 1 (- 5) - 2 + 1 2 (- 5) 4 + (- 1) (- 5) - 15 + 3 (- 5) 7 + 1 (- 7) 2 + 1 2 (- 7) - 4 + (- 1) (- 7) 11 + 3 (- 7) =

1 1 2 - 1 3 0 - 3 2 3 - 10 0 - 3 2 3 - 10 0 - 9 2 9 - 30 0 - 3 2 3 - 10

Элемент а 22 (2) отличен от нуля, поэтому мы умножаем элементы 2-ой строки матрицы А на А (2) н а 1 а 22 (2) = - 2 3:

А (3) = 1 1 2 - 1 3 0 1 - 2 20 3 0 - 3 2 3 - 10 0 - 9 2 9 - 30 0 - 3 2 3 - 10 ~ А (4) = 1 1 2 - 1 3 0 1 - 2 20 3 0 - 3 2 + 1 3 2 3 + (- 2) 3 2 - 10 + 20 3 × 3 2 0 - 9 2 + 1 9 2 9 + (- 2) 9 2 - 30 + 20 3 × 9 2 0 - 3 2 + 1 3 2 3 + (- 2) 3 2 - 10 + 20 3 × 3 2 = = 1 1 2 - 1 3 0 1 - 2 20 3 0 0 0 0 0 0 0 0 0 0 0 0

  • К элементам 3-ей строки полученной матрицы прибавляем соответствующие элементы 2-ой строки,которые умножены на 3 2 ;
  • к элементам 4-ой строки - элементы 2-ой строки, которые умножены на 9 2 ;
  • к элементам 5-ой строки - элементы 2-ой строки, которые умножены на 3 2 .

Все элементы строк равны нулю. Таким образом, при помощи элементарных преобразований,мы привели матрицу к трапецеидальному виду, откуда видно, что R a n k (A (4)) = 2 . Отсюда следует, что ранг исходной матрицы также равен двум.

Замечание

Если проводить элементарные преобразования, то не допускаются приближенные значения!

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Любая матрица A порядка m×n можно рассматривать как совокупность m векторов строк или n векторов столбцов .

Рангом матрицы A порядка m×n называется максимальное количество линейно независимых векторов столбцов или векторов строк.

Если ранг матрицы A равен r , то пишется:

Нахождение ранга матрицы

Пусть A произвольная матрица порядка m ×n . Для нахождения ранга матрицы A применим к ней метод исключения Гаусса.

Отметим, что если на каком-то этапе исключения ведущий элемент окажется равным нулю, то меняем местами данную строку со строкой, в котором ведущий элемент отличен от нуля. Если окажется, что нет такой строки, то переходим к следующему столбцу и т.д.

После прямого хода исключения Гаусса получим матрицу, элементы которой под главной диагональю равны нулю. Кроме этого могут оказаться нулевые векторы строки.

Количество ненулевых векторов строк и будет рангом матрицы A .

Рассмотрим все это на простых примерах.

Пример 1.

Умножив первую строку на 4 и прибавив ко второй строке и умножив первую строку на 2 и прибавив к третьей строке имеем:

Вторую строку умножим на -1 и прибавим к третьей строке:

Получили две ненулевые строки и, следовательно ранг матрицы равен 2.

Пример 2.

Найдем ранг следующей матрицы:

Умножим первую строку на -2 и прибавим ко второй строке. Аналогично обнулим элементы третьей и четвертой строки первого столбца:

Обнулим элементы третьей и четвертой строк второго столбца прибавляя соответствующие строки ко второй строке умноженной на число -1.

А также рассмотрим важное практическое приложение темы: исследование системы линейных уравнений на совместность .

Что такое ранг матрицы?

В юмористическом эпиграфе статьи содержится большая доля истины. Само слово «ранг» у нас обычно ассоциируется с некоторой иерархией, чаще всего, со служебной лестницей. Чем больше у человека знаний, опыта, способностей, блата и т.д. – тем выше его должность и спектр возможностей. Выражаясь по молодёжному, под рангом подразумевают общую степень «крутизны».

И братья наши математические живут по тем же принципам. Выведем на прогулку несколько произвольных нулевых матриц :

Задумаемся, если в матрице одни нули , то о каком ранге может идти речь? Всем знакомо неформальное выражение «полный ноль». В обществе матриц всё точно так же:

Ранг нулевой матрицы любых размеров равен нулю .

Примечание : нулевая матрица обозначается греческой буквой «тета»

В целях лучшего понимания ранга матрицы здесь и далее я буду привлекать на помощь материалы аналитической геометрии . Рассмотрим нулевой вектор нашего трёхмерного пространства, который не задаёт определённого направления и бесполезен для построения аффинного базиса . С алгебраической точки зрения координаты данного вектора записаны в матрицу «один на три» и логично (в указанном геометрическом смысле) считать, что ранг этой матрицы равен нулю.

Теперь рассмотрим несколько ненулевых векторов-столбцов и векторов-строк :


В каждом экземпляре есть хотя бы один ненулевой элемент, и это уже кое-что!

Ранг любого ненулевого вектора-строки (вектора-столбца) равен единице

И вообще – если в матрице произвольных размеров есть хотя бы один ненулевой элемент, то её ранг не меньше единицы .

Алгебраические векторы-строки и векторы-столбцы в известной степени абстрактны, поэтому снова обратимся к геометрической ассоциации. Ненулевой вектор задаёт вполне определённое направление в пространстве и годится для построения базиса , поэтому ранг матрицы будем считать равным единице.

Теоретическая справка : в линейной алгебре вектор – это элемент векторного пространства (определяемое через 8 аксиом), который, в частности, может представлять собой упорядоченную строку (или столбец) действительных чисел с определёнными для них операциями сложения и умножения на действительное число. С более подробной информацией о векторах можно ознакомиться в статье Линейные преобразования .

линейно зависимы (выражаются друг через друга). С геометрической точки зрения во вторую строку записаны координаты коллинеарного вектора , который ничуть не продвинул дело в построении трёхмерного базиса , являясь в этом смысле лишним. Таким образом, ранг данной матрицы тоже равен единице.

Перепишем координаты векторов в столбцы (транспонируем матрицу ):

Что изменилось с точки зрения ранга? Ничего. Столбцы пропорциональны, значит, ранг равен единице. Кстати, обратите внимание, что все три строки тоже пропорциональны. Их можно отождествить с координатами трёх коллинеарных векторов плоскости, из которых только один полезен для построения «плоского» базиса. И это полностью согласуется с нашим геометрическим смыслом ранга.

Из вышеприведённого примера следует важное утверждение:

Ранг матрицы по строкам равен рангу матрицы по столбцам . Об этом я уже немного упоминал на уроке об эффективных методах вычисления определителя .

Примечание : из линейной зависимости строк следует линейная зависимость столбцов (и наоборот). Но в целях экономии времени, да и в силу привычки я почти всегда буду говорить о линейной зависимости строк.

Продолжим дрессировать нашего любимого питомца. Добавим в матрицу третьей строкой координаты ещё одного коллинеарного вектора :

Помог ли он нам в построении трёхмерного базиса? Конечно, нет. Все три вектора гуляют туда-сюда по одной дорожке, и ранг матрицы равен единице. Можно взять сколько угодно коллинеарных векторов, скажем, 100, уложить их координаты в матрицу «сто на три» и ранг такого небоскрёба всё равно останется единичным.

Познакомимся с матрицей , строки которой линейно независимы . Пара неколлинеарных векторов пригодна для построения трёхмерного базиса. Ранг этой матрицы равен двум.

А чему равен ранг матрицы ? Строки вроде не пропорциональны…, значит, по идее трём. Однако ранг этой матрицы тоже равен двум. Я сложил первые две строки и записал результат внизу, то есть линейно выразил третью строку через первые две. Геометрически строки матрицы соответствуют координатам трёх компланарных векторов , причём среди этой тройки существует пара неколлинеарных товарищей.

Как видите, линейная зависимость в рассмотренной матрице не очевидна, и сегодня мы как раз научимся выводить её «на чистую воду».

Думаю, многие догадываются, что такое ранг матрицы!

Рассмотрим матрицу , строки которой линейно независимы . Векторы образуют аффинный базис , и ранг данной матрицы равняется трём.

Как вы знаете, любой четвёртый, пятый, десятый вектор трёхмерного пространства будет линейно выражаться через базисные векторы. Поэтому, если в матрицу добавить любое количество строк, то её ранг всё равно будет равен трём .

Аналогичные рассуждения можно провести для матриц бОльших размеров (понятно, уже без геометрического смысла).

Определение : ранг матрицы – это максимальное количество линейно независимых строк . Или: ранг матрицы – это максимальное количество линейно независимых столбцов . Да, их количество всегда совпадает.

Из вышесказанного также следует важный практический ориентир: ранг матрицы не превосходит её минимальной размерности . Например, в матрице четыре строки и пять столбцов. Минимальная размерность – четыре, следовательно, ранг данной матрицы заведомо не превзойдёт 4.

Обозначения : в мировой теории и практике не существует общепринятого стандарта для обозначения ранга матрицы, наиболее часто можно встретить: – как говорится, англичанин пишет одно, немец другое. Поэтому давайте по мотивам известного анекдота про американский и русский ад обозначать ранг матрицы родным словом. Например: . А если матрица «безымянная», коих встречается очень много, то можно просто записать .

Как найти ранг матрицы с помощью миноров?

Если бы у бабушки нас в матрице был пятый столбец, то следовало бы вычислить ещё один минор 4-го порядка («синие», «малиновый» + 5-й столбец).

Вывод : максимальный порядок ненулевого минора равен трём, значит, .

Возможно, не все до конца осмыслили данную фразу: минор 4-го порядка равен нулю, но среди миноров 3-го порядка нашёлся ненулевой – поэтому максимальный порядок ненулевого минора и равен трём.

Возникает вопрос, а почему бы сразу не вычислить определитель? Ну, во-первых, в большинстве заданий матрица не квадратная, а во-вторых, даже если у вас и получится ненулевое значение, то задание с высокой вероятностью забракуют, так как оно обычно подразумевает стандартное решение «снизу вверх». А в рассмотренном примере нулевой определитель 4-го порядка и вовсе позволяет утверждать, что ранг матрицы лишь меньше четырёх.

Должен признаться, разобранную задачу я придумал сам, чтобы качественнее объяснить метод окаймляющих миноров. В реальной практике всё проще:

Пример 2

Найти ранг матрицы методом окаймляющих миноров

Решение и ответ в конце урока.

Когда алгоритм работает быстрее всего? Вернёмся к той же матрице «четыре на четыре» . Очевидно, решение будет самым коротким в случае «хороших» угловых миноров :

И, если , то , в противном случае – .

Размышление совсем не гипотетично – существует немало примеров, где всё дело и ограничивается только угловыми минорами.

Однако в ряде случаев более эффективен и предпочтителен другой способ:

Как найти ранг матрицы с помощью метода Гаусса?

Параграф рассчитан на читателей, которые уже знакомы с методом Гаусса и мало-мальски набили на нём руку.

С технической точки зрения метод не отличается новизной:

1) с помощью элементарных преобразований приводим матрицу к ступенчатому виду;

2) ранг матрицы равен количеству строк.

Совершенно понятно, что использование метода Гаусса не меняет ранга матрицы , и суть здесь предельно проста: согласно алгоритму, в ходе элементарных преобразований выявляются и удаляются все лишние пропорциональные (линейно зависимые) строки, в результате чего остаётся «сухой остаток» – максимальное количество линейно независимых строк.

Преобразуем старую знакомую матрицу с координатами трёх коллинеарных векторов:

(1) Ко второй строке прибавили первую строку, умноженную на –2. К третьей строке прибавили первую строку.

(2) Нулевые строки удаляем.

Таким образом, осталась одна строка, следовательно, . Что и говорить, это гораздо быстрее, чем рассчитать девять нулевых миноров 2-го порядка и только потом сделать вывод.

Напоминаю, что в самой по себе алгебраической матрице ничего менять нельзя, и преобразования выполняются только с целью выяснения ранга! Кстати, остановимся ещё раз на вопросе, почему нельзя? Исходная матрица несёт информацию, которая принципиально отлична от информации матрицы и строки . В некоторых математических моделях (без преувеличения) разница в одном числе может быть вопросом жизни и смерти. …Вспомнились школьные учителя математики начальных и средних классов, которые безжалостно срезали оценку на 1-2 балла за малейшую неточность или отклонение от алгоритма. И было жутко обидно, когда вместо, казалось бы, гарантированной «пятёрки» получалось «хорошо» или того хуже. Понимание пришло намного позже – а как иначе доверить человеку спутники, ядерные боеголовки и электростанции? Но вы не беспокойтесь, я не работаю в этих сферах =)

Перейдём к более содержательным заданиям, где помимо прочего познакомимся с важными вычислительными приёмами метода Гаусса :

Пример 3

Найти ранг матрицы с помощью элементарных преобразований

Решение : дана матрица «четыре на пять», значит, её ранг заведомо не больше, чем 4.

В первом столбце, отсутствует 1 или –1, следовательно, необходимы дополнительные действия, направленные на получение хотя бы одной единицы. За всё время существования сайта мне неоднократно задавали вопрос: «Можно ли в ходе элементарных преобразований переставлять столбцы?». Вот здесь – переставили первый-второй столбец, и всё отлично! В большинстве задач, где используется метод Гаусса , столбцы действительно переставлять можно. НО НЕ НУЖНО. И дело даже не в возможной путанице с переменными, дело в том, что в классическом курсе обучения высшей математике данное действие традиционно не рассматривается, поэтому на такой реверанс посмотрят ОЧЕНЬ криво (а то и заставят всё переделывать).

Второй момент касается чисел. В ходе решения полезно руководствоваться следующим эмпирическим правилом: элементарные преобразования по возможности должны уменьшать числа матрицы . Ведь с единицей-двойкой-тройкой работать значительно легче, чем, например, с 23, 45 и 97. И первое действие направлено не только на получение единицы в первом столбце, но и на ликвидацию чисел 7 и 11.

Сначала полное решение, потом комментарии:

(1) Ко второй строке прибавили первую строку, умноженную на –2. К третьей строке прибавили первую строку, умноженную на –3. И до кучи: к 4-й строке прибавили 1-ю строку, умноженную на –1.

(2) Последние три строки пропорциональны. Удалили 3-ю и 4-ю строки, вторую строку переместили на первое место.

(3) Ко второй строке прибавили первую строку, умноженную на –3.

В приведённой к ступенчатому виду матрице две строки.

Ответ :

Теперь ваша очередь мучить матрицу «четыре на четыре»:

Пример 4

Найти ранг матрицы методом Гаусса

Напоминаю, что метод Гаусса не предполагает однозначной жёсткости, и ваше решение, скорее всего, будет отличаться от моего решения. Краткий образец оформления задачи в конце урока.

Какой метод использовать для нахождения ранга матрицы?

На практике зачастую вообще не сказано, какой метод необходимо использовать для нахождения ранга. В такой ситуации следует анализировать условие – для одних матриц рациональнее провести решение через миноры, а для других значительно выгоднее применить элементарные преобразования:

Пример 5

Найти ранг матрицы

Решение : первый способ как-то сразу отпадает =)

Чуть выше я советовал не трогать столбцы матрицы, но когда есть нулевой столбец, либо пропорциональные/совпадающие столбцы, то всё же стОит провести ампутацию:

(1) Пятый столбец нулевой, удалим его из матрицы. Таким образом, ранг матрицы не больше четырёх. Первую строку умножили на –1. Это ещё одна фирменная фишка метода Гаусса, превращающая следующее действие в приятную прогулку:

(2) Ко всем строкам, начиная со второй, прибавили первую строку.

(3) Первую строку умножили на –1, третью строку разделили на 2, четвёртую строку разделили на 3. К пятой строке прибавили вторую строку, умноженную на –1.

(4) К пятой строке прибавили третью строку, умноженную на –2.

(5) Последние две строки пропорциональны, пятую удаляем.

В результате получено 4 строки.

Ответ :

Стандартная пятиэтажка для самостоятельного исследования:

Пример 6

Найти ранг матрицы

Краткое решение и ответ в конце урока.

Следует отметить, что словосочетание «ранг матрицы» не так часто встретишь на практике, и в большинстве задач можно вообще обойтись без него. Но существует одно задание, где рассматриваемое понятие является главным действующим лицом, и в заключение статьи мы рассмотрим это практическое приложение:

Как исследовать систему линейных уравнений на совместность?

Нередко помимо решения системы линейных уравнений по условию предварительно требуется исследовать её на совместность, то есть доказать, что какое-либо решение вообще существует. Ключевую роль в такой проверке играет теорема Кронекера-Капелли , которую я сформулирую в необходимом виде:

Если ранг матрицы системы равен рангу расширенной матрицы системы , то система совместна, причём, если данное число совпадает с количеством неизвестных, то решение единственно.

Таким образом, для исследования системы на совместность нужно проверить равенство , где – матрица системы (вспоминаем терминологию из урока Метод Гаусса ), а – расширенная матрица системы (т.е. матрица с коэффициентами при переменных + столбец свободных членов).

Рассмотрим матрицу А размера .

А=
Выделим в нейkстрок иkстолбцов (
).

Определение 26: Минором k-го порядка матрицы А называется определитель квадратной матрицы, получающийся из данной выделением в ней.

kстрок иkстолбцов.

Определение 27: Рангом матрицы называется наибольший из порядков, отличных от нуля, ее миноров,r(A).

Определение 28: Минор, порядок которого совпадает с рангом называетсябазисным минором .

Утверждение:

1. Ранг выражается целым числом.(
)

2. r=0,
, когда А – нулевая.

Элементарные преобразования матриц.

К элементарным преобразованиям матриц относятся следующие:

1) умножение всех элементов какой-либо строки (столбца) матрицы на одно и то же число.

2) прибавление к элементам какой-либо строки (столбца) матрицы соответствующих элементов другой строки (столбца) умноженные на одно и то же число;

3) перестановка местами строк (столбцов) матрицы;

4) отбрасывание нулевой строки (столбца);

5) замена строк матрицы соответствующими столбцами.

Определение 29: Матрицы, получающиеся одна из другой, при элементарных преобразованиях называется эквивалентными матрицами, обозначаются “ ~“

Основное свойство эквивалентных матриц: Ранги эквивалентных матриц равны.

Пример 18: Вычислитьr(A),

Решение: Первую строку умножим поэтапно на (-4)(-2)

(-7) и затем прибавим соответственно к второй, третьей и четвертой строкам.

~

поменяем местами вторую и четвертую строки
вторую строку умножим на (-2) и прибавим к четвертой строке; сложим вторую и третью строки.

сложим третью и четвертую строки.

~
откинем нулевую строку

~
r(A)=3
ранг исходной матрицы

равен трем.

Определение 30: Назовем матрицу А ступенчатой, если все элементы главной диагонали0, а элементы под главной диагональю равны нулю.

Предложение :

1) ранг ступенчатой матрицы равен числу ее строк;

2) всякая матрица может быть приведена к ступенчатому виду с помощью элементарных преобразований.

Пример 19: При каких значениях  матрица
имеет ранг, равный единице?

Решение: Ранг равен единице, если определитель второго порядка равен нулю, т.е.

§6. Системы линейных уравнений общего вида.

Система вида
---(9) называется системой общего вида.

Определение 31: Две системы называются равносильными (эквивалентными), если каждое решение первой системы являются решением второй и наоборот.

В системе (1) матрицу А=
назовем основной матрицей системы, а=
расширенной матрицей системы

Теорема. Кронекера-Капелли

Для совместности системы (9) необходим и достаточно, чтобы ранг основной матрицы системы равнялся рангу расширенной матрицы, т. е. r(A)=r()

Теорема 1. Если ранг матрицы совместной системы равен числу неизвестных, то система имеет единственное решение.

Теорема 2. Если ранг матрицы совместной системы меньше числа неизвестных, то система имеет бесчисленное множество решений.

Правило решения произвольной системы линейных уравнений:

1)найти ранги основной и расширенной матриц системы. Если
, то система не совместна.

2) Если
=r, то система совместна. Найти какой-либо базисный минор порядкаr. Базисным будем называть минор, на основании которого определялся ранг матрицы.

Неизвестные, коэффициенты которых входят в базисный минор, называют главными (базисными) и оставляют слева, а остальные неизвестные называют свободными и переносят в правую часть уравнения.

3)Найти выражения главных неизвестных через свободные. Получено общее решение системы.

Пример 20: Исследовать систему и в случае ее совместности найти или единственное или общее решение

Решение: 1) по Т. Кронекера-Капелли находим ранги расширенной и основной матриц системы:

~
~

~
~
ранг основной матрицы равен двум

2) находим ранг расширенной матрицы
~
~
~

3) Вывод:
=2, то система совместна.

Но

система неопределенная и имеет бесчисленное множество решений.

4) Базисные неизвестные и, т. к. они принадлежат базисному минору, а- свободная неизвестная.

Пусть =с, где с – любое число.

5)Последней матрице соответствует система


6)Ответ:

7) Проверка: в любое из уравнений исходной системы, где присутствуют все неизвестные, подставляем найденные значения.